1
|
Balaramane D, Spill YG, Weber M, Bardet AF. MethyLasso: a segmentation approach to analyze DNA methylation patterns and identify differentially methylated regions from whole-genome datasets. Nucleic Acids Res 2024:gkae880. [PMID: 39420630 DOI: 10.1093/nar/gkae880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/13/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
DNA methylation is an epigenetic mark involved in the regulation of gene expression, and patterns of DNA methylation anticorrelate with chromatin accessibility and transcription factor binding. DNA methylation can be profiled at the single cytosine resolution in the whole genome and has been performed in many cell types and conditions. Computational approaches are then essential to study DNA methylation patterns in a single condition or capture dynamic changes of DNA methylation levels across conditions. Toward this goal, we developed MethyLasso, a new approach to segment DNA methylation data. We use it as an all-in-one tool to perform the identification of low-methylated regions, unmethylated regions, DNA methylation valleys and partially methylated domains in a single condition as well as differentially methylated regions between two conditions. We performed a rigorous benchmarking comparing existing approaches by evaluating the agreement of the regions across tools, their number, size, level of DNA methylation, boundaries, cytosine-guanine content and coverage using several real datasets as well as the sensitivity and precision of the approaches using simulated data and show that MethyLasso performs best overall. MethyLasso is freely available at https://github.com/bardetlab/methylasso.
Collapse
Affiliation(s)
- Delphine Balaramane
- CNRS UMR7242 Biotechnologie et signalisation cellulaire, Université de Strasbourg, 300 Bd Sébastien Brant, 67412 Illkirch Cedex, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Cedex, France
- Centre National de Recherche scientifique (CNRS) UMR7104, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
- Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
- Institut National de santé et de Recherche Médicale (INSERM) U1258, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Yannick G Spill
- CNRS UMR7242 Biotechnologie et signalisation cellulaire, Université de Strasbourg, 300 Bd Sébastien Brant, 67412 Illkirch Cedex, France
| | - Michaël Weber
- CNRS UMR7242 Biotechnologie et signalisation cellulaire, Université de Strasbourg, 300 Bd Sébastien Brant, 67412 Illkirch Cedex, France
| | - Anaïs Flore Bardet
- CNRS UMR7242 Biotechnologie et signalisation cellulaire, Université de Strasbourg, 300 Bd Sébastien Brant, 67412 Illkirch Cedex, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Cedex, France
- Centre National de Recherche scientifique (CNRS) UMR7104, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
- Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
- Institut National de santé et de Recherche Médicale (INSERM) U1258, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
| |
Collapse
|
2
|
Donato L, Scimone C, Alibrandi S, Vadalà M, Castellucci M, Bonfiglio VME, Scalinci SZ, Abate G, D'Angelo R, Sidoti A. The genomic mosaic of mitochondrial dysfunction: Decoding nuclear and mitochondrial epigenetic contributions to maternally inherited diabetes and deafness pathogenesis. Heliyon 2024; 10:e34756. [PMID: 39148984 PMCID: PMC11324998 DOI: 10.1016/j.heliyon.2024.e34756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Aims Maternally inherited diabetes and deafness (MIDD) is a complex disorder characterized by multiorgan clinical manifestations, including diabetes, hearing loss, and ophthalmic complications. This pilot study aimed to elucidate the intricate interplay between nuclear and mitochondrial genetics, epigenetic modifications, and their potential implications in the pathogenesis of MIDD. Main methods A comprehensive genomic approach was employed to analyze a Sicilian family affected by clinically characterized MIDD, negative to the only known causative m.3243 A > G variant, integrating whole-exome sequencing and whole-genome bisulfite sequencing of both nuclear and mitochondrial analyses. Key findings Rare and deleterious variants were identified across multiple nuclear genes involved in retinal homeostasis, mitochondrial function, and epigenetic regulation, while complementary mitochondrial DNA analysis revealed a rich tapestry of genetic diversity across genes encoding components of the electron transport chain and ATP synthesis machinery. Epigenetic analyses uncovered significant differentially methylated regions across the genome and within the mitochondrial genome, suggesting a nuanced landscape of epigenetic modulation. Significance The integration of genetic and epigenetic data highlighted the potential crosstalk between nuclear and mitochondrial regulation, with specific mtDNA variants influencing methylation patterns and potentially impacting the expression and regulation of mitochondrial genes. This pilot study provides valuable insights into the complex molecular mechanisms underlying MIDD, emphasizing the interplay between nucleus and mitochondrion, tracing the way for future research into targeted therapeutic interventions and personalized approaches for disease management.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Maria Vadalà
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), Ophthalmology Institute, University of Palermo, 90143, Palermo, Italy
| | - Massimo Castellucci
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), Ophthalmology Institute, University of Palermo, 90143, Palermo, Italy
| | - Vincenza Maria Elena Bonfiglio
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), Ophthalmology Institute, University of Palermo, 90143, Palermo, Italy
| | | | - Giorgia Abate
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| |
Collapse
|
3
|
Karaca M, Ince AG. Grafting based DNA methylation alteration of snoRNAs in upland cotton ( Gossypium L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:893-907. [PMID: 38974361 PMCID: PMC11222342 DOI: 10.1007/s12298-024-01469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024]
Abstract
The effects of grafting in response to various biotic and abiotic stressors have been studied, however, the methylation status of small nucleolar RNA (snoRNA) genes in heterograft and homograft cotton needs investigation. This study was undertaken to determine grafting effects on DNA methylation of snoRNA genes in Upland cotton. Rootstocks used were Pima 3-79 (Gossypium barbadense acc. Pima 3-79) and Texas Marker-1 (G. hirsutum acc. TM-1), representing two different species with different fiber properties, adaptations, and morphologies. The methylation ratio and differently methylated cytosines (DMCs) of 10935 snoRNA genes in mature seeds of heterograft and homograft cotton samples were studied using the whole genome bisulfite sequencing method. Seedling vigor and seed weight were studied to investigate phenotype alterations that might be associated with altered methylation levels among grafts. Statistically significant DMC differences among gene elements of snoRNA genes and between homograft and heterograft cotton samples were identified in the absence of DNA sequence alterations. DNA methylation alterations of snoRNA genes associated with seedling vigor and 100 seed weight. The majority of snoRNA genes showed higher numbers of mCG + mCHG-DMCs with increased methylation levels in heterograft, while there were higher numbers of mCG + mCHG-DMCs with decreased methylation levels in homograft. Since snoRNAs regulate essential genes for plant growth and development and plant adaptation to different habitats or extreme environments, their altered methylation levels should be related with plant physiology.
