1
|
Sakhteman A, Failli M, Kublbeck J, Levonen AL, Fortino V. A toxicogenomic data space for system-level understanding and prediction of EDC-induced toxicity. ENVIRONMENT INTERNATIONAL 2021; 156:106751. [PMID: 34271427 DOI: 10.1016/j.envint.2021.106751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Endocrine disrupting compounds (EDCs) are a persistent threat to humans and wildlife due to their ability to interfere with endocrine signaling pathways. Inspired by previous work to improve chemical hazard identification through the use of toxicogenomics data, we developed a genomic-oriented data space for profiling the molecular activity of EDCs in an in silico manner, and for creating predictive models that identify and prioritize EDCs. Predictive models of EDCs, derived from gene expression data from rats (in vivo and in vitro primary hepatocytes) and humans (in vitro primary hepatocytes and HepG2), achieve testing accuracy greater than 90%. Negative test sets indicate that known safer chemicals are not predicted as EDCs. The rat in vivo-based classifiers achieve accuracy greater than 75% when tested for invitro to in vivoextrapolation. This study reveals key metabolic pathways and genes affected by EDCs together with a set of predictive models that utilize these pathways to prioritize EDCs in dose/time dependent manner and to predict EDCevokedmetabolic diseases.
Collapse
Affiliation(s)
- A Sakhteman
- Institute of Biomedicine, University of Eastern Finland, Kuopio 70210, Finland
| | - M Failli
- Department of Chemical, Materials and Industrial Engineering, University of Naples, 'Federico II', Naples 80125, Italy
| | - J Kublbeck
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70210, Finland; School of Pharmacy, University of Eastern Finland, Kuopio 70210, Finland
| | - A L Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70210, Finland
| | - V Fortino
- Institute of Biomedicine, University of Eastern Finland, Kuopio 70210, Finland.
| |
Collapse
|
2
|
Chappell GA, Heintz MM, Haws LC. Transcriptomic analyses of livers from mice exposed to 1,4-dioxane for up to 90 days to assess potential mode(s) of action underlying liver tumor development. Curr Res Toxicol 2021; 2:30-41. [PMID: 34345848 PMCID: PMC8320614 DOI: 10.1016/j.crtox.2021.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
1,4-Dioxane is a volatile organic compound with industrial and commercial applications as a solvent and in the manufacture of other chemicals. 1,4-Dioxane has been demonstrated to induce liver tumors in chronic rodent bioassays conducted at very high doses. The available evidence for 1,4-dioxane-induced liver tumors in rodents aligns with a threshold-dependent mode of action (MOA), with the underlying mechanism being less clear in the mouse than in rats. To gain a better understanding of the underlying molecular mechanisms related to liver tumor development in mice orally exposed to 1,4-dioxane, transcriptomics analysis was conducted on liver tissue collected from a 90-day drinking water study in female B6D2F1/Crl mice (Lafranconi et al., 2020). Using tissue samples from female mice exposed to 1,4-dioxane in the drinking water at concentrations of 0, 40, 200, 600, 2,000 or 6,000 ppm for 7, 28, and 90 days, transcriptomic analyses demonstrate minimal treatment effects on global gene expression at concentrations below 600 ppm. At higher concentrations, genes involved in phase II metabolism and mitotic cell cycle checkpoints were significantly upregulated. There was an overall lack of enrichment of genes related to DNA damage response. The increase in mitotic signaling is most prevalent in the livers of mice exposed to 1,4-dioxane at the highest concentrations for 90 days. This finding aligns with phenotypic changes reported by Lafranconi et al. (2020) after 90-days of exposure to 6,000 ppm 1,4-dioxane in the same tissues. The transcriptomics analysis further supports overarching study findings demonstrating a non-mutagenic, threshold-based, mitogenic MOA for 1,4-dioxane-induced liver tumors.
