1
|
Pan L, Wang H, Yang B, Li W. A protein network refinement method based on module discovery and biological information. BMC Bioinformatics 2024; 25:157. [PMID: 38643108 PMCID: PMC11031909 DOI: 10.1186/s12859-024-05772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND The identification of essential proteins can help in understanding the minimum requirements for cell survival and development to discover drug targets and prevent disease. Nowadays, node ranking methods are a common way to identify essential proteins, but the poor data quality of the underlying PIN has somewhat hindered the identification accuracy of essential proteins for these methods in the PIN. Therefore, researchers constructed refinement networks by considering certain biological properties of interacting protein pairs to improve the performance of node ranking methods in the PIN. Studies show that proteins in a complex are more likely to be essential than proteins not present in the complex. However, the modularity is usually ignored for the refinement methods of the PINs. METHODS Based on this, we proposed a network refinement method based on module discovery and biological information. The idea is, first, to extract the maximal connected subgraph in the PIN, and to divide it into different modules by using Fast-unfolding algorithm; then, to detect critical modules according to the orthologous information, subcellular localization information and topology information within each module; finally, to construct a more refined network (CM-PIN) by using the identified critical modules. RESULTS To evaluate the effectiveness of the proposed method, we used 12 typical node ranking methods (LAC, DC, DMNC, NC, TP, LID, CC, BC, PR, LR, PeC, WDC) to compare the overall performance of the CM-PIN with those on the S-PIN, D-PIN and RD-PIN. The experimental results showed that the CM-PIN was optimal in terms of the identification number of essential proteins, precision-recall curve, Jackknifing method and other criteria, and can help to identify essential proteins more accurately.
Collapse
Affiliation(s)
- Li Pan
- Hunan Institute of Science and Technology, Yueyang, 414006, China
- Hunan Engineering Research Center of Multimodal Health Sensing and Intelligent Analysis, Yueyang, 414006, China
| | - Haoyue Wang
- Hunan Institute of Science and Technology, Yueyang, 414006, China.
| | - Bo Yang
- Hunan Institute of Science and Technology, Yueyang, 414006, China
- Hunan Engineering Research Center of Multimodal Health Sensing and Intelligent Analysis, Yueyang, 414006, China
| | - Wenbin Li
- Hunan Institute of Science and Technology, Yueyang, 414006, China.
| |
Collapse
|
2
|
Ye C, Wu Q, Chen S, Zhang X, Xu W, Wu Y, Zhang Y, Yue Y. ECDEP: identifying essential proteins based on evolutionary community discovery and subcellular localization. BMC Genomics 2024; 25:117. [PMID: 38279081 PMCID: PMC10821549 DOI: 10.1186/s12864-024-10019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND In cellular activities, essential proteins play a vital role and are instrumental in comprehending fundamental biological necessities and identifying pathogenic genes. Current deep learning approaches for predicting essential proteins underutilize the potential of gene expression data and are inadequate for the exploration of dynamic networks with limited evaluation across diverse species. RESULTS We introduce ECDEP, an essential protein identification model based on evolutionary community discovery. ECDEP integrates temporal gene expression data with a protein-protein interaction (PPI) network and employs the 3-Sigma rule to eliminate outliers at each time point, constructing a dynamic network. Next, we utilize edge birth and death information to establish an interaction streaming source to feed into the evolutionary community discovery algorithm and then identify overlapping communities during the evolution of the dynamic network. SVM recursive feature elimination (RFE) is applied to extract the most informative communities, which are combined with subcellular localization data for classification predictions. We assess the performance of ECDEP by comparing it against ten centrality methods, four shallow machine learning methods with RFE, and two deep learning methods that incorporate multiple biological data sources on Saccharomyces. Cerevisiae (S. cerevisiae), Homo sapiens (H. sapiens), Mus musculus, and Caenorhabditis elegans. ECDEP achieves an AP value of 0.86 on the H. sapiens dataset and the contribution ratio of community features in classification reaches 0.54 on the S. cerevisiae (Krogan) dataset. CONCLUSIONS Our proposed method adeptly integrates network dynamics and yields outstanding results across various datasets. Furthermore, the incorporation of evolutionary community discovery algorithms amplifies the capacity of gene expression data in classification.
