1
|
Ren L, Zhang Q, Zhou J, Wang X, Zhu D, Chen X. Leveraging Diverse Regulated Cell Death Patterns to Identify Diagnosis Biomarkers for Alzheimer's Disease. J Prev Alzheimers Dis 2024; 11:1775-1788. [PMID: 39559889 PMCID: PMC11573840 DOI: 10.14283/jpad.2024.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND The functions of regulated cell death (RCD) are closely related to Alzheimer's disease (AD). However, very few studies have systematically investigated the diagnosis and immunologic role of RCD-related genes in AD patients. METHODS 8 multicenter AD cohorts were included in this study, and then were merged into a meta cohort. Then, an unsupervised clustering analysis was carried out to detect unique subtypes of AD based on RCD-related genes. Subsequently, differently expressed genes (DEGs) and weighted correlation network analysis (WGCNA) between subtypes were identified. Finally, to establish an optimal risk model, an RCD.score was constructed by using computational algorithm (10 machine-learning algorithms, 113 combinations). RESULTS We identified two distinct subtypes based on RCD-related genes, each exhibiting distinct hallmark pathway activity and immunologic landscape. Specifically, cluster.A patients had a higher immune infiltration, a higher immune modulators and poor AD progression. Utilizing the shared DEGs and WGCNA of these subtypes, we constructed an RCD.score that demonstrated excellent predictive ability in AD across multiple datasets. Furthermore, RCD.score was identified to exhibit the strongest association with poor AD progression. Mechanistically, we observed activation of signaling pathways and effective immune infiltration and immune modulators in the high RCD.score group, thus leading to a poor AD progression. Additionally, Mendelian randomization screening revealed four genes (CXCL1, ENTPD2, METTL7A, and SERPINB6) as feature genes for AD. CONCLUSION The RCD model is a valuable tool in categorizing AD patients. This model can be of great assistance to clinicians in determining the most suitable personalized treatment plan for each individual AD patient.
Collapse
Affiliation(s)
- L Ren
- Dr Xueyan Chen, Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, E-mail address:
| | | | | | | | | | | |
Collapse
|
2
|
Theron D, Hopkins LN, Sutherland HG, Griffiths LR, Fernandez F. Can Genetic Markers Predict the Sporadic Form of Alzheimer's Disease? An Updated Review on Genetic Peripheral Markers. Int J Mol Sci 2023; 24:13480. [PMID: 37686283 PMCID: PMC10488021 DOI: 10.3390/ijms241713480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia that affects millions of individuals worldwide. Although the research over the last decades has provided new insight into AD pathophysiology, there is currently no cure for the disease. AD is often only diagnosed once the symptoms have become prominent, particularly in the late-onset (sporadic) form of AD. Consequently, it is essential to further new avenues for early diagnosis. With recent advances in genomic analysis and a lower cost of use, the exploration of genetic markers alongside RNA molecules can offer a key avenue for early diagnosis. We have here provided a brief overview of potential genetic markers differentially expressed in peripheral tissues in AD cases compared to controls, as well as considering the changes to the dynamics of RNA molecules. By integrating both genotype and RNA changes reported in AD, biomarker profiling can be key for developing reliable AD diagnostic tools.
