1
|
Kim CS, Cairns J, Quarantotti V, Kaczkowski B, Wang Y, Konings P, Zhang X. A statistical simulation model to guide the choices of analytical methods in arrayed CRISPR screen experiments. PLoS One 2024; 19:e0307445. [PMID: 39163294 PMCID: PMC11335118 DOI: 10.1371/journal.pone.0307445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024] Open
Abstract
An arrayed CRISPR screen is a high-throughput functional genomic screening method, which typically uses 384 well plates and has different gene knockouts in different wells. Despite various computational workflows, there is currently no systematic way to find what is a good workflow for arrayed CRISPR screening data analysis. To guide this choice, we developed a statistical simulation model that mimics the data generating process of arrayed CRISPR screening experiments. Our model is flexible and can simulate effects on phenotypic readouts of various experimental factors, such as the effect size of gene editing, as well as biological and technical variations. With two examples, we showed that the simulation model can assist making principled choice of normalization and hit calling method for the arrayed CRISPR data analysis. This simulation model is implemented in an R package and can be downloaded from Github.
Collapse
Affiliation(s)
- Chang Sik Kim
- Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, England
| | - Jonathan Cairns
- Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, England
| | - Valentina Quarantotti
- Functional Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, England
| | - Bogumil Kaczkowski
- Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, England
| | - Yinhai Wang
- Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, England
| | - Peter Konings
- Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, England
| | - Xiang Zhang
- Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, England
| |
Collapse
|
2
|
Abstract
While the involvement of actin polymerization in cell migration is well-established, much less is known about the role of transmembrane water flow in cell motility. Here, we investigate the role of water influx in a prototypical migrating cell, the neutrophil, which undergoes rapid, directed movement to sites of injury, and infection. Chemoattractant exposure both increases cell volume and potentiates migration, but the causal link between these processes are not known. We combine single-cell volume measurements and a genome-wide CRISPR screen to identify the regulators of chemoattractant-induced neutrophil swelling, including NHE1, AE2, PI3K-gamma, and CA2. Through NHE1 inhibition in primary human neutrophils, we show that cell swelling is both necessary and sufficient for the potentiation of migration following chemoattractant stimulation. Our data demonstrate that chemoattractant-driven cell swelling complements cytoskeletal rearrangements to enhance migration speed.
Collapse
Affiliation(s)
- Tamas L Nagy
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Evelyn Strickland
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Orion D Weiner
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
3
|
Lee RA, Chopra DG, Nguyen V, Huang XP, Zhang Y, Shariati K, Yiv N, Schugar R, Annes J, Roth B, Ku GM. An shRNA screen in primary human beta cells identifies the serotonin 1F receptor as a negative regulator of survival during transplant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.591950. [PMID: 38746433 PMCID: PMC11092577 DOI: 10.1101/2024.05.01.591950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Islet transplantation can cure type 1 diabetes, but peri-transplant beta cell death limits this procedure to those with low insulin requirements. Improving human beta cell survival or proliferation may make islet transplantation a possibility for more type 1 patients. To identify novel regulators of beta cell survival and proliferation, we conducted a pooled small hairpin RNA (shRNA) screen in primary human beta cells transplanted into immunocompromised mice. shRNAs targeting several cyclin dependent kinase inhibitors were enriched after transplant. Here, we focused on the Gi/o-coupled GPCR, serotonin 1F receptor ( HTR1F, 5-HT 1F ) which our screen identified as a negative regulator of beta cell numbers after transplant. In vitro , 5-HT 1F knockdown induced human beta cell proliferation but only when combined with harmine and exendin-4. In vivo , knockdown of 5-HT 1F reduced beta cell death during transplant. To demonstrate the feasibility of targeting 5-HT 1F in islet transplant, we identified and validated a small molecule 5-HT 1F antagonist. This antagonist increased glucose stimulated insulin secretion from primary human islets and cAMP accumulation in primary human beta cells. Finally, the 5-HT 1F antagonist improved glycemia in marginal mass, human islet transplants into immunocompromised mice. We identify 5-HT 1F as a novel druggable target to improve human beta cell survival in the setting of islet transplantation. One Sentence Summary Serotonin 1F receptor (5-HT 1F ) negatively regulates insulin secretion and beta cell survival during transplant.