Collapse
Affiliation(s)
- Chen Ye
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China
| | - Qi Wu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China
| | - Shuxia Chen
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China
| | - Xuemei Zhang
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China
| | - Wenwen Xu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China
| | - Yunzhi Wu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China
| | - Youhua Zhang
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China
| | - Yi Yue
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China.
- Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
3
|
Li G, Luo X, Hu Z, Wu J, Peng W, Liu J, Zhu X. Essential proteins discovery based on dominance relationship and neighborhood similarity centrality. Health Inf Sci Syst 2023; 11:55. [PMID: 37981988 PMCID: PMC10654316 DOI: 10.1007/s13755-023-00252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/13/2023] [Indexed: 11/21/2023] Open
Abstract
Essential proteins play a vital role in development and reproduction of cells. The identification of essential proteins helps to understand the basic survival of cells. Due to time-consuming, costly and inefficient with biological experimental methods for discovering essential proteins, computational methods have gained increasing attention. In the initial stage, essential proteins are mainly identified by the centralities based on protein-protein interaction (PPI) networks, which limit their identification rate due to many false positives in PPI networks. In this study, a purified PPI network is firstly introduced to reduce the impact of false positives in the PPI network. Secondly, by analyzing the similarity relationship between a protein and its neighbors in the PPI network, a new centrality called neighborhood similarity centrality (NSC) is proposed. Thirdly, based on the subcellular localization and orthologous data, the protein subcellular localization score and ortholog score are calculated, respectively. Fourthly, by analyzing a large number of methods based on multi-feature fusion, it is found that there is a special relationship among features, which is called dominance relationship, then, a novel model based on dominance relationship is proposed. Finally, NSC, subcellular localization score, and ortholog score are fused by the dominance relationship model, and a new method called NSO is proposed. In order to verify the performance of NSO, the seven representative methods (ION, NCCO, E_POC, SON, JDC, PeC, WDC) are compared on yeast datasets. The experimental results show that the NSO method has higher identification rate than other methods.
Collapse
Affiliation(s)
- Gaoshi Li
- Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin, 541004 China
- Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin, 541004 Guangxi China
- College of Computer Science and Engineering, Guangxi Normal University, Guilin, 541004 Guangxi China
| | - Xinlong Luo
- Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin, 541004 China
- Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin, 541004 Guangxi China
- College of Computer Science and Engineering, Guangxi Normal University, Guilin, 541004 Guangxi China
| | - Zhipeng Hu
- Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin, 541004 China
- Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin, 541004 Guangxi China
- College of Computer Science and Engineering, Guangxi Normal University, Guilin, 541004 Guangxi China
| | - Jingli Wu
- Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin, 541004 China
- Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin, 541004 Guangxi China
- College of Computer Science and Engineering, Guangxi Normal University, Guilin, 541004 Guangxi China
| | - Wei Peng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500 Yunnan China
| | - Jiafei Liu
- Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin, 541004 China
- Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin, 541004 Guangxi China
- College of Computer Science and Engineering, Guangxi Normal University, Guilin, 541004 Guangxi China
| | - Xiaoshu Zhu
- Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin, 541004 China
- Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin, 541004 Guangxi China
- College of Computer Science and Engineering, Guangxi Normal University, Guilin, 541004 Guangxi China
- School of Computer and Information Security & School of Software Engineering, Guilin University of Electronic Science and Technology, Guilin, China
| |
Collapse
|
4
|
Zhao H, Liu G, Cao X. A seed expansion-based method to identify essential proteins by integrating protein-protein interaction sub-networks and multiple biological characteristics. BMC Bioinformatics 2023; 24:452. [PMID: 38036960 PMCID: PMC10688502 DOI: 10.1186/s12859-023-05583-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND The identification of essential proteins is of great significance in biology and pathology. However, protein-protein interaction (PPI) data obtained through high-throughput technology include a high number of false positives. To overcome this limitation, numerous computational algorithms based on biological characteristics and topological features have been proposed to identify essential proteins. RESULTS In this paper, we propose a novel method named SESN for identifying essential proteins. It is a seed expansion method based on PPI sub-networks and multiple biological characteristics. Firstly, SESN utilizes gene expression data to construct PPI sub-networks. Secondly, seed expansion is performed simultaneously in each sub-network, and the expansion process is based on the topological features of predicted essential proteins. Thirdly, the error correction mechanism is based on multiple biological characteristics and the entire PPI network. Finally, SESN analyzes the impact of each biological characteristic, including protein complex, gene expression data, GO annotations, and subcellular localization, and adopts the biological data with the best experimental results. The output of SESN is a set of predicted essential proteins. CONCLUSIONS The analysis of each component of SESN indicates the effectiveness of all components. We conduct comparison experiments using three datasets from two species, and the experimental results demonstrate that SESN achieves superior performance compared to other methods.