Collapse
Affiliation(s)
- Mehmet Karaca
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, 07059 Antalya, Turkey
| | - Ayse Gul Ince
- Vocational School of Technical Sciences, Akdeniz University, 07059 Antalya, Turkey
| |
Collapse
|
4
|
Abnizova I, Stapel C, Boekhorst RT, Lee JTH, Hemberg M. Integrative analysis of transcriptomic and epigenomic data reveals distinct patterns for developmental and housekeeping gene regulation. BMC Biol 2024; 22:78. [PMID: 38600550 PMCID: PMC11005181 DOI: 10.1186/s12915-024-01869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Regulation of transcription is central to the emergence of new cell types during development, and it often involves activation of genes via proximal and distal regulatory regions. The activity of regulatory elements is determined by transcription factors (TFs) and epigenetic marks, but despite extensive mapping of such patterns, the extraction of regulatory principles remains challenging. RESULTS Here we study differentially and similarly expressed genes along with their associated epigenomic profiles, chromatin accessibility and DNA methylation, during lineage specification at gastrulation in mice. Comparison of the three lineages allows us to identify genomic and epigenomic features that distinguish the two classes of genes. We show that differentially expressed genes are primarily regulated by distal elements, while similarly expressed genes are controlled by proximal housekeeping regulatory programs. Differentially expressed genes are relatively isolated within topologically associated domains, while similarly expressed genes tend to be located in gene clusters. Transcription of differentially expressed genes is associated with differentially open chromatin at distal elements including enhancers, while that of similarly expressed genes is associated with ubiquitously accessible chromatin at promoters. CONCLUSION Based on these associations of (linearly) distal genes' transcription start sites (TSSs) and putative enhancers for developmental genes, our findings allow us to link putative enhancers to their target promoters and to infer lineage-specific repertoires of putative driver transcription factors, within which we define subgroups of pioneers and co-operators.
Collapse
Affiliation(s)
- Irina Abnizova
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Carine Stapel
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | | | | | - Martin Hemberg
- Wellcome Sanger Institute, Hinxton, UK.
- The Gene Lay Institute of Immunology and Inflammation Brigham & Women's Hospital and Harvard Medical School, Boston, USA.
| |
Collapse
|
5
|
Shokoohi F, Khaniki SH. Uncovering Alterations in Cancer Epigenetics via Trans-Dimensional Markov Chain Monte Carlo and Hidden Markov Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545168. [PMID: 37398181 PMCID: PMC10312753 DOI: 10.1101/2023.06.15.545168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Epigenetic alterations are key drivers in the development and progression of cancer. Identifying differentially methylated cytosines (DMCs) in cancer samples is a crucial step toward understanding these changes. In this paper, we propose a trans-dimensional Markov chain Monte Carlo (TMCMC) approach that uses hidden Markov models (HMMs) with binomial emission, and bisulfite sequencing (BS-Seq) data, called DMCTHM, to identify DMCs in cancer epigenetic studies. We introduce the Expander-Collider penalty to tackle under and over-estimation in TMCMC-HMMs. We address all known challenges inherent in BS-Seq data by introducing novel approaches for capturing functional patterns and autocorrelation structure of the data, as well as for handling missing values, multiple covariates, multiple comparisons, and family-wise errors. We demonstrate the effectiveness of DMCTHM through comprehensive simulation studies. The results show that our proposed method outperforms other competing methods in identifying DMCs. Notably, with DMCTHM, we uncovered new DMCs and genes in Colorectal cancer that were significantly enriched in the Tp53 pathway.
Collapse
Affiliation(s)
- Farhad Shokoohi
- Department of Mathematical Sciences, University of Nevada-Las Vegas, Las Vega, NV 89154, USA
| | - Saeedeh Hajebi Khaniki
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Ma Q, Oksenberg JR, Didonna A. Epigenetic control of ataxin-1 in multiple sclerosis. Ann Clin Transl Neurol 2022; 9:1186-1194. [PMID: 35903875 PMCID: PMC9380165 DOI: 10.1002/acn3.51618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE ATXN1 encodes the polyglutamine protein ataxin-1, which we have demonstrated exerting an immunomodulatory function in the context of central nervous system (CNS) autoimmunity, in addition to its classical role in the neurodegenerative disorder spinocerebellar ataxia type 1 (SCA1). In this study, we dissected the contribution of DNA methylation to the regulation of ATXN1 in multiple sclerosis (MS). METHODS We interrogated a DNA methylation dataset previously generated via bisulfate DNA sequencing (BS-seq) in sorted peripheral immune cytotypes (CD4+ and CD8+ T cells, CD19+ B cells, and CD14+ monocytes) isolated from untreated MS patients at symptoms onset. RESULTS Here, we report that ATXN1 undergoes hypo-methylation at four distinct regions upon MS, exclusively in B cells. We also highlight how these differentially methylated sites overlap with other regulatory epigenetic marks and MS risk variants. Lastly, we employ luciferase assays to assess the functionality of these regions, showing that the loss of methylation leads to an increase in ATXN1 expression. INTERPRETATION Altogether, these findings provide biological insights into ataxin-1 regulation in the immune system as well as into the molecular mechanisms underlying MS risk.
Collapse
Affiliation(s)
- Qin Ma
- Weill Institute for Neurosciences, Department of NeurologyUniversity of CaliforniaSan FranciscoCalifornia94158USA
| | - Jorge R. Oksenberg
- Weill Institute for Neurosciences, Department of NeurologyUniversity of CaliforniaSan FranciscoCalifornia94158USA
| | - Alessandro Didonna
- Weill Institute for Neurosciences, Department of NeurologyUniversity of CaliforniaSan FranciscoCalifornia94158USA
- Department of Anatomy and Cell BiologyEast Carolina UniversityGreenvilleNorth Carolina27834USA
| |
Collapse
|
7
|
Gong T, Borgard H, Zhang Z, Chen S, Gao Z, Deng Y. Analysis and Performance Assessment of the Whole Genome Bisulfite Sequencing Data Workflow: Currently Available Tools and a Practical Guide to Advance DNA Methylation Studies. SMALL METHODS 2022; 6:e2101251. [PMID: 35064762 PMCID: PMC8963483 DOI: 10.1002/smtd.202101251] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/30/2021] [Indexed: 05/09/2023]
Abstract
DNA methylation is associated with transcriptional repression, genomic imprinting, stem cell differentiation, embryonic development, and inflammation. Aberrant DNA methylation can indicate disease states, including cancer and neurological disorders. Therefore, the prevalence and location of 5-methylcytosine in the human genome is a topic of interest. Whole-genome bisulfite sequencing (WGBS) is a high-throughput method for analyzing DNA methylation. This technique involves library preparation, alignment, and quality control. Advancements in epigenetic technology have led to an increase in DNA methylation studies. This review compares the detailed experimental methodology of WGBS using accessible and up-to-date analysis tools. Practical codes for WGBS data processing are included as a general guide to assist progress in DNA methylation studies through a comprehensive case study.