Collapse
|
4
|
Nagy TL, Strickland E, Weiner OD. Neutrophils actively swell to potentiate rapid migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.15.540704. [PMID: 37292824 PMCID: PMC10245588 DOI: 10.1101/2023.05.15.540704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While the involvement of actin polymerization in cell migration is well-established, much less is known about the role of transmembrane water flow in cell motility. Here, we investigate the role of water influx in a prototypical migrating cell, the neutrophil, which undergoes rapid, directed movement to sites of injury and infection. Chemoattractant exposure both increases cell volume and potentiates migration, but the causal link between these processes is not known. We combine single cell volume measurements and a genome-wide CRISPR screen to identify the regulators of chemoattractant-induced neutrophil swelling, including NHE1, AE2, PI3K-gamma, and CA2. Through NHE1 inhibition in primary human neutrophils, we show that cell swelling is both necessary and sufficient for the potentiation of migration following chemoattractant stimulation. Our data demonstrate that chemoattractant-driven cell swelling complements cytoskeletal rearrangements to enhance migration speed.
Collapse
Affiliation(s)
- Tamas L Nagy
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Evelyn Strickland
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Orion D Weiner
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Lee TW, Hunter FW, Tsai P, Print CG, Wilson WR, Jamieson SMF. Clonal dynamics limits detection of selection in tumour xenograft CRISPR/Cas9 screens. Cancer Gene Ther 2023; 30:1610-1623. [PMID: 37684549 PMCID: PMC10721547 DOI: 10.1038/s41417-023-00664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Transplantable in vivo CRISPR/Cas9 knockout screens, in which cells are edited in vitro and inoculated into mice to form tumours, allow evaluation of gene function in a cancer model that incorporates the multicellular interactions of the tumour microenvironment. To improve our understanding of the key parameters for success with this method, we investigated the choice of cell line, mouse host, tumour harvesting timepoint and guide RNA (gRNA) library size. We found that high gRNA (80-95%) representation was maintained in a HCT116 subline transduced with the GeCKOv2 whole-genome gRNA library and transplanted into NSG mice when tumours were harvested at early (14 d) but not late time points (38-43 d). The decreased representation in older tumours was accompanied by large increases in variance in gRNA read counts, with notable expansion of a small number of random clones in each sample. The variable clonal dynamics resulted in a high level of 'noise' that limited the detection of gRNA-based selection. Using simulated datasets derived from our experimental data, we show that considerable reductions in count variance would be achieved with smaller library sizes. Based on our findings, we suggest a pathway to rationally design adequately powered in vivo CRISPR screens for successful evaluation of gene function.
Collapse
Affiliation(s)
- Tet Woo Lee
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| | - Francis W Hunter
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Oncology Therapeutic Area, Janssen Research and Development, Spring House, PA, USA
| | - Peter Tsai
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Cristin G Print
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - William R Wilson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
6
|
Reinbold C, Kong KYE, Kats I, Khmelinskii A, Knop M. Multiplexed protein stability (MPS) profiling of terminal degrons using fluorescent timer libraries in Saccharomyces cerevisiae. Methods Enzymol 2023; 686:321-344. [PMID: 37532406 DOI: 10.1016/bs.mie.2023.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
N-terminal protein sequences and their proteolytic processing and modifications influence the stability and turnover of proteins by creating potential degrons for cellular proteolytic pathways. Understanding the impact of genetic perturbations of components affecting the processing of protein N-termini and thereby their stability, requires methods compatible with proteome-wide studies of many N-termini simultaneously. Tandem fluorescent timers (tFT) allow the in vivo measurement of protein turnover completely independent of protein abundance and can be deployed for proteome-wide studies. Here we present a protocol for Multiplexed Protein Stability (MPS) profiling of tFT-libraries encoding large numbers of different protein N-termini fused to tFT in the yeast Saccharomyces cerevisiae. This protocol includes fluorescence cell sorting based profiling of these libraries using a pooling approach. Analysis of the sorted pools is done by using multiplexed deep sequencing, in order to generate a stability index for each N-terminally peptide fused to the tFT reporter, and to evaluate half-life changes across all species represented in the library.