Collapse
Affiliation(s)
- He Zhao
- College of Computer Science and Technology, Jilin University, Changchun, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| | - Guixia Liu
- College of Computer Science and Technology, Jilin University, Changchun, China.
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China.
| | - Xintian Cao
- College of Computer Science and Technology, Jilin University, Changchun, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
5
|
Razzaghi Z, Arjmand B, Hamzeloo-Moghadam M, Rezaei Tavirani M, Zamanian Azodi M. Efficacy Evaluation of Human Skin Treatment with Photodynamic Therapy in Actinic Keratoses Patients. J Lasers Med Sci 2023; 14:e60. [PMID: 38144941 PMCID: PMC10746884 DOI: 10.34172/jlms.2023.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/15/2023] [Indexed: 12/26/2023]
Abstract
Introduction: Photodynamic therapy (PDT) is a combined method of light and light-activated chemicals that are called photosensitizers (PSs). PDT is recommended as a high cure rate method with fewer side effects and a noninvasive tool to treat cancer. This study aimed to evaluate PDT efficacy as a therapeutic method against actinic keratoses in patients via protein-protein interaction (PPI) network analysis by using the gene expression profiles of Gene Expression Omnibus (GEO). Methods: Twenty-one gene expression profiles were extracted from GEO and analyzed by GEO2R to determine the significant differentially expressed genes (DEGs). The significant DEGs were included in PPI networks via Cytoscape software. The networks were analyzed by the "Network Analyzer", and the elements of the main connected components were assessed. Results: There were three main connected components for the compared sets of the gene expression profiles including the lesional region of skin before (Before set) and after (After set) PDT versus healthy (healthy set) skin and before versus after. The before-health comparison showed a partial similarity with the After-Healthy assessment. The before-after evaluation indicated that there were not considerable differences between the gene expression profile of the lesional region before and after PDT. Conclusion: In conclusion, PDT was unable to return the gene expression pattern of the actinic keratoses skin to a healthy condition completely.
Collapse
Affiliation(s)
- Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Hamzeloo-Moghadam
- Traditional Medicine and Materia Medica Research Center, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Zamanian Azodi
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Han Y, Liu M, Wang Z. Key protein identification by integrating protein complex information and multi-biological features. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:18191-18206. [PMID: 38052554 DOI: 10.3934/mbe.2023808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Identifying key proteins based on protein-protein interaction networks has emerged as a prominent area of research in bioinformatics. However, current methods exhibit certain limitations, such as the omission of subcellular localization information and the disregard for the impact of topological structure noise on the reliability of key protein identification. Moreover, the influence of proteins outside a complex but interacting with proteins inside the complex on complex participation tends to be overlooked. Addressing these shortcomings, this paper presents a novel method for key protein identification that integrates protein complex information with multiple biological features. This approach offers a comprehensive evaluation of protein importance by considering subcellular localization centrality, topological centrality weighted by gene ontology (GO) similarity and complex participation centrality. Experimental results, including traditional statistical metrics, jackknife methodology metric and key protein overlap or difference, demonstrate that the proposed method not only achieves higher accuracy in identifying key proteins compared to nine classical methods but also exhibits robustness across diverse protein-protein interaction networks.