Collapse
Affiliation(s)
- Danelda Theron
- School of Behavioural and Health Sciences, Faculty of Heath Sciences, Australian Catholic University, Banyo, QLD 4014, Australia;
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Lloyd N. Hopkins
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Heidi G. Sutherland
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Lyn R. Griffiths
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Francesca Fernandez
- School of Behavioural and Health Sciences, Faculty of Heath Sciences, Australian Catholic University, Banyo, QLD 4014, Australia;
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| |
Collapse
|
3
|
Bonnechère B, Liu J, Thompson A, Amin N, van Duijn C. Does ethnicity influence dementia, stroke and mortality risk? Evidence from the UK Biobank. Front Public Health 2023; 11:1111321. [PMID: 37124771 PMCID: PMC10140594 DOI: 10.3389/fpubh.2023.1111321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/10/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction The number of people with dementia and stroke is increasing worldwide. There is increasing evidence that there are clinically relevant genetic differences across ethnicities. This study aims to quantify risk factors of dementia, stroke, and mortality in Asian and black participants compared to whites. Methods 272,660 participants from the UK Biobank were included in the final analysis, among whom the vast majority are white (n = 266,671, 97.80%), followed by Asian (n = 3,790, 1.35%), and black (n = 2,358, 0.84%) participants. Cumulative incidence risk was calculated based on all incident cases occurring during the follow-up of the individuals without dementia and stroke at baseline. We compared the allele frequency of variants in Asian and black participants with the referent ethnicity, whites, by chi-square test. Hierarchical cluster analysis was used in the clustering analysis. Significance level corrected for the false discovery rate was considered. Results After adjusting for risk factors, black participants have an increased risk of dementia and stroke compared to white participants, while Asians has similar odds to the white. The risk of mortality is not different in blacks and white participants but Asians have a decreased risk. Discussion The study provides important insights into the potential differences in the risk of dementia and stroke among different ethnic groups. Specifically, the study found that black individuals had a higher incidence of dementia and stroke compared to white individuals living in the UK. These findings are particularly significant as they suggest that there may be underlying factors that contribute to these differences, including genetic, environmental, and social factors. By identifying these differences, the study helps to inform interventions and policies aimed at reducing the risk of dementia and stroke, particularly among high-risk populations.
Collapse
Affiliation(s)
- Bruno Bonnechère
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
- Technology-Supported and Data-Driven Rehabilitation, Data Science Institute, Hasselt University, Diepenbeek, Belgium
| | - Jun Liu
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Alexander Thompson
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Najaf Amin
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Cornelia van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- *Correspondence: Cornelia van Duijn,
| |
Collapse
|
4
|
Kim J, Jung SH, Choe YS, Kim S, Kim B, Kim HR, Son SJ, Hong CH, Na DL, Kim HJ, Cho SJ, Won HH, Seo SW. Ethnic differences in the frequency of β-amyloid deposition in cognitively normal individuals. Neurobiol Aging 2022; 114:27-37. [DOI: 10.1016/j.neurobiolaging.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
|
5
|
Zeng Q, Zou D, Zeng Q, Chen X, Wei Y, Guo R. Association Between Insulin-like Growth Factor-1 rs35767 Polymorphism and Type 2 Diabetes Mellitus Susceptibility: A Meta-Analysis. Front Genet 2021; 12:774489. [PMID: 34880907 PMCID: PMC8646032 DOI: 10.3389/fgene.2021.774489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Insulin-like growth factor-1 (IGF-1) has been demonstrated to increase fatty acid β oxidation during fasting, and play an important role in regulating lipid metabolism and type 2 diabetes mellitus (T2DM). The rs35767 (T > C) polymorphism, a functional SNP was found in IGF-1 promoter, which may directly affect IGF-1 expression. However, the inconsistent findings showed on the IGF-1 rs35767 polymorphism and T2DM risk. Methods: We performed a comprehensive meta-analysis to estimate the association between the IGF-1 rs35767 and T2DM risk among four genetic models (the allele, additive, recessive and dominant models). Results: A total 49,587 T2DM cases and 97,906 NDM controls were included in the allele model, a total 2256 T2DM cases and 2228 NDM controls were included in the other three genetic models (the additive; recessive and dominant models). In overall analysis, the IGF-1 rs35767 was shown to be significantly associated with increased T2DM risk for the allele model (T vs. C: OR = 1.251, 95% CI: 1.082–1.447, p = 0.002), additive model (homozygote comparisons: TT vs. CC: OR = 2.433, 95% CI: 1.095–5.405, p = 0.029; heterozygote comparisons: TC vs. CC: OR = 1.623, 95% CI: 1.055–2.495, p = 0.027) and dominant model (TT + CT vs. CC: OR = 1.934, 95% CI: 1.148–3.257, p = 0.013) with random effects model. After omitting Gouda’s study could reduce the heterogeneity, especially in the recessive model (TT vs. CC + CT: I2 = 38.7%, p = 0.163), the fixed effects model for recessive effect of the T allele (TT vs. CC + CT) produce results that were of borderline statistical significance (OR = 1.206, 95% CI: 1.004–1.448, p = 0.045). And increasing the risk of T2DM in Uyghur population of subgroup for the allele model. Conclusion: The initial analyses that included all studies showed statistically significant associations between the rs35767 SNP and type 2 diabetes, but after removing the Gouda et al. study produced results that were mostly not statistically significant. Therefore, there is not enough evidence from the results of the meta-analysis to indicate that the rs35767 SNP has a statistically significant association with type 2 diabetes.