Collapse
Affiliation(s)
- G A Chappell
- ToxStrategies, Inc., Asheville, NC, United States
| | - M M Heintz
- ToxStrategies, Inc., Asheville, NC, United States
| | - L C Haws
- ToxStrategies, Inc., Austin, TX, United States
| |
Collapse
|
3
|
Chappell GA, Thompson CM, Wolf JC, Cullen JM, Klaunig JE, Haws LC. Assessment of the Mode of Action Underlying the Effects of GenX in Mouse Liver and Implications for Assessing Human Health Risks. Toxicol Pathol 2020; 48:494-508. [PMID: 32138627 PMCID: PMC7153225 DOI: 10.1177/0192623320905803] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
GenX is an alternative to environmentally persistent long-chain perfluoroalkyl and polyfluoroalkyl substances. Mice exposed to GenX exhibit liver hypertrophy, elevated peroxisomal enzyme activity, and other apical endpoints consistent with peroxisome proliferators. To investigate the potential role of peroxisome proliferator-activated receptor alpha (PPARα) activation in mice, and other molecular signals potentially related to observed liver changes, RNA sequencing was conducted on paraffin-embedded liver sections from a 90-day subchronic toxicity study of GenX conducted in mice. Differentially expressed genes were identified for each treatment group, and gene set enrichment analysis was conducted using gene sets that represent biological processes and known canonical pathways. Peroxisome signaling and fatty acid metabolism were among the most significantly enriched gene sets in both sexes at 0.5 and 5 mg/kg GenX; no pathways were enriched at 0.1 mg/kg. Gene sets specific to the PPARα subtype were significantly enriched. These findings were phenotypically anchored to histopathological changes in the same tissue blocks: hypertrophy, mitoses, and apoptosis. In vitro PPARα transactivation assays indicated that GenX activates mouse PPARα. These results indicate that the liver changes observed in GenX-treated mice occur via a mode of action (MOA) involving PPARα, an important finding for human health risk assessment as this MOA has limited relevance to humans.
Collapse
Affiliation(s)
| | | | | | - John M. Cullen
- North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
| | - James E. Klaunig
- Indiana University, School of Public Health, Bloomington, IN, USA
| | | |
Collapse
|
4
|
Lin L, Wan L, He H, Liu W. Drug vector representation: a tool for drug similarity analysis. Mol Genet Genomics 2020; 295:1055-1062. [PMID: 32222838 DOI: 10.1007/s00438-020-01665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
DrugMatrix is a valuable toxicogenomic dataset, which provides in vivo transcriptome data corresponding to hundreds of chemical drugs. However, the relationships between drugs and how those drugs affect the biological process are still unknown. The high dimensionality of the microarray data hinders its application. The aims of this study are to (1) represent the transcriptome data by lower-dimensional vectors, (2) compare drug similarity, (3) represent drug combinations by adding vectors and (4) infer drug mechanism of action (MoA) and genotoxicity features. We borrowed the latent semantic analysis (LSA) technique from natural language processing to represent treatments (drugs with multiple concentrations and time points) by dense vectors, each dimension of which is an orthogonal biological feature. The gProfiler enrichment tool was used for the 100-dimensional vector feature annotation. The similarity between treatments vectors was calculated by the cosine function. Adding vectors may represent drug combinations, treatment times or treatment doses that are not presented in the original data. Drug-drug interaction pairs had a higher similarity than random drug pairs in the hepatocyte data. The vector features helped to reveal the MoA. Differential feature expression was also implicated for genotoxic and non-genotoxic carcinogens. An easy-to-use Web tool was developed by Shiny Web application framework for the exploration of treatment similarities and drug combinations (https://bioinformatics.fafu.edu.cn/drugmatrix/). We represented treatments by vectors and provided a tool that is useful for hypothesis generation in toxicogenomic, such as drug similarity, drug repurposing, combination therapy and MoA.
Collapse
Affiliation(s)
- Liping Lin
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Luoyao Wan
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Huaqin He
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Wei Liu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
5
|
Barel G, Herwig R. Network and Pathway Analysis of Toxicogenomics Data. Front Genet 2018; 9:484. [PMID: 30405693 PMCID: PMC6204403 DOI: 10.3389/fgene.2018.00484] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
Toxicogenomics is the study of the molecular effects of chemical, biological and physical agents in biological systems, with the aim of elucidating toxicological mechanisms, building predictive models and improving diagnostics. The vast majority of toxicogenomics data has been generated at the transcriptome level, including RNA-seq and microarrays, and large quantities of drug-treatment data have been made publicly available through databases and repositories. Besides the identification of differentially expressed genes (DEGs) from case-control studies or drug treatment time series studies, bioinformatics methods have emerged that infer gene expression data at the molecular network and pathway level in order to reveal mechanistic information. In this work we describe different resources and tools that have been developed by us and others that relate gene expression measurements with known pathway information such as over-representation and gene set enrichment analyses. Furthermore, we highlight approaches that integrate gene expression data with molecular interaction networks in order to derive network modules related to drug toxicity. We describe the two main parts of the approach, i.e., the construction of a suitable molecular interaction network as well as the conduction of network propagation of the experimental data through the interaction network. In all cases we apply methods and tools to publicly available rat in vivo data on anthracyclines, an important class of anti-cancer drugs that are known to induce severe cardiotoxicity in patients. We report the results and functional implications achieved for four anthracyclines (doxorubicin, epirubicin, idarubicin, and daunorubicin) and compare the information content inherent in the different computational approaches.