Collapse
Affiliation(s)
- Yongyin Han
- School of Computer Science and Technology, China University of Mining and Technology, China
- Xuzhou College of Industrial Technology, China
| | - Maolin Liu
- School of Computer Science and Technology, China University of Mining and Technology, China
| | - Zhixiao Wang
- School of Computer Science and Technology, China University of Mining and Technology, China
| |
Collapse
|
7
|
Sun J, Pan L, Li B, Wang H, Yang B, Li W. A Construction Method of Dynamic Protein Interaction Networks by Using Relevant Features of Gene Expression Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2790-2801. [PMID: 37030714 DOI: 10.1109/tcbb.2023.3264241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Essential proteins play an important role in various life activities and are considered to be a vital part of the organism. Gene expression data are an important dataset to construct dynamic protein-protein interaction networks (DPIN). The existing methods for the construction of DPINs generally utilize all features (or the features in a cycle) of the gene expression data. However, the features observed from successive time points tend to be highly correlated, and thus there are some redundant and irrelevant features in the gene expression data, which will influence the quality of the constructed network and the predictive performance of essential proteins. To address this problem, we propose a construction method of DPINs by using selected relevant features rather than continuous and periodic features. We adopt an improved unsupervised feature selection method based on Laplacian algorithm to remove irrelevant and redundant features from gene expression data, then integrate the chosen relevant features into the static protein-protein interaction network (SPIN) to construct a more concise and effective DPIN (FS-DPIN). To evaluate the effectiveness of the FS-DPIN, we apply 15 network-based centrality methods on the FS-DPIN and compare the results with those on the SPIN and the existing DPINs. Then the predictive performance of the 15 centrality methods is validated in terms of sensitivity, specificity, positive predictive value, negative predictive value, F-measure, accuracy, Jackknife and AUPRC. The experimental results show that the FS-DPIN is superior to the existing DPINs in the identification accuracy of essential proteins.
Collapse
|
8
|
Liu P, Liu C, Mao Y, Guo J, Liu F, Cai W, Zhao F. Identification of essential proteins based on edge features and the fusion of multiple-source biological information. BMC Bioinformatics 2023; 24:203. [PMID: 37198530 DOI: 10.1186/s12859-023-05315-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/30/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND A major current focus in the analysis of protein-protein interaction (PPI) data is how to identify essential proteins. As massive PPI data are available, this warrants the design of efficient computing methods for identifying essential proteins. Previous studies have achieved considerable performance. However, as a consequence of the features of high noise and structural complexity in PPIs, it is still a challenge to further upgrade the performance of the identification methods. METHODS This paper proposes an identification method, named CTF, which identifies essential proteins based on edge features including h-quasi-cliques and uv-triangle graphs and the fusion of multiple-source information. We first design an edge-weight function, named EWCT, for computing the topological scores of proteins based on quasi-cliques and triangle graphs. Then, we generate an edge-weighted PPI network using EWCT and dynamic PPI data. Finally, we compute the essentiality of proteins by the fusion of topological scores and three scores of biological information. RESULTS We evaluated the performance of the CTF method by comparison with 16 other methods, such as MON, PeC, TEGS, and LBCC, the experiment results on three datasets of Saccharomyces cerevisiae show that CTF outperforms the state-of-the-art methods. Moreover, our method indicates that the fusion of other biological information is beneficial to improve the accuracy of identification.
Collapse
Affiliation(s)
- Peiqiang Liu
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China.