Collapse
Affiliation(s)
- Christian Reinbold
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | - Ilia Kats
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Michael Knop
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; Cell Morphogenesis and Signal Transduction, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
7
|
Mathiowetz AJ, Roberts MA, Morgens DW, Olzmann JA, Li Z. Protocol for performing pooled CRISPR-Cas9 loss-of-function screens. STAR Protoc 2023; 4:102201. [PMID: 37000620 PMCID: PMC10068611 DOI: 10.1016/j.xpro.2023.102201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/21/2023] [Accepted: 03/06/2023] [Indexed: 04/01/2023] Open
Abstract
Phenotypic screens involving pooled CRISPR-Cas9 libraries offer a powerful, rapid yet affordable approach to evaluate gene functions on a global scale. Here, we present a protocol for performing pooled CRISPR-Cas9 loss-of-function screens to identify genetic modifiers using either fluorescence-based or cell death phenotypic readouts. We describe steps for designing and amplifying the library and generating and screening cells. We then detail deep sequencing and statistical analysis using cas9 High Throughput maximum Likelihood Estimator. For complete details on the use and execution of this protocol, please refer to Bersuker et al. (2019),1 Li et al. (2022),2 and Roberts et al. (2022).3.
Collapse
Affiliation(s)
- Alyssa J Mathiowetz
- Departments of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Melissa A Roberts
- Departments of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David W Morgens
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James A Olzmann
- Departments of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Zhipeng Li
- Departments of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
8
|
Dräger NM, Sattler SM, Huang CTL, Teter OM, Leng K, Hashemi SH, Hong J, Aviles G, Clelland CD, Zhan L, Udeochu JC, Kodama L, Singleton AB, Nalls MA, Ichida J, Ward ME, Faghri F, Gan L, Kampmann M. A CRISPRi/a platform in human iPSC-derived microglia uncovers regulators of disease states. Nat Neurosci 2022; 25:1149-1162. [PMID: 35953545 PMCID: PMC9448678 DOI: 10.1038/s41593-022-01131-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/24/2022] [Indexed: 12/12/2022]
Abstract
Microglia are emerging as key drivers of neurological diseases. However, we lack a systematic understanding of the underlying mechanisms. Here, we present a screening platform to systematically elucidate functional consequences of genetic perturbations in human induced pluripotent stem cell-derived microglia. We developed an efficient 8-day protocol for the generation of microglia-like cells based on the inducible expression of six transcription factors. We established inducible CRISPR interference and activation in this system and conducted three screens targeting the ‘druggable genome’. These screens uncovered genes controlling microglia survival, activation and phagocytosis, including neurodegeneration-associated genes. A screen with single-cell RNA sequencing as the readout revealed that these microglia adopt a spectrum of states mirroring those observed in human brains and identified regulators of these states. A disease-associated state characterized by osteopontin (SPP1) expression was selectively depleted by colony-stimulating factor-1 (CSF1R) inhibition. Thus, our platform can systematically uncover regulators of microglial states, enabling their functional characterization and therapeutic targeting. Dräger et al. establish a rapid, scalable platform for iPSC-derived microglia. CRISPRi/a screens uncover roles of disease-associated genes in phagocytosis, and regulators of disease-relevant microglial states that can be targeted pharmacologically.