Collapse
Affiliation(s)
- Ting Gong
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu HI 96813, USA
| | - Heather Borgard
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu HI 96813, USA
| | - Zao Zhang
- Department of Medicine, The Queen’s Medical Center, Honolulu HI 96813, USA
| | - Shaoqiu Chen
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu HI 96813, USA
| | - Zitong Gao
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu HI 96813, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu HI 96813, USA
| |
Collapse
|
8
|
Lien YC, Pinney SE, Lu XM, Simmons RA. Identification of Novel Regulatory Regions Induced by Intrauterine Growth Restriction in Rat Islets. Endocrinology 2022; 163:6459683. [PMID: 34894232 PMCID: PMC8743043 DOI: 10.1210/endocr/bqab251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 01/05/2023]
Abstract
Intrauterine growth restriction (IUGR) leads to the development of type 2 diabetes in adulthood, and the permanent alterations in gene expression implicate an epigenetic mechanism. Using a rat model of IUGR, we performed TrueSeq-HELP Tagging to assess the association of DNA methylation changes and gene dysregulation in islets. We identified 511 differentially methylated regions (DMRs) and 4377 significantly altered single CpG sites. Integrating the methylome and our published transcriptome data sets resulted in the identification of pathways critical for islet function. The identified DMRs were enriched with transcription factor binding motifs, such as Elk1, Etv1, Foxa1, Foxa2, Pax7, Stat3, Hnf1, and AR. In silico analysis of 3-dimensional chromosomal interactions using human pancreas and islet Hi-C data sets identified interactions between 14 highly conserved DMRs and 35 genes with significant expression changes at an early age, many of which persisted in adult islets. In adult islets, there were far more interactions between DMRs and genes with significant expression changes identified with Hi-C, and most of them were critical to islet metabolism and insulin secretion. The methylome was integrated with our published genome-wide histone modification data sets from IUGR islets, resulting in further characterization of important regulatory regions of the genome altered by IUGR containing both significant changes in DNA methylation and specific histone marks. We identified novel regulatory regions in islets after exposure to IUGR, suggesting that epigenetic changes at key transcription factor binding motifs and other gene regulatory regions may contribute to gene dysregulation and an abnormal islet phenotype in IUGR rats.
Collapse
Affiliation(s)
- Yu-Chin Lien
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Sara E Pinney
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Division Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xueqing Maggie Lu
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Correspondence: Rebecca A. Simmons, MD, Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, BRB II/III, 13th Fl, Rm 1308, 421 Curie Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Sun X, Wang D, Zhu J, Sun S. A novel nonparametric computational strategy for identifying differential methylation regions. BMC Bioinformatics 2022; 23:29. [PMID: 35012449 PMCID: PMC8750844 DOI: 10.1186/s12859-022-04563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/03/2022] [Indexed: 11/26/2022] Open
Abstract
Background DNA methylation has long been known as an epigenetic gene silencing mechanism. For a motivating example, the methylomes of cancer and non-cancer cells show a number of methylation differences, indicating that certain features characteristics of cancer cells may be related to methylation characteristics. Robust methods for detecting differentially methylated regions (DMRs) could help scientists narrow down genome regions and even find biologically important regions. Although some statistical methods were developed for detecting DMR, there is no default or strongest method. Fisher’s exact test is direct, but not suitable for data with multiple replications, while regression-based methods usually come with a large number of assumptions. More complicated methods have been proposed, but those methods are often difficult to interpret. Results In this paper, we propose a three-step nonparametric kernel smoothing method that is both flexible and straightforward to implement and interpret. The proposed method relies on local quadratic fitting to find the set of equilibrium points (points at which the first derivative is 0) and the corresponding set of confidence windows. Potential regions are further refined using biological criteria, and finally selected based on a Bonferroni adjusted t-test cutoff. Using a comparison of three senescent and three proliferating cell lines to illustrate our method, we were able to identify a total of 1077 DMRs on chromosome 21. Conclusions We proposed a completely nonparametric, statistically straightforward, and interpretable method for detecting differentially methylated regions. Compared with existing methods, the non-reliance on model assumptions and the straightforward nature of our method makes it one competitive alternative to the existing statistical methods for defining DMRs.
Collapse
Affiliation(s)
- Xifang Sun
- Department of Mathematics, School of Science, Xi'an Shiyou University, X'an, 710065, Shaanxi, People's Republic of China
| | - Donglin Wang
- Department of Mathematics, School of Science, Xi'an Shiyou University, X'an, 710065, Shaanxi, People's Republic of China
| | - Jiaqiang Zhu
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shiquan Sun
- Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
10
|
Peng X, Luo H, Kong X, Wang J. Metrics for evaluating differentially methylated region sets predicted from BS-seq data. Brief Bioinform 2021; 23:6454651. [PMID: 34874989 DOI: 10.1093/bib/bbab475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 11/13/2022] Open
Abstract
Investigating differentially methylated regions (DMRs) presented in different tissues or cell types can help to reveal the mechanisms behind the tissue-specific gene expression. The identified tissue-/disease-specific DMRs also can be used as feature markers for spotting the tissues-of-origins of cell-free DNA (cfDNA) in noninvasive diagnosis. In recent years, many methods have been proposed to detect DMRs. However, due to the lack of benchmark DMRs, it is difficult for researchers to choose proper methods and select desirable DMR sets for downstream studies. The application of DMRs, used as feature markers, can be benefited by the longer length of DMRs containing more CpG sites when a threshold is given for the methylation differences of DMRs. According to this, two metrics ($Qn$ and $Ql$), in which the CpG numbers and lengths of DMRs with different methylation differences are weighted differently, are proposed in this paper to evaluate the DMR sets predicted by different methods on BS-seq data. DMR sets predicted by eight methods on both simulated datasets and real BS-seq datasets are evaluated by the proposed metrics, the benchmark-based metrics, and the enrichment analysis of biological data, including genomic features, transcription factors and histones. The rank correlation analysis shows that the $Qn$ and $Ql$ are highly correlated to the benchmark metrics for simulated datasets and the biological data enrichment analysis for real BS-seq data. Therefore, with no need for additional biological data, the proposed metrics can help researchers selecting a more suitable DMR set on a certain BS-seq dataset.