| | - Chang Liu
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Yanyan Mao
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
- College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao, China
| | - Junhong Guo
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Fanshu Liu
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Wangmin Cai
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Feng Zhao
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| |
Collapse
|
9
|
Weng Y, Ning P. Construction of a prognostic prediction model for renal clear cell carcinoma combining clinical traits. Sci Rep 2023; 13:3358. [PMID: 36849551 PMCID: PMC9970964 DOI: 10.1038/s41598-023-30020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is one of the common malignant tumors of the urinary system. Patients with different risk levels are other in terms of disease progression patterns and disease regression. The poorer prognosis for high-risk patients compared to low-risk patients. Therefore, it is essential to accurately high-risk screen patients and gives accurate and timely treatment. Differential gene analysis, weighted correlation network analysis, Protein-protein interaction network, and univariate Cox analysis were performed sequentially on the train set. Next, the KIRC prognostic model was constructed using the least absolute shrinkage and selection operator (LASSO), and the Cancer Genome Atlas (TCGA) test set and the Gene Expression Omnibus dataset verified the model's validity. Finally, the constructed models were analyzed; including gene set enrichment analysis (GSEA) and immune analysis. The differences in pathways and immune functions between the high-risk and low-risk groups were observed to provide a reference for clinical treatment and diagnosis. A four-step key gene screen resulted in 17 key factors associated with disease prognosis, including 14 genes and 3 clinical features. The LASSO regression algorithm selected the seven most critical key factors to construct the model: age, grade, stage, GDF3, CASR, CLDN10, and COL9A2. In the training set, the accuracy of the model in predicting 1-, 2- and 3-year survival rates was 0.883, 0.819, and 0.830, respectively. The accuracy of the TCGA dataset was 0.831, 0.801, and 0.791, and the accuracy of the GSE29609 dataset was 0.812, 0.809, and 0.851 in the test set. Model scoring divided the sample into a high-risk group and a low-risk group. There were significant differences in disease progression and risk scores between the two groups. GSEA analysis revealed that the enriched pathways in the high-risk group mainly included proteasome and primary immunodeficiency. Immunological analysis showed that CD8 (+) T cells, M1 macrophages, PDCD1, and CTLA4 were upregulated in the high-risk group. In contrast, antigen-presenting cell stimulation and T-cell co-suppression were more active in the high-risk group. This study added clinical characteristics to constructing the KIRC prognostic model to improve prediction accuracy. It provides help to assess the risk of patients more accurately. The differences in pathways and immunity between high and low-risk groups were also analyzed to provide ideas for treating KIRC patients.
Collapse
Affiliation(s)
- Yujie Weng
- grid.410612.00000 0004 0604 6392College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110 Inner Mongolia Autonomous Region China
| | - Pengfei Ning
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
10
|
Bandyopadhyay SS, Halder AK, Saha S, Chatterjee P, Nasipuri M, Basu S. Assessment of GO-Based Protein Interaction Affinities in the Large-Scale Human-Coronavirus Family Interactome. Vaccines (Basel) 2023; 11:549. [PMID: 36992133 PMCID: PMC10059867 DOI: 10.3390/vaccines11030549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
SARS-CoV-2 is a novel coronavirus that replicates itself via interacting with the host proteins. As a result, identifying virus and host protein-protein interactions could help researchers better understand the virus disease transmission behavior and identify possible COVID-19 drugs. The International Committee on Virus Taxonomy has determined that nCoV is genetically 89% compared to the SARS-CoV epidemic in 2003. This paper focuses on assessing the host-pathogen protein interaction affinity of the coronavirus family, having 44 different variants. In light of these considerations, a GO-semantic scoring function is provided based on Gene Ontology (GO) graphs for determining the binding affinity of any two proteins at the organism level. Based on the availability of the GO annotation of the proteins, 11 viral variants, viz., SARS-CoV-2, SARS, MERS, Bat coronavirus HKU3, Bat coronavirus Rp3/2004, Bat coronavirus HKU5, Murine coronavirus, Bovine coronavirus, Rat coronavirus, Bat coronavirus HKU4, Bat coronavirus 133/2005, are considered from 44 viral variants. The fuzzy scoring function of the entire host-pathogen network has been processed with ~180 million potential interactions generated from 19,281 host proteins and around 242 viral proteins. ~4.5 million potential level one host-pathogen interactions are computed based on the estimated interaction affinity threshold. The resulting host-pathogen interactome is also validated with state-of-the-art experimental networks. The study has also been extended further toward the drug-repurposing study by analyzing the FDA-listed COVID drugs.