Collapse
Affiliation(s)
| | - Ralf Herwig
- Department Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
6
|
Jean-Quartier C, Jeanquartier F, Jurisica I, Holzinger A. In silico cancer research towards 3R. BMC Cancer 2018; 18:408. [PMID: 29649981 PMCID: PMC5897933 DOI: 10.1186/s12885-018-4302-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 03/26/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Improving our understanding of cancer and other complex diseases requires integrating diverse data sets and algorithms. Intertwining in vivo and in vitro data and in silico models are paramount to overcome intrinsic difficulties given by data complexity. Importantly, this approach also helps to uncover underlying molecular mechanisms. Over the years, research has introduced multiple biochemical and computational methods to study the disease, many of which require animal experiments. However, modeling systems and the comparison of cellular processes in both eukaryotes and prokaryotes help to understand specific aspects of uncontrolled cell growth, eventually leading to improved planning of future experiments. According to the principles for humane techniques milestones in alternative animal testing involve in vitro methods such as cell-based models and microfluidic chips, as well as clinical tests of microdosing and imaging. Up-to-date, the range of alternative methods has expanded towards computational approaches, based on the use of information from past in vitro and in vivo experiments. In fact, in silico techniques are often underrated but can be vital to understanding fundamental processes in cancer. They can rival accuracy of biological assays, and they can provide essential focus and direction to reduce experimental cost. MAIN BODY We give an overview on in vivo, in vitro and in silico methods used in cancer research. Common models as cell-lines, xenografts, or genetically modified rodents reflect relevant pathological processes to a different degree, but can not replicate the full spectrum of human disease. There is an increasing importance of computational biology, advancing from the task of assisting biological analysis with network biology approaches as the basis for understanding a cell's functional organization up to model building for predictive systems. CONCLUSION Underlining and extending the in silico approach with respect to the 3Rs for replacement, reduction and refinement will lead cancer research towards efficient and effective precision medicine. Therefore, we suggest refined translational models and testing methods based on integrative analyses and the incorporation of computational biology within cancer research.
Collapse
Affiliation(s)
- Claire Jean-Quartier
- Holzinger Group, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz, Austria
| | - Fleur Jeanquartier
- Holzinger Group, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz, Austria
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| | - Igor Jurisica
- Krembil Research Institute, University Health Network; Depts. of Medical Bioph. and Comp. Sci., University of Toronto; Institute of Neuroimmunology, Slovak Academy of Sciences, Toronto, Canada
| | - Andreas Holzinger
- Holzinger Group, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz, Austria
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| |
Collapse
|
7
|
Romano P, Hofestädt R, Lange M, D'Elia D. The joint NETTAB/Integrative Bioinformatics 2015 Meeting: aims, topics and outcomes. BMC Bioinformatics 2017; 18:101. [PMID: 28361713 PMCID: PMC5374598 DOI: 10.1186/s12859-017-1532-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The 15th International NETTAB workshop and the 11th Integrative Bioinformatics Symposium were held together in Bari, on October 14-16, 2016, as Joint NETTAB/IB 2015 Meeting. A special topic for the meeting was "Bioinformatics for ncRNA", but the traditional topics of both meetings series were also included in the event.About 60 scientific contributions were presented, including six keynote lectures, one special guest lecture, and many oral communications and posters. A "Two-Day Hands-on Tutorial" event was organised before the workshop.Selected full papers from some of the best works presented in Bari were submitted either to the Journal of Integrative Bioinformatics or to a purpose Call for a Supplement of BMC Bioinformatics.Here, we provide an overview of meeting aims and scope. We also shortly introduce selected papers that have been either accepted for publication in this Supplement or published in the Journal of Integrative Bioinformatics, for a more complete presentation of the outcomes of the meeting.
Collapse
Affiliation(s)
- Paolo Romano
- IRCCS AOU San Martino IST, Genoa, I-16132, Italy.
| | | | - Matthias Lange
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, D-06466, Germany
| | - Domenica D'Elia
- Institute for Biomedical Technology - National Research Council, Bari, I-70126, Italy
| |
Collapse
|