Collapse
Affiliation(s)
- Nina M Dräger
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Sydney M Sattler
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | | | - Olivia M Teter
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA
| | - Kun Leng
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA.,Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
| | - Sayed Hadi Hashemi
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jason Hong
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Giovanni Aviles
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Claire D Clelland
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Lihong Zhan
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Joe C Udeochu
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Lay Kodama
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.,Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew B Singleton
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA.,Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA.,Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.,Data Tecnica International, LLC, Glen Echo, MD, USA
| | - Justin Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA, USA.,Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Faraz Faghri
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA.,Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.,Data Tecnica International, LLC, Glen Echo, MD, USA
| | - Li Gan
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA. .,Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA. .,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
NBBt-test: a versatile method for differential analysis of multiple types of RNA-seq data. Sci Rep 2022; 12:12833. [PMID: 35896555 PMCID: PMC9329447 DOI: 10.1038/s41598-022-15762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/29/2022] [Indexed: 11/25/2022] Open
Abstract
Rapid development of transcriptome sequencing technologies has resulted in a data revolution and emergence of new approaches to study transcriptomic regulation such as alternative splicing, alternative polyadenylation, CRISPR knockout screening in addition to the regular gene expression. A full characterization of the transcriptional landscape of different groups of cells or tissues holds enormous potential for both basic science as well as clinical applications. Although many methods have been developed in the realm of differential gene expression analysis, they all geared towards a particular type of sequencing data and failed to perform well when applied in different types of transcriptomic data. To fill this gap, we offer a negative beta binomial t-test (NBBt-test). NBBt-test provides multiple functions to perform differential analyses of alternative splicing, polyadenylation, CRISPR knockout screening, and gene expression datasets. Both real and large-scale simulation data show superior performance of NBBt-test with higher efficiency, and lower type I error rate and FDR to identify differential isoforms and differentially expressed genes and differential CRISPR knockout screening genes with different sample sizes when compared against the current very popular statistical methods. An R-package implementing NBBt-test is available for downloading from CRAN (https://CRAN.R-project.org/package=NBBttest).
Collapse
|
10
|
Van Huffel K, Stock M, Ruttink T, De Baets B. Covering the Combinatorial Design Space of Multiplex CRISPR/Cas Experiments in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:907095. [PMID: 35795354 PMCID: PMC9251496 DOI: 10.3389/fpls.2022.907095] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Over the past years, CRISPR/Cas-mediated genome editing has revolutionized plant genetic studies and crop breeding. Specifically, due to its ability to simultaneously target multiple genes, the multiplex CRISPR/Cas system has emerged as a powerful technology for functional analysis of genetic pathways. As such, it holds great potential for application in plant systems to discover genetic interactions and to improve polygenic agronomic traits in crop breeding. However, optimal experimental design regarding coverage of the combinatorial design space in multiplex CRISPR/Cas screens remains largely unexplored. To contribute to well-informed experimental design of such screens in plants, we first establish a representation of the design space at different stages of a multiplex CRISPR/Cas experiment. We provide two independent computational approaches yielding insights into the plant library size guaranteeing full coverage of all relevant multiplex combinations of gene knockouts in a specific multiplex CRISPR/Cas screen. These frameworks take into account several design parameters (e.g., the number of target genes, the number of gRNAs designed per gene, and the number of elements in the combinatorial array) and efficiencies at subsequent stages of a multiplex CRISPR/Cas experiment (e.g., the distribution of gRNA/Cas delivery, gRNA-specific mutation efficiency, and knockout efficiency). With this work, we intend to raise awareness about the limitations regarding the number of target genes and order of genetic interaction that can be realistically analyzed in multiplex CRISPR/Cas experiments with a given number of plants. Finally, we establish guidelines for designing multiplex CRISPR/Cas experiments with an optimal coverage of the combinatorial design space at minimal plant library size.
Collapse
Affiliation(s)
- Kirsten Van Huffel
- Knowledge-based Systems (KERMIT), Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Michiel Stock
- Knowledge-based Systems (KERMIT), Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Tom Ruttink
- Plant Sciences Unit, Flanders Research Institute for Agricultural, Fisheries and Food (ILVO), Melle, Belgium
| | - Bernard De Baets
- Knowledge-based Systems (KERMIT), Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Bock C, Datlinger P, Chardon F, Coelho MA, Dong MB, Lawson KA, Lu T, Maroc L, Norman TM, Song B, Stanley G, Chen S, Garnett M, Li W, Moffat J, Qi LS, Shapiro RS, Shendure J, Weissman JS, Zhuang X. High-content CRISPR screening. NATURE REVIEWS. METHODS PRIMERS 2022; 2:9. [PMID: 37214176 PMCID: PMC10200264 DOI: 10.1038/s43586-022-00098-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
CRISPR screens are a powerful source of biological discovery, enabling the unbiased interrogation of gene function in a wide range of applications and species. In pooled CRISPR screens, various genetically encoded perturbations are introduced into pools of cells. The targeted cells proliferate under a biological challenge such as cell competition, drug treatment or viral infection. Subsequently, the perturbation-induced effects are evaluated by sequencing-based counting of the guide RNAs that specify each perturbation. The typical results of such screens are ranked lists of genes that confer sensitivity or resistance to the biological challenge of interest. Contributing to the broad utility of CRISPR screens, adaptations of the core CRISPR technology make it possible to activate, silence or otherwise manipulate the target genes. Moreover, high-content read-outs such as single-cell RNA sequencing and spatial imaging help characterize screened cells with unprecedented detail. Dedicated software tools facilitate bioinformatic analysis and enhance reproducibility. CRISPR screening has unravelled various molecular mechanisms in basic biology, medical genetics, cancer research, immunology, infectious diseases, microbiology and other fields. This Primer describes the basic and advanced concepts of CRISPR screening and its application as a flexible and reliable method for biological discovery, biomedical research and drug development - with a special emphasis on high-content methods that make it possible to obtain detailed biological insights directly as part of the screen.