Collapse
Affiliation(s)
- Soumyendu Sekhar Bandyopadhyay
- Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India
- Department of Computer Science and Engineering, School of Engineering and Technology, Adamas University, Kolkata 700126, India
| | - Anup Kumar Halder
- Faculty of Mathematics and Information Sciences, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Sovan Saha
- Department of Computer Science and Engineering (Artificial Intelligence and Machine Learning), Techno Main Salt Lake, Sector V, Kolkata 700091, India
| | - Piyali Chatterjee
- Department of Computer Science and Engineering, Netaji Subhash Engineering College, Kolkata 700152, India
| | - Mita Nasipuri
- Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India
| | - Subhadip Basu
- Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
11
|
A graph neural network model for deciphering the biological mechanisms of plant electrical signal classification. Appl Soft Comput 2023. [DOI: 10.1016/j.asoc.2023.110153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
12
|
Payra AK, Saha B, Ghosh A. MM-CCNB: Essential protein prediction using MAX-MIN strategies and compartment of common neighboring approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 228:107247. [PMID: 36427433 DOI: 10.1016/j.cmpb.2022.107247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 10/16/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Proteins are indispensable for the flow of the life of living organisms. Protein pairs in interaction exhibit more functional activities than individuals. These activities have been considered an essential measure in predicting their essentiality. Neighborhood approaches have been used frequently in the prediction of essentiality scores. All paired neighbors of the essential proteins are nominated for the suitable candidate seeds for prediction. Still now Jaccard's coefficient is limited to predicting functions, homologous groups, sequence analysis, etc. It really motivate us to predict essential proteins efficiently using different computational approaches. METHODS In our work, we proposed modified Jaccard's coefficient to predict essential proteins. We have proposed a novel methodology for predicting essential proteins using MAX-MIN strategies and modified Jaccard's coefficient approach. RESULTS The performance of our proposed methodology has been analyzed for Saccharomyces cerevisiae datasets with an accuracy of more than 80%. It has been observed that the proposed algorithm is outperforms with an accuracy of 0.78, 0.74, 0.79, and 0.862 for YDIP, YMIPS, YHQ, and YMBD datasets respectivly. CONCLUSIONS There are several computational approaches in the existing state-of-art model of essential protein prediction. It has been noted that our predicted methodology outperforms other existing models viz. different centralities, local interaction density combined with protein complexes, modified monkey algorithm and ortho_sim_loc methods.
Collapse
Affiliation(s)
- Anjan Kumar Payra
- Department of Computer Science & Engineering, Dr. Sudhir Chandra Sur Degree Engineering College, 540, Dum Dum Road, Near Dum Dum Jn. Station, Surermath, Kolkata 700074, India.
| | - Banani Saha
- Department of Computer Science & Engineering, University of Calcutta, Saltlake City Kolkata 700073, India
| | - Anupam Ghosh
- Department of Computer Science & Engineering, Netaji Subhash Engineering College, Techno City, Panchpota, Garia, Kolkata 700152, India.
| |
Collapse
|
13
|
Wang C, Zhang H, Ma H, Wang Y, Cai K, Guo T, Yang Y, Li Z, Zhu Y. Inference of pan-cancer related genes by orthologs matching based on enhanced LSTM model. Front Microbiol 2022; 13:963704. [PMID: 36267181 PMCID: PMC9577021 DOI: 10.3389/fmicb.2022.963704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Many disease-related genes have been found to be associated with cancer diagnosis, which is useful for understanding the pathophysiology of cancer, generating targeted drugs, and developing new diagnostic and treatment techniques. With the development of the pan-cancer project and the ongoing expansion of sequencing technology, many scientists are focusing on mining common genes from The Cancer Genome Atlas (TCGA) across various cancer types. In this study, we attempted to infer pan-cancer associated genes by examining the microbial model organism Saccharomyces Cerevisiae (Yeast) by homology matching, which was motivated by the benefits of reverse genetics. First, a background network of protein-protein interactions and a pathogenic gene set involving several cancer types in humans and yeast were created. The homology between the human gene and yeast gene was then discovered by homology matching, and its interaction sub-network was obtained. This was undertaken following the principle that the homologous genes of the common ancestor may have similarities in expression. Then, using bidirectional long short-term memory (BiLSTM) in combination with adaptive integration of heterogeneous information, we further explored the topological characteristics of the yeast protein interaction network and presented a node representation score to evaluate the node ability in graphs. Finally, homologous mapping for human genes matched the important genes identified by ensemble classifiers for yeast, which may be thought of as genes connected to all types of cancer. One way to assess the performance of the BiLSTM model is through experiments on the database. On the other hand, enrichment analysis, survival analysis, and other outcomes can be used to confirm the biological importance of the prediction results. You may access the whole experimental protocols and programs at https://github.com/zhuyuan-cug/AI-BiLSTM/tree/master.