Collapse
Affiliation(s)
- Qiaoli Zeng
- Department of Internal Medicine, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China.,Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China.,Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Matenal and Child Research Institute, Guangdong Medical University, Foshan, China
| | - Dehua Zou
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China.,Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Matenal and Child Research Institute, Guangdong Medical University, Foshan, China.,State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR) China
| | - Qiaodi Zeng
- Department of Clinical Laboratory, People's Hospital of Haiyuan County, Zhongwei, China
| | - Xiaoming Chen
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yue Wei
- Department of Ultrasound, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| | - Runmin Guo
- Department of Internal Medicine, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China.,Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China.,Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Matenal and Child Research Institute, Guangdong Medical University, Foshan, China.,Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
6
|
Zeng Q, Ning F, Gu S, Zeng Q, Chen R, Peng L, Zou D, Ma G, Wang Y. The 10-Repeat 3'-UTR VNTR Polymorphism in the SLC6A3 Gene May Confer Protection Against Parkinson's Disease: A Meta-analysis. Front Genet 2021; 12:757601. [PMID: 34646314 PMCID: PMC8502797 DOI: 10.3389/fgene.2021.757601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
The dopamine transporter (DAT) is encoded by the SLC6A3 gene and plays an important role in the regulation of the neurotransmitter dopamine. The SLC6A3 gene contains several repetition alleles (3-11 repeats) of a 40-base pair variable number of tandem repeats (VNTR) in the 3'-untranslated region (3'-UTR), which may affect DAT expression levels. The 10-repeat (10R) allele could play a protective role against PD. However, inconsistent findings have been reported. Methods: A comprehensive meta-analysis was performed to accurately estimate the association between the 10R allele of the 3'-UTR VNTR in SLC6A3 and PD among four different genetic models. Results: This meta-analysis included a total of 3,142 patients and 3,496 controls. We observed a significant difference between patients and controls for the allele model (10R vs. all others: OR = 0.860, 95% CI: 0.771-0.958, P = 0.006), pseudodominant model (10R/10R + 10R/9R vs. all others: OR = 0.781, 95% CI: 0.641-0.952, P = 0.014) and pseudorecessive model (10R/10R vs. all others: OR = 0.858, 95% CI: 0.760-0.969, P = 0.013) using a fixed effects model. No significant differences were observed under the pseudocodominant model (10R/9R vs. all others: OR = 1.079, 95% CI: 0.945-1.233, P = 0.262). By subgroup analysis, the 10R, 10R/10R and 10R/9R genotypes were found to be significantly different from PD in Asian populations. Conclusion: Our findings suggest that the SLC6A3 10R may be a protective factor in susceptibility to PD.
Collapse
Affiliation(s)
- Qiaoli Zeng
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
| | - Fan Ning
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shanshan Gu
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qiaodi Zeng
- Department of Clinical Laboratory, People’s Hospital of Haiyuan County, Zhongwei, China
| | - Riling Chen
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
- Department of Pediatrics, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Liuquan Peng
- Department of Pediatrics, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Dehua Zou
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
| | - Guoda Ma
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Yajun Wang
- Institute of Respiratory, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| |
Collapse
|
7
|
Hou M, Xu G, Ran M, Luo W, Wang H. APOE-ε4 Carrier Status and Gut Microbiota Dysbiosis in Patients With Alzheimer Disease. Front Neurosci 2021; 15:619051. [PMID: 33732104 PMCID: PMC7959830 DOI: 10.3389/fnins.2021.619051] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/14/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Alternations in gut microbiota and a number of genes have been implicated as risk factors for the development of Alzheimer disease (AD). However, the interactions between the altered bacteria and risk genetic variants remain unclear. OBJECTIVE We aimed to explore associations of the risk genetic variants with altered gut bacteria in the onset of AD. METHODS We collected baseline data and stool and blood samples from 30 AD patients and 47 healthy controls in a case-control study. The rs42358/rs4512 (ApoE), rs3851179 (PICALM), rs744373 (BIN1), rs9331888 (CLU), rs670139 (MS4A4E), rs3764650 (ABCA7), rs3865444 (CD33), rs9349407 (CD2AP), rs11771145 (EPHA1), and rs3818361/rs6656401 (CR1) were sequenced, and microbiota composition was characterized using 16S rRNA gene sequencing. The associations of the altered gut bacteria with the risk genetics were analyzed. RESULTS Apolipoprotein ε4 allele and rs744373 were risk loci for the AD among 12 genetic variants. Phylum Proteobacteria; orders Enterobacteriales, Deltaproteobacteria, and Desulfovibrionales; families Enterobacteriaceae and Desulfovibrionaceae; and genera Escherichia-Shigella, Ruminococcaceae_UCG_002, Shuttleworthia, Anaerofustis, Morganelia, Finegoldia, and Anaerotruncus were increased in AD subjects, whereas family Enterococcaceae and genera Megamonas, Enterococcus, and Anaerostipes were more abundant in controls (P < 0.05). Among the altered microbiota, APOE ε4 allele was positively associated with pathogens: Proteobacteria. CONCLUSION The interaction of APOE ε4 gene and the AD-promoting pathogens might be an important factor requiring for the promotion of AD. Targeting to microbiota might be an effective therapeutic strategy for AD susceptible to APOE ε4 allele. This needs further investigation.