Collapse
Affiliation(s)
- Xiaoqing Peng
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410038, China.,Institute of Molecular Precision Medicine, Xiangya Hospital, Key Laboratory of Molecular Precision Medicine of Hunan Province, Central South University, Changsha, Hunan 410038, China
| | - Hongze Luo
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiangyan Kong
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
11
|
Lee SD, Song J, LeBlanc VG, Marra MA. Integrative multi-omic analysis reveals neurodevelopmental gene dysregulation in CIC-knockout and IDH1 mutant cells. J Pathol 2021; 256:297-309. [PMID: 34767259 PMCID: PMC9305137 DOI: 10.1002/path.5835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/22/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022]
Abstract
Capicua (CIC)'s transcriptional repressor function is implicated in neurodevelopment and in oligodendroglioma (ODG) aetiology. However, CIC's role in these contexts remains obscure, primarily from our currently limited knowledge regarding its biological functions. Moreover, CIC mutations in ODG invariably co‐occur with a neomorphic IDH1/2 mutation, yet the functional relationship between these two genetic events is unknown. Here, we analysed models derived from an E6/E7/hTERT‐immortalized (i.e. p53‐ and RB‐deficient) normal human astrocyte cell line. To examine the consequences of CIC loss, we compared transcriptomic and epigenomic profiles between CIC wild‐type and knockout cell lines, with and without mutant IDH1 expression. Our analyses revealed dysregulation of neurodevelopmental genes in association with CIC loss. CIC ChIP‐seq was also performed to expand upon the currently limited ensemble of known CIC target genes. Among the newly identified direct CIC target genes were EPHA2 and ID1, whose functions are linked to neurodevelopment and the tumourigenicity of in vivo glioma tumour models. NFIA, a known mediator of gliogenesis, was discovered to be uniquely overexpressed in CIC‐knockout cells expressing mutant IDH1‐R132H protein. These results identify neurodevelopment and specific genes within this context as candidate targets through which CIC alterations may contribute to the progression of IDH‐mutant gliomas. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Stephen D Lee
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Jungeun Song
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | | | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Peng X, Li Y, Kong X, Zhu X, Ding X. Investigating Different DNA Methylation Patterns at the Resolution of Methylation Haplotypes. Front Genet 2021; 12:697279. [PMID: 34262601 PMCID: PMC8273290 DOI: 10.3389/fgene.2021.697279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/01/2021] [Indexed: 11/15/2022] Open
Abstract
Different DNA methylation patterns presented on different tissues or cell types are considered as one of the main reasons accounting for the tissue-specific gene expressions. In recent years, many methods have been proposed to identify differentially methylated regions (DMRs) based on the mixture of methylation signals from homologous chromosomes. To investigate the possible influence of homologous chromosomes on methylation analysis, this paper proposed a method (MHap) to construct methylation haplotypes for homologous chromosomes in CpG dense regions. Through comparing the methylation consistency between homologous chromosomes in different cell types, it can be found that majority of paired methylation haplotypes derived from homologous chromosomes are consistent, while a lower methylation consistency was observed in the breast cancer sample. It also can be observed that the hypomethylation consistency of differentiated cells is higher than that of the corresponding undifferentiated stem cells. Furthermore, based on the methylation haplotypes constructed on homologous chromosomes, a method (MHap_DMR) is developed to identify DMRs between differentiated cells and the corresponding undifferentiated stem cells, or between the breast cancer sample and the normal breast sample. Through comparing the methylation haplotype modes of DMRs in two cell types, the DNA methylation changing directions of homologous chromosomes in cell differentiation and cancerization can be revealed. The code is available at: https://github.com/xqpeng/MHap_DMR.
Collapse
Affiliation(s)
- Xiaoqing Peng
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yiming Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Xiangyan Kong
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Xiaoshu Zhu
- School of Computer Science and Engineering, Yulin Normal University, Yulin, China
| | - Xiaojun Ding
- School of Computer Science and Engineering, Yulin Normal University, Yulin, China
| |
Collapse
|
13
|
Weinberg DN, Rosenbaum P, Chen X, Barrows D, Horth C, Marunde MR, Popova IK, Gillespie ZB, Keogh MC, Lu C, Majewski J, Allis CD. Two competing mechanisms of DNMT3A recruitment regulate the dynamics of de novo DNA methylation at PRC1-targeted CpG islands. Nat Genet 2021; 53:794-800. [PMID: 33986537 PMCID: PMC8283687 DOI: 10.1038/s41588-021-00856-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Precise deposition of CpG methylation is critical for mammalian development and tissue homeostasis and is often dysregulated in human diseases. The localization of de novo DNA methyltransferase DNMT3A is facilitated by its PWWP domain recognizing histone H3 lysine 36 (H3K36) methylation1,2 and is normally depleted at CpG islands (CGIs)3. However, methylation of CGIs regulated by Polycomb repressive complexes (PRCs) has also been observed4-8. Here, we report that DNMT3A PWWP domain mutations identified in paragangliomas9 and microcephalic dwarfism10 promote aberrant localization of DNMT3A to CGIs in a PRC1-dependent manner. DNMT3A PWWP mutants accumulate at regions containing PRC1-mediated formation of monoubiquitylated histone H2A lysine 119 (H2AK119ub), irrespective of the amounts of PRC2-catalyzed formation of trimethylated histone H3 lysine 27 (H3K27me3). DNMT3A interacts with H2AK119ub-modified nucleosomes through a putative amino-terminal ubiquitin-dependent recruitment region, providing an alternative form of DNMT3A genomic targeting that is augmented by the loss of PWWP reader function. Ablation of PRC1 abrogates localization of DNMT3A PWWP mutants to CGIs and prevents aberrant DNA hypermethylation. Our study implies that a balance between DNMT3A recruitment by distinct reader domains guides de novo CpG methylation and may underlie the abnormal DNA methylation landscapes observed in select human cancer subtypes and developmental disorders.