Collapse
Affiliation(s)
- Chao Wang
- Department of Surgery, Hepatic Surgery Center, Institute of Hepato-Pancreato-Biliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Houwang Zhang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Haishu Ma
- School of Automation, China University of Geosciences, Wuhan, China
- Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan, China
- Engineering Research Center of Intelligent Technology for Geo-Exploration, Wuhan, China
| | - Yawen Wang
- School of Mathematics and Physics, China University of Geosciences, Wuhan, China
| | - Ke Cai
- School of Automation, China University of Geosciences, Wuhan, China
- Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan, China
- Engineering Research Center of Intelligent Technology for Geo-Exploration, Wuhan, China
| | - Tingrui Guo
- School of Automation, China University of Geosciences, Wuhan, China
- Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan, China
- Engineering Research Center of Intelligent Technology for Geo-Exploration, Wuhan, China
| | - Yuanhang Yang
- School of Mathematics and Physics, China University of Geosciences, Wuhan, China
| | - Zhen Li
- School of Mathematics and Physics, China University of Geosciences, Wuhan, China
| | - Yuan Zhu
- School of Automation, China University of Geosciences, Wuhan, China
- Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan, China
- Engineering Research Center of Intelligent Technology for Geo-Exploration, Wuhan, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Shanghai, China
- *Correspondence: Yuan Zhu
| |
Collapse
|
14
|
Yue Y, Ye C, Peng PY, Zhai HX, Ahmad I, Xia C, Wu YZ, Zhang YH. A deep learning framework for identifying essential proteins based on multiple biological information. BMC Bioinformatics 2022; 23:318. [PMID: 35927611 PMCID: PMC9351218 DOI: 10.1186/s12859-022-04868-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/29/2022] [Indexed: 11/15/2022] Open
Abstract
Background Essential Proteins are demonstrated to exert vital functions on cellular processes and are indispensable for the survival and reproduction of the organism. Traditional centrality methods perform poorly on complex protein–protein interaction (PPI) networks. Machine learning approaches based on high-throughput data lack the exploitation of the temporal and spatial dimensions of biological information. Results We put forward a deep learning framework to predict essential proteins by integrating features obtained from the PPI network, subcellular localization, and gene expression profiles. In our model, the node2vec method is applied to learn continuous feature representations for proteins in the PPI network, which capture the diversity of connectivity patterns in the network. The concept of depthwise separable convolution is employed on gene expression profiles to extract properties and observe the trends of gene expression over time under different experimental conditions. Subcellular localization information is mapped into a long one-dimensional vector to capture its characteristics. Additionally, we use a sampling method to mitigate the impact of imbalanced learning when training the model. With experiments carried out on the data of Saccharomyces cerevisiae, results show that our model outperforms traditional centrality methods and machine learning methods. Likewise, the comparative experiments have manifested that our process of various biological information is preferable. Conclusions Our proposed deep learning framework effectively identifies essential proteins by integrating multiple biological data, proving a broader selection of subcellular localization information significantly improves the results of prediction and depthwise separable convolution implemented on gene expression profiles enhances the performance.
Collapse
Affiliation(s)
- Yi Yue
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China. .,School of Information and Computer, Anhui Agricultural University, Hefei, 230036, China. .,School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China. .,State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| | - Chen Ye
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China.,School of Information and Computer, Anhui Agricultural University, Hefei, 230036, China
| | - Pei-Yun Peng
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China.,School of Information and Computer, Anhui Agricultural University, Hefei, 230036, China
| | - Hui-Xin Zhai
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China.,School of Information and Computer, Anhui Agricultural University, Hefei, 230036, China
| | - Iftikhar Ahmad
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China.,School of Information and Computer, Anhui Agricultural University, Hefei, 230036, China
| | - Chuan Xia
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China.,School of Information and Computer, Anhui Agricultural University, Hefei, 230036, China
| | - Yun-