Collapse
Affiliation(s)
- Min Hou
- School of Public Health, College of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gaolian Xu
- Nano Biomedical Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Maosheng Ran
- Department of Social Work and Social Administration, The University of Hong Kong, Hong Kong, China
| | - Wei Luo
- Xinjin No. 2 People’s Hospital, Chengdu, China
| | - Hui Wang
- School of Public Health, College of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Zeng Q, Chen Q, Zou D, Guo R, Xiao D, Jiang S, Chen R, Wang Y, Ma G. Different Associations Between the IREB2 Variants and Chronic Obstructive Pulmonary Disease Susceptibility. Front Genet 2020; 11:598053. [PMID: 33304392 PMCID: PMC7701307 DOI: 10.3389/fgene.2020.598053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/20/2020] [Indexed: 01/14/2023] Open
Abstract
Background: Iron responsive element binding protein 2 (IREB2) variants may be involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). Recently, many studies have been performed on IREB2 susceptibility variants, including rs2568494, rs2656069, rs10851906, rs12593229, and rs13180, associated with COPD. However, inconsistent findings have been reported. The aim of our research was to determine the association of IREB2 SNPs with COPD. Methods: A comprehensive meta-analysis was performed to accurately estimate the association between IREB2 variants and COPD among four different genetic models. Results: This meta-analysis included a total of 4,096 patients and 5,870 controls. Here, we investigated the 5 IREB2 variants to identify COPD risk. Our results indicate that rs2568494 was associated with an increased risk of COPD for the dominant model (AA+GA vs. GG: OR = 1.150, 95% CI: 1.5–1.304, P = 0.029); rs2656069 was associated with a decreased risk of COPD for the recessive model (GG vs. AA+AG: OR = 0.589, 95% CI: 0.440–0.789; P = 0.000), additive model (GG vs. AA: OR =0.641, 95% CI: 0.441–0.931; P = 0.020), and allele model (G vs. A: OR = 0.812, 95% CI: 0.668–0.988; P = 0.037); and rs10851906 was associated with a decreased risk of COPD for the recessive model (GG vs. AA+AG: OR = 0.732, 95% CI: 0.560–0.958; P = 0.023) and additive model (GG vs. AA: OR = 0.777, 95% CI: 0.637–0.947; P = 0.012). Conclusion: Our findings suggest that the IREB2 rs2568494 minor alleles A may be a genetic factor in susceptibility to COPD. In addition, the minor alleles G of rs2656069 and rs10851906 appear to have a protective effect.
Collapse
Affiliation(s)
- Qiaoli Zeng
- Maternal and Child Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Qikang Chen
- Maternal and Child Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Dehua Zou
- Maternal and Child Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Runmin Guo
- Maternal and Child Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China.,Department of Medicine, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Dawei Xiao
- Department of Medicine, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Shaohu Jiang
- Department of Pediatrics, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Riling Chen
- Maternal and Child Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China.,Department of Pediatrics, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Yajun Wang
- Maternal and Child Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China.,Department of Medicine, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Guoda Ma
- Maternal and Child Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| |
Collapse
|