Collapse
Affiliation(s)
- Daniel N Weinberg
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - Phillip Rosenbaum
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Xiao Chen
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Douglas Barrows
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - Cynthia Horth
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
14
|
Cheng Y, Vechtova P, Fussy Z, Sterba J, Linhartová Z, Rodina M, Tučková V, Gela D, Samarin AM, Lebeda I, Xin M, Zhang S, Rahi D, Linhart O. Changes in Phenotypes and DNA Methylation of In Vitro Aging Sperm in Common Carp Cyprinus carpio. Int J Mol Sci 2021; 22:5925. [PMID: 34073009 PMCID: PMC8198300 DOI: 10.3390/ijms22115925] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
The purpose of the current study was to analyze phenotypic and functional characteristics of common carp (Cyprinus carpio) spermatozoa during in vitro aging and to investigate whether global DNA methylation is affected by sperm aging. Milt was collected from five individual males, stored in vitro on ice in a refrigerator for up to 96 h post stripping (HPS) and used to fertilize eggs with intervals of 1, 24 and 96 h. Computer-assisted sperm analysis and a S3e Cell Sorter was employed to determine the spermatozoa phenotypic characteristics (motility, velocity, concentration and viability). In addition, pH and osmolality of the seminal fluid and the capacity of the spermatozoa to fertilize, hatching rate and health of the resulting embryos were examined at different aging times. Whole-genome bisulfite sequencing was used to compare the global and gene-specific DNA methylation in fresh and aged spermatozoa. The results demonstrated that spermatozoa aging in common carp significantly affects their performance and thus the success of artificial fertilization. The methylation level at the cytosine-phosphate-guanine (CpG) sites increased significantly with 24 HPS spermatozoa compared to the fresh group at 1 HPS and then decreased significantly at 96 HPS. A more detailed investigation of gene specific differences in the DNA methylation was hindered by incomplete annotation of the C. carpio genome in the public databases.
Collapse
Affiliation(s)
- Yu Cheng
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - Pavlina Vechtova
- Faculty of Science, Institute of Chemistry and Biochemistry, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic; (P.V.); (Z.F.); (J.S.)
- Biology Centre of Academy of Sciences of the Czech Republic, Institute of Parasitology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Zoltan Fussy
- Faculty of Science, Institute of Chemistry and Biochemistry, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic; (P.V.); (Z.F.); (J.S.)
| | - Jan Sterba
- Faculty of Science, Institute of Chemistry and Biochemistry, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic; (P.V.); (Z.F.); (J.S.)
| | - Zuzana Linhartová
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - Marek Rodina
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - Vladimíra Tučková
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - David Gela
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - Azin Mohagheghi Samarin
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - Ievgen Lebeda
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - Miaomiao Xin
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
- College of Life Science, Northwest University, Xi’an 710069, China
| | - Songpei Zhang
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - Deepali Rahi
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - Otomar Linhart
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| |
Collapse
|
15
|
The EpiDiverse Plant Epigenome-Wide Association Studies (EWAS) Pipeline. EPIGENOMES 2021; 5:epigenomes5020012. [PMID: 34968299 PMCID: PMC8594691 DOI: 10.3390/epigenomes5020012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/29/2022] Open
Abstract
Bisulfite sequencing is a widely used technique for determining DNA methylation and its relationship with epigenetics, genetics, and environmental parameters. Various techniques were implemented for epigenome-wide association studies (EWAS) to reveal meaningful associations; however, there are only very few plant studies available to date. Here, we developed the EpiDiverse EWAS pipeline and tested it using two plant datasets, from P. abies (Norway spruce) and Q. lobata (valley oak). Hence, we present an EWAS implementation tested for non-model plant species and describe its use.
Collapse
|
16
|
Bartoccetti M, van der Veer BK, Luo X, Khoueiry R, She P, Bajaj M, Xu J, Janiszewski A, Thienpont B, Pasque V, Koh KP. Regulatory Dynamics of Tet1 and Oct4 Resolve Stages of Global DNA Demethylation and Transcriptomic Changes in Reprogramming. Cell Rep 2021; 30:2150-2169.e9. [PMID: 32075734 DOI: 10.1016/j.celrep.2020.01.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 12/12/2019] [Accepted: 01/21/2020] [Indexed: 01/05/2023] Open
Abstract
Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) involves the reactivation of endogenous pluripotency genes and global DNA demethylation, but temporal resolution of these events using existing markers is limited. Here, we generate murine transgenic lines harboring reporters for the 5-methylcytosine dioxygenase Tet1 and for Oct4. By monitoring dual reporter fluorescence during pluripotency entry, we identify a sequential order of Tet1 and Oct4 activation by proximal and distal regulatory elements. Full Tet1 activation marks an intermediate stage that accompanies predominantly repression of somatic genes, preceding full Oct4 activation, and distinguishes two waves of global DNA demethylation that target distinct genomic features but are uncoupled from transcriptional changes. Tet1 knockout shows that TET1 contributes to both waves of demethylation and activates germline regulatory genes in reprogramming intermediates but is dispensable for Oct4 reactivation. Our dual reporter system for time-resolving pluripotency entry thus refines the molecular roadmap of iPSC maturation.
Collapse
Affiliation(s)
- Michela Bartoccetti
- Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Bernard K van der Veer
- Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Xinlong Luo
- Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Rita Khoueiry
- Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Pinyi She
- Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Manmohan Bajaj
- Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Jiayi Xu
- Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Adrian Janiszewski
- Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Bernard Thienpont
- Department of Human Genetics, Laboratory for Functional Epigenetics, KU Leuven, 3000 Leuven, Belgium
| | - Vincent Pasque
- Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Kian Peng Koh
- Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
17
|
Shao J, Bai X, Pan T, Li Y, Jia X, Wang J, Lai S. Genome-Wide DNA Methylation Changes of Perirenal Adipose Tissue in Rabbits Fed a High-Fat Diet. Animals (Basel) 2020; 10:E2213. [PMID: 33255930 PMCID: PMC7761299 DOI: 10.3390/ani10122213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022] Open
Abstract
DNA methylation is an epigenetic mechanism that plays an important role in gene regulation without an altered DNA sequence. Previous studies have demonstrated that diet affects obesity by partially mediating DNA methylation. Our study investigated the genome-wide DNA methylation of perirenal adipose tissue in rabbits to identify the epigenetic changes of high-fat diet-mediated obesity. Two libraries were constructed pooling DNA of rabbits fed a standard normal diet (SND) and DNA of rabbits fed a high-fat diet (HFD). Differentially methylated regions (DMRs) were identified using the option of the sliding window method, and online software DAVID Bioinformatics Resources 6.7 was used to perform Gene Ontology (GO) terms and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis of DMRs-associated genes. A total of 12,230 DMRs were obtained, of which 2305 (1207 up-regulated, 1098 down-regulated) and 601 (368 up-regulated, 233 down-regulated) of identified DMRs were observed in the gene body and promoter regions, respectively. GO analysis revealed that the DMRs-associated genes were involved in developmental process (GO:0032502), cell differentiation (GO:0030154), and lipid binding (GO:0008289), and KEGG pathway enrichment analysis revealed the DMRs-associated genes were enriched in linoleic acid metabolism (KO00591), DNA replication (KO03030), and MAPK signaling pathway (KO04010). Our study further elucidates the possible functions of DMRs-associated genes in rabbit adipogenesis, contributing to the understanding of HFD-mediated obesity.
Collapse
Affiliation(s)
- Jiahao Shao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (X.B.); (Y.L.); (X.J.); (J.W.)
| | - Xue Bai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (X.B.); (Y.L.); (X.J.); (J.W.)
| | - Ting Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yanhong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (X.B.); (Y.L.); (X.J.); (J.W.)
| | - Xianbo Jia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (X.B.); (Y.L.); (X.J.); (J.W.)
| | - Jie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (X.B.); (Y.L.); (X.J.); (J.W.)
| | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (X.B.); (Y.L.); (X.J.); (J.W.)
| |
Collapse
|
18
|
Pinney SE, Joshi A, Yin V, Min SW, Rashid C, Condon DE, Wang PZ. Exposure to Gestational Diabetes Enriches Immune-Related Pathways in the Transcriptome and Methylome of Human Amniocytes. J Clin Endocrinol Metab 2020; 105:5873862. [PMID: 32687192 PMCID: PMC7451504 DOI: 10.1210/clinem/dgaa466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022]
Abstract
CONTEXT Gestational diabetes (GDM) has profound effects on the intrauterine metabolic milieu and is linked to obesity and diabetes in offspring, but the mechanisms driving these effects remain largely unknown. Alterations in DNA methylation and gene expression in amniocytes exposed to GDM in utero represent a potential mechanism leading to metabolic dysfunction later in life. OBJECTIVE To profile changes in genome-wide DNA methylation and expression in human amniocytes exposed to GDM. DESIGN A nested case-control study (n = 14 pairs) was performed in amniocytes matched for offspring sex, maternal race/ethnicity, maternal age, gestational age at amniocentesis, and gestational age at birth. Sex-specific genome-wide DNA methylation analysis and RNA-sequencing were completed and differentially methylated regions (DMRs) and gene expression changes were identified. Ingenuity pathway analysis identified biologically relevant pathways enriched after GDM exposure. In silico high-throughput chromosome conformation capture (Hi-C) analysis identified potential chromatin interactions with DMRs. RESULTS Expression of interferon-stimulated genes was increased in GDM amniocytes, accounting for 6 of the top 10 altered genes (q < 0.05). Enriched biological pathways in GDM amniocytes included pathways involving inflammation, the interferon response, fatty liver disease, monogenic diabetes, and atherosclerosis. Forty-two DMRs were identified in male GDM-exposed amniocytes and 20 in female amniocyte analysis (q < 0.05). Hi-C analysis identified interactions between DMRs and 11 genes with significant expression changes in male amniocytes and 9 in female amniocytes (P < .05). CONCLUSION In a unique repository of human amniocytes exposed to GDM in utero, transcriptome analysis identified enrichment of inflammation and interferon-related pathways and novel DMRs with potential distal regulatory functions.
Collapse
Affiliation(s)
- Sara E Pinney
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Correspondence and Reprint Requests: Sara E. Pinney, MD, MS, Division of Endocrinology and Diabetes, Children’s Hospital Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA. E-mail:
| | - Apoorva Joshi
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Victoria Yin
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - So Won Min
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cetewayo Rashid
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | | | - Paul Zhipang Wang
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Penn Bioinformatics Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Kreutz C, Can NS, Bruening RS, Meyberg R, Mérai Z, Fernandez-Pozo N, Rensing SA. A blind and independent benchmark study for detecting differeally methylated regions in plants. Bioinformatics 2020; 36:3314-3321. [PMID: 32181821 DOI: 10.1093/bioinformatics/btaa191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/31/2020] [Accepted: 03/13/2020] [Indexed: 01/03/2023] Open
Abstract
MOTIVATION Bisulfite sequencing (BS-seq) is a state-of-the-art technique for investigating methylation of the DNA to gain insights into the epigenetic regulation. Several algorithms have been published for identification of differentially methylated regions (DMRs). However, the performances of the individual methods remain unclear and it is difficult to optimally select an algorithm in application settings. RESULTS We analyzed BS-seq data from four plants covering three taxonomic groups. We first characterized the data using multiple summary statistics describing methylation levels, coverage, noise, as well as frequencies, magnitudes and lengths of methylated regions. Then, simulated datasets with most similar characteristics to real experimental data were created. Seven different algorithms (metilene, methylKit, MOABS, DMRcate, Defiant, BSmooth, MethylSig) for DMR identification were applied and their performances were assessed. A blind and independent study design was chosen to reduce bias and to derive practical method selection guidelines. Overall, metilene had superior performance in most settings. Data attributes, such as coverage and spread of the DMR lengths, were found to be useful for selecting the best method for DMR detection. A decision tree to select the optimal approach based on these data attributes is provided. The presented procedure might serve as a general strategy for deriving algorithm selection rules tailored to demands in specific application settings. AVAILABILITY AND IMPLEMENTATION Scripts that were used for the analyses and that can be used for prediction of the optimal algorithm are provided at https://github.com/kreutz-lab/DMR-DecisionTree. Simulated and experimental data are available at https://doi.org/10.6084/m9.figshare.11619045. CONTACT ckreutz@imbi.uni-freiburg.de. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Clemens Kreutz
- Faculty of Medicine and Medical Center, Institute of Medical Biometry and Statistics, University of Freiburg, 79104 Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| | - Nilay S Can
- Plant Cell Biology, Faculty of Biology, University of Marburg, 35043 Marburg, Germany
| | - Ralf Schulze Bruening
- Plant Cell Biology, Faculty of Biology, University of Marburg, 35043 Marburg, Germany
| | - Rabea Meyberg
- Plant Cell Biology, Faculty of Biology, University of Marburg, 35043 Marburg, Germany
| | - Zsuzsanna Mérai
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Noe Fernandez-Pozo
- Plant Cell Biology, Faculty of Biology, University of Marburg, 35043 Marburg, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, 35043 Marburg, Germany
- Centre for Biological Signaling Studies (BIOSS), University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
20
|
Bansal A, Robles-Matos N, Wang PZ, Condon DE, Joshi A, Pinney SE. In utero Bisphenol A Exposure Is Linked with Sex Specific Changes in the Transcriptome and Methylome of Human Amniocytes. J Clin Endocrinol Metab 2020; 105:5571768. [PMID: 31536135 PMCID: PMC7046022 DOI: 10.1210/clinem/dgz037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022]
Abstract
CONTEXT Prenatal exposure to bisphenol A (BPA) is linked to obesity and diabetes but the molecular mechanisms driving these phenomena are not known. Alterations in deoxyribonucleic acid (DNA) methylation in amniocytes exposed to BPA in utero represent a potential mechanism leading to metabolic dysfunction later in life. OBJECTIVE To profile changes in genome-wide DNA methylation and expression in second trimester human amniocytes exposed to BPA in utero. DESIGN A nested case-control study was performed in amniocytes matched for offspring sex, maternal race/ethnicity, maternal age, gestational age at amniocentesis, and gestational age at birth. Cases had amniotic fluid BPA measuring 0.251 to 23.74 ng/mL. Sex-specific genome-wide DNA methylation analysis and RNA-sequencing (RNA-seq) were performed to determine differentially methylated regions (DMRs) and gene expression changes associated with BPA exposure. Ingenuity pathway analysis was performed to identify biologically relevant pathways enriched after BPA exposure. In silico Hi-C analysis identified potential chromatin interactions with DMRs. RESULTS There were 101 genes with altered expression in male amniocytes exposed to BPA (q < 0.05) in utero, with enrichment of pathways critical to hepatic dysfunction, collagen signaling and adipogenesis. Thirty-six DMRs were identified in male BPA-exposed amniocytes and 14 in female amniocyte analysis (q < 0.05). Hi-C analysis identified interactions between DMRs and 24 genes with expression changes in male amniocytes and 12 in female amniocytes (P < 0.05). CONCLUSION In a unique repository of human amniocytes exposed to BPA in utero, sex-specific analyses identified gene expression changes in pathways associated with metabolic disease and novel DMRs with potential distal regulatory functions.
Collapse
Affiliation(s)
- Amita Bansal
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole Robles-Matos
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul Zhiping Wang
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Bioinformatics Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David E Condon
- Sanford Health, Sioux Falls, SD, USA
- Penn Bioinformatics Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Apoorva Joshi
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sara E Pinney
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Correspondence and Reprint Requests: Sara E. Pinney, Division of Endocrinology and Diabetes, Children’s Hospital Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA. E-mail:
| |
Collapse
|
21
|
Grehl C, Wagner M, Lemnian I, Glaser B, Grosse I. Performance of Mapping Approaches for Whole-Genome Bisulfite Sequencing Data in Crop Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:176. [PMID: 32256504 PMCID: PMC7093021 DOI: 10.3389/fpls.2020.00176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/05/2020] [Indexed: 05/09/2023]
Abstract
DNA methylation is involved in many different biological processes in the development and well-being of crop plants such as transposon activation, heterosis, environment-dependent transcriptome plasticity, aging, and many diseases. Whole-genome bisulfite sequencing is an excellent technology for detecting and quantifying DNA methylation patterns in a wide variety of species, but optimized data analysis pipelines exist only for a small number of species and are missing for many important crop plants. This is especially important as most existing benchmark studies have been performed on mammals with hardly any repetitive elements and without CHG and CHH methylation. Pipelines for the analysis of whole-genome bisulfite sequencing data usually consists of four steps: read trimming, read mapping, quantification of methylation levels, and prediction of differentially methylated regions (DMRs). Here we focus on read mapping, which is challenging because un-methylated cytosines are transformed to uracil during bisulfite treatment and to thymine during the subsequent polymerase chain reaction, and read mappers must be capable of dealing with this cytosine/thymine polymorphism. Several read mappers have been developed over the last years, with different strengths and weaknesses, but their performances have not been critically evaluated. Here, we compare eight read mappers: Bismark, BismarkBwt2, BSMAP, BS-Seeker2, Bwameth, GEM3, Segemehl, and GSNAP to assess the impact of the read-mapping results on the prediction of DMRs. We used simulated data generated from the genomes of Arabidopsis thaliana, Brassica napus, Glycine max, Solanum tuberosum, and Zea mays, monitored the effects of the bisulfite conversion rate, the sequencing error rate, the maximum number of allowed mismatches, as well as the genome structure and size, and calculated precision, number of uniquely mapped reads, distribution of the mapped reads, run time, and memory consumption as features for benchmarking the eight read mappers mentioned above. Furthermore, we validated our findings using real-world data of Glycine max and showed the influence of the mapping step on DMR calling in WGBS pipelines. We found that the conversion rate had only a minor impact on the mapping quality and the number of uniquely mapped reads, whereas the error rate and the maximum number of allowed mismatches had a strong impact and leads to differences of the performance of the eight read mappers. In conclusion, we recommend BSMAP which needs the shortest run time and yields the highest precision, and Bismark which requires the smallest amount of memory and yields precision and high numbers of uniquely mapped reads.
Collapse
Affiliation(s)
- Claudius Grehl
- Institute of Computer Science, Bioinformatics, Martin Luther University Halle–Wittenberg, Von Seckendorff-Platz 1, Halle (Saale), Germany
- Institute of Agronomy and Nutritional Sciences, Soil Biogeochemistry, Martin Luther University Halle–Wittenberg, Von Seckendorff-Platz 3, Halle (Saale), Germany
- *Correspondence: Claudius Grehl,
| | - Marc Wagner
- Institute of Mathematics and Informatics, Freie Universität Berlin, Berlin, Germany
| | - Ioana Lemnian
- Institute of Computer Science, Bioinformatics, Martin Luther University Halle–Wittenberg, Von Seckendorff-Platz 1, Halle (Saale), Germany
- Institute of Human Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Bruno Glaser
- Institute of Agronomy and Nutritional Sciences, Soil Biogeochemistry, Martin Luther University Halle–Wittenberg, Von Seckendorff-Platz 3, Halle (Saale), Germany
| | - Ivo Grosse
- Institute of Computer Science, Bioinformatics, Martin Luther University Halle–Wittenberg, Von Seckendorff-Platz 1, Halle (Saale), Germany
- Bioinformatics Unit, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
22
|
Yu YE, Xing Z, Do C, Pao A, Lee EJ, Krinsky-McHale S, Silverman W, Schupf N, Tycko B. Genetic and epigenetic pathways in Down syndrome: Insights to the brain and immune system from humans and mouse models. PROGRESS IN BRAIN RESEARCH 2019; 251:1-28. [PMID: 32057305 PMCID: PMC7286740 DOI: 10.1016/bs.pbr.2019.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The presence of an extra copy of human chromosome 21 (Hsa21) leads to a constellation of phenotypic manifestations in Down syndrome (DS), including prominent effects on the brain and immune system. Intensive efforts to unravel the molecular mechanisms underlying these phenotypes may help developing effective therapies, both in DS and in the general population. Here we review recent progress in genetic and epigenetic analysis of trisomy 21 (Ts21). New mouse models of DS based on syntenic conservation of segments of the mouse and human chromosomes are starting to clarify the contributions of chromosomal subregions and orthologous genes to specific phenotypes in DS. The expression of genes on Hsa21 is regulated by epigenetic mechanisms, and with recent findings of highly recurrent gene-specific changes in DNA methylation patterns in brain and immune system cells with Ts21, the epigenomics of DS has become an active research area. Here we highlight the value of combining human studies with mouse models for defining DS critical genes and understanding the trans-acting effects of a simple chromosomal aneuploidy on genome-wide epigenetic patterning. These genetic and epigenetic studies are starting to uncover fundamental biological mechanisms, leading to insights that may soon become therapeutically relevant.
Collapse
Affiliation(s)
- Y Eugene Yu
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States; Genetics, Genomics and Bioinformatics Program, State University of New York at Buffalo, Buffalo, NY, United States.
| | - Zhuo Xing
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Catherine Do
- Department of Biomedical Research, Division of Genetics & Epigenetics, Hackensack-Meridian Health Center for Discovery and Innovation and Hackensack-Meridian Health School of Medicine at Seton Hall University, Nutley, NJ, United States
| | - Annie Pao
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Eun Joon Lee
- Department of Biomedical Research, Division of Genetics & Epigenetics, Hackensack-Meridian Health Center for Discovery and Innovation and Hackensack-Meridian Health School of Medicine at Seton Hall University, Nutley, NJ, United States
| | - Sharon Krinsky-McHale
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Wayne Silverman
- Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pediatrics, University of California at Irvine, Irvine, CA, United States
| | - Nicole Schupf
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Benjamin Tycko
- Department of Biomedical Research, Division of Genetics & Epigenetics, Hackensack-Meridian Health Center for Discovery and Innovation and Hackensack-Meridian Health School of Medicine at Seton Hall University, Nutley, NJ, United States.
| |
Collapse
|
23
|
Lien YC, Condon DE, Georgieff MK, Simmons RA, Tran PV. Dysregulation of Neuronal Genes by Fetal-Neonatal Iron Deficiency Anemia Is Associated with Altered DNA Methylation in the Rat Hippocampus. Nutrients 2019; 11:nu11051191. [PMID: 31137889 PMCID: PMC6566599 DOI: 10.3390/nu11051191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
Early-life iron deficiency results in long-term abnormalities in cognitive function and affective behavior in adulthood. In preclinical models, these effects have been associated with long-term dysregulation of key neuronal genes. While limited evidence suggests histone methylation as an epigenetic mechanism underlying gene dysregulation, the role of DNA methylation remains unknown. To determine whether DNA methylation is a potential mechanism by which early-life iron deficiency induces gene dysregulation, we performed whole genome bisulfite sequencing to identify loci with altered DNA methylation in the postnatal day (P) 15 iron-deficient (ID) rat hippocampus, a time point at which the highest level of hippocampal iron deficiency is concurrent with peak iron demand for axonal and dendritic growth. We identified 229 differentially methylated loci and they were mapped within 108 genes. Among them, 63 and 45 genes showed significantly increased and decreased DNA methylation in the P15 ID hippocampus, respectively. To establish a correlation between differentially methylated loci and gene dysregulation, the methylome data were compared to our published P15 hippocampal transcriptome. Both datasets showed alteration of similar functional networks regulating nervous system development and cell-to-cell signaling that are critical for learning and behavior. Collectively, the present findings support a role for DNA methylation in neural gene dysregulation following early-life iron deficiency.
Collapse
Affiliation(s)
- Yu-Chin Lien
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - David E Condon
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Michael K Georgieff
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA.
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA.
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Phu V Tran
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA.
| |
Collapse
|
24
|
Abstract
Aside from post-translational histone modifications and small RNA populations, the epigenome of an organism is defined by the level and spectrum of DNA methylation. Methyl groups can be covalently bound to the carbon-5 of cytosines or the carbon-6 of adenine bases. DNA methylation can be found in both prokaryotes and eukaryotes. In the latter, dynamic variation is shown across species, along development, and by cell type. DNA methylation usually leads to a lower binding affinity of DNA-interacting proteins and often results in a lower expression rate of the subsequent genome region, a process also referred to as transcriptional gene silencing. We give an overview of the current state of research facilitating the planning and implementation of whole-genome bisulfite-sequencing (WGBS) experiments. We refrain from discussing alternative methods for DNA methylation analysis, such as reduced representation bisulfite sequencing (rrBS) and methylated DNA immunoprecipitation sequencing (MeDIPSeq), which have value in specific experimental contexts but are generally disadvantageous compared to WGBS.
Collapse
|
25
|
Georgieff MK, Ramel SE, Cusick SE. Nutritional influences on brain development. Acta Paediatr 2018; 107:1310-1321. [PMID: 29468731 PMCID: PMC6045434 DOI: 10.1111/apa.14287] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/12/2018] [Accepted: 02/16/2018] [Indexed: 12/19/2022]
Abstract
There is increasing evidence from preclinical and human studies that nutrition in the late foetal and early neonatal period has a significant impact on neurodevelopment across the lifespan. Certain nutrients have particularly large effects in this time period, and their deficits cause greater long-term risk. The mechanisms by which nutrients influence early brain growth and the sensitive periods for when certain nutrients should be provided are being elucidated. Assessments of nutritional status that index brain growth and predict long-term development are important to assess the efficacy of early life nutritional therapies. CONCLUSION Optimizing nutrition during foetal and early postnatal life is a golden opportunity to impact neurodevelopment and brain function across the lifespan.
Collapse
Affiliation(s)
- Michael K. Georgieff
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Sara E. Ramel
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Sarah E. Cusick
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|