Collapse
Affiliation(s)
- Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Paul Datlinger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Florence Chardon
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Matthew B. Dong
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Keith A. Lawson
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Tian Lu
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Laetitia Maroc
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Thomas M. Norman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bicna Song
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, USA
| | - Geoff Stanley
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Mathew Garnett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Wei Li
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, USA
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Lei S. Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- ChEM-H, Stanford University, Stanford, CA, USA
| | - Rebecca S. Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Jonathan S. Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| |
Collapse
|
12
|
Genolet O, Ravid Lustig L, Schulz EG. Dissecting Molecular Phenotypes Through FACS-Based Pooled CRISPR Screens. Methods Mol Biol 2022; 2520:1-24. [PMID: 35218528 DOI: 10.1007/7651_2021_457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pooled CRISPR screens are emerging as a powerful tool to dissect regulatory networks, by assessing how a protein responds to genetic perturbations in a highly multiplexed manner. A large number of genes are perturbed in a cell population through genomic integration of one single-guide RNA (sgRNA) per cell. A subset of cells with the phenotype of interest can then be enriched through fluorescence-activated cell sorting (FACS). SgRNAs with altered abundance after phenotypic enrichment allow identification of genes that either promote or attenuate the investigated phenotype. Here we provide detailed guidelines on how to design and execute a pooled CRISPR screen to investigate molecular phenotypes. We describe how to generate a custom sgRNA library and how to perform a FACS-based screen using readouts such as intracellular antibody staining or Flow-FISH to assess phosphorylation levels or RNA abundance. Through the variety of available perturbation systems and readout options many different molecular and cellular phenotypes can now be tackled with pooled CRISPR screens.
Collapse
Affiliation(s)
- Oriana Genolet
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Liat Ravid Lustig
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
13
|
Click chemistry-enabled CRISPR screening reveals GSK3 as a regulator of PLD signaling. Proc Natl Acad Sci U S A 2021; 118:2025265118. [PMID: 34810254 DOI: 10.1073/pnas.2025265118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 12/20/2022] Open
Abstract
Enzymes that produce second messengers are highly regulated. Revealing the mechanisms underlying such regulation is critical to understanding both how cells achieve specific signaling outcomes and return to homeostasis following a particular stimulus. Pooled genome-wide CRISPR screens are powerful unbiased approaches to elucidate regulatory networks, their principal limitation being the choice of phenotype selection. Here, we merge advances in bioorthogonal fluorescent labeling and CRISPR screening technologies to discover regulators of phospholipase D (PLD) signaling, which generates the potent lipid second messenger phosphatidic acid. Our results reveal glycogen synthase kinase 3 as a positive regulator of protein kinase C and PLD signaling. More generally, this work demonstrates how bioorthogonal, activity-based fluorescent tagging can expand the power of CRISPR screening to uncover mechanisms regulating specific enzyme-driven signaling pathways in mammalian cells.
