Gurau MR, Negru E, Ionescu T, Udriste AA, Cornea CP, Baraitareanu S. Genetic Polymorphism at 15 Codons of the Prion Protein Gene in 156 Goats from Romania.
Genes (Basel) 2022;
13:genes13081316. [PMID:
35893054 PMCID:
PMC9394368 DOI:
10.3390/genes13081316]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Background: The variability of prion protein gene (PRNP) codons and the frequency of alleles (K222, D146, and S146) that appear to confer genetic resistance to classical scrapie are still unknown in several goat populations/breeds prevalent in Romania. This work aims to assess the genetic polymorphism at 15 PRNP codons in Romanian goat populations to inform the development of goat breeding programs for scrapie resistance. Methods: Whole blood and hair follicles from Carpathian (50), French Alpine (53), and Banat’s White (53) breed goats were sampled to extract genomic DNA for genetic analyses and Sanger sequencing. In the targeted goat groups, one classical scrapie-positive Banat’s White goat was included. Results: The codons without polymorphisms were G37G, W102W, N146N, R151R, S173S, and I218I. The following non-synonymous polymorphisms of PRNP were recorded: P110P, P110S, P110T, T110T, G127G, G127S, I142I, I142M, T142I, H143H, P143P, R143R, R154R, H154R, P168P, Q168Q, Q211Q, Q211R, Q222Q, H222Q, K222K, S240S, P240P, P240S, and S240P. Conclusions: PRNP polymorphism was recorded in 60% (9/15) of codons. The scrapie-positive Banat’s White goat had G37G, W102W, T110T, G127G, I142I, H143H, N146N, R151R, R154R, P168P, S173S, R211R, I218I, Q222Q, and S240S. The K222 allele had a frequency of 6% (3/50) in Carpathian, 9.43% (5/53) in Banat’s White, and 15.09% (8/53) in French Alpine. Therefore, the polymorphisms detected in this sample of Romanian goat breeds are too rare to design a breeding program at the current time.
Collapse