Collapse
|
14
|
Shakirova KM, Ovchinnikova VY, Dashinimaev EB. Cell Reprogramming With CRISPR/Cas9 Based Transcriptional Regulation Systems. Front Bioeng Biotechnol 2020; 8:882. [PMID: 32850737 PMCID: PMC7399070 DOI: 10.3389/fbioe.2020.00882] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022] Open
Abstract
The speed of reprogramming technologies evolution is rising dramatically in modern science. Both the scientific community and health workers depend on such developments due to the lack of safe autogenic cells and tissues for regenerative medicine, genome editing tools and reliable screening techniques. To perform experiments efficiently and to propel the fundamental science it is important to keep up with novel modifications and techniques that are being discovered almost weekly. One of them is CRISPR/Cas9 based genome and transcriptome editing. The aim of this article is to summarize currently existing CRISPR/Cas9 applications for cell reprogramming, mainly, to compare them with other non-CRISPR approaches and to highlight future perspectives and opportunities.
Collapse
Affiliation(s)
- Ksenia M Shakirova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Viktoriia Y Ovchinnikova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Erdem B Dashinimaev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
15
|
de Boer CG, Ray JP, Hacohen N, Regev A. MAUDE: inferring expression changes in sorting-based CRISPR screens. Genome Biol 2020; 21:134. [PMID: 32493396 PMCID: PMC7268349 DOI: 10.1186/s13059-020-02046-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
Improved methods are needed to model CRISPR screen data for interrogation of genetic elements that alter reporter gene expression readout. We create MAUDE (Mean Alterations Using Discrete Expression) for quantifying the impact of guide RNAs on a target gene's expression in a pooled, sorting-based expression screen. MAUDE quantifies guide-level effects by modeling the distribution of cells across sorting expression bins. It then combines guides to estimate the statistical significance and effect size of targeted genetic elements. We demonstrate that MAUDE outperforms previous approaches and provide experimental design guidelines to best leverage MAUDE, which is available on https://github.com/Carldeboer/MAUDE.
Collapse
Affiliation(s)
- Carl G de Boer
- Klarman Cell Observatory, Broad Institute of MIT and Harvard University, Cambridge, MA, 02142, USA.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - John P Ray
- Broad Institute of MIT and Harvard University, Cambridge, MA, 02142, USA
| | - Nir Hacohen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard University, Cambridge, MA, 02142, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA, 02142, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard University, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| |
Collapse
|
16
|
Guo X, Aviles G, Liu Y, Tian R, Unger BA, Lin YHT, Wiita AP, Xu K, Correia MA, Kampmann M. Mitochondrial stress is relayed to the cytosol by an OMA1-DELE1-HRI pathway. Nature 2020; 579:427-432. [PMID: 32132707 PMCID: PMC7147832 DOI: 10.1038/s41586-020-2078-2] [Citation(s) in RCA: 342] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
In mammalian cells, mitochondrial dysfunction triggers the integrated stress response (ISR), in which eIF2α phosphorylation induces the transcription factor ATF41-3. However, how mitochondrial stress is relayed to ATF4 is unknown. We found that HRI is the eIF2α kinase necessary and sufficient for this relay. In a genome-wide CRISPRi screen, we identified factors upstream of HRI: OMA1, a mitochondrial stress-activated protease, and DELE1, a little-characterized protein we found to be associated with the inner mitochondrial membrane. Mitochondrial stress stimulates OMA1-dependent cleavage of DELE1, leading to its accumulation in the cytosol, where it interacts with HRI and activates its eIF2α kinase activity. Additionally, DELE1 is required for ATF4 translation downstream of eIF2α phosphorylation. Blockade of the OMA1-DELE1-HRI pathway triggers an alternative response inducing specific molecular chaperones. Therefore, this pathway is a potential therapeutic target enabling fine-tuning of the ISR for beneficial outcomes in diseases involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xiaoyan Guo
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Giovanni Aviles
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Yi Liu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Ruilin Tian
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA.,Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Bret A Unger
- Chan Zuckerberg Biohub, San Francisco, CA, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Yu-Hsiu T Lin
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ke Xu
- Chan Zuckerberg Biohub, San Francisco, CA, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - M Almira Correia
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.,The Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA. .,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
17
|
Imkeller K, Ambrosi G, Boutros M, Huber W. gscreend: modelling asymmetric count ratios in CRISPR screens to decrease experiment size and improve phenotype detection. Genome Biol 2020; 21:53. [PMID: 32122365 PMCID: PMC7052974 DOI: 10.1186/s13059-020-1939-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/19/2020] [Indexed: 02/06/2023] Open
Abstract
Pooled CRISPR screens are a powerful tool to probe genotype-phenotype relationships at genome-wide scale. However, criteria for optimal design are missing, and it remains unclear how experimental parameters affect results. Here, we report that random decreases in gRNA abundance are more likely than increases due to bottle-neck effects during the cell proliferation phase. Failure to consider this asymmetry leads to loss of detection power. We provide a new statistical test that addresses this problem and improves hit detection at reduced experiment size. The method is implemented in the R package gscreend, which is available at http://bioconductor.org/packages/gscreend.
Collapse
Affiliation(s)
- Katharina Imkeller
- German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Giulia Ambrosi
- German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
18
|
So RWL, Chung SW, Lau HHC, Watts JJ, Gaudette E, Al-Azzawi ZAM, Bishay J, Lin LTW, Joung J, Wang X, Schmitt-Ulms G. Application of CRISPR genetic screens to investigate neurological diseases. Mol Neurodegener 2019; 14:41. [PMID: 31727120 PMCID: PMC6857349 DOI: 10.1186/s13024-019-0343-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
The adoption of CRISPR-Cas9 technology for functional genetic screens has been a transformative advance. Due to its modular nature, this technology can be customized to address a myriad of questions. To date, pooled, genome-scale studies have uncovered genes responsible for survival, proliferation, drug resistance, viral susceptibility, and many other functions. The technology has even been applied to the functional interrogation of the non-coding genome. However, applications of this technology to neurological diseases remain scarce. This shortfall motivated the assembly of a review that will hopefully help researchers moving in this direction find their footing. The emphasis here will be on design considerations and concepts underlying this methodology. We will highlight groundbreaking studies in the CRISPR-Cas9 functional genetics field and discuss strengths and limitations of this technology for neurological disease applications. Finally, we will provide practical guidance on navigating the many choices that need to be made when implementing a CRISPR-Cas9 functional genetic screen for the study of neurological diseases.
Collapse
Affiliation(s)
- Raphaella W. L. So
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor60 Leonard Avenue, Toronto, Ontario M5T 2S8 Canada
| | - Sai Wai Chung
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Heather H. C. Lau
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor60 Leonard Avenue, Toronto, Ontario M5T 2S8 Canada
| | - Jeremy J. Watts
- Department of Pharmacology & Toxicology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Erin Gaudette
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Zaid A. M. Al-Azzawi
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Jossana Bishay
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Lilian Tsai-Wei Lin
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor60 Leonard Avenue, Toronto, Ontario M5T 2S8 Canada
| | - Julia Joung
- Departments of Biological Engineering and Brain and Cognitive Science, and McGovern Institute for Brain Research at MIT, Cambridge, MA 02139 USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Xinzhu Wang
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor60 Leonard Avenue, Toronto, Ontario M5T 2S8 Canada
| | - Gerold Schmitt-Ulms
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor60 Leonard Avenue, Toronto, Ontario M5T 2S8 Canada
| |
Collapse
|
19
|
Abstract
Next-generation DNA sequencing technologies have led to a massive accumulation of genomic and transcriptomic data from patients and healthy individuals. The major challenge ahead is to understand the functional significance of the elements of the human genome and transcriptome, and implications for diagnosis and treatment. Genetic screens in mammalian cells are a powerful approach to systematically elucidating gene function in health and disease states. In particular, recently developed CRISPR/Cas9-based screening approaches have enormous potential to uncover mechanisms and therapeutic strategies for human diseases. The focus of this review is the use of CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) for genetic screens in mammalian cells. We introduce the underlying technology and present different types of CRISPRi/a screens, including those based on cell survival/proliferation, sensitivity to drugs or toxins, fluorescent reporters, and single-cell transcriptomes. Combinatorial screens, in which large numbers of gene pairs are targeted to construct genetic interaction maps, reveal pathway relationships and protein complexes. We compare and contrast CRISPRi and CRISPRa with alternative technologies, including RNA interference (RNAi) and CRISPR nuclease-based screens. Finally, we highlight challenges and opportunities ahead.
Collapse
Affiliation(s)
- Martin Kampmann
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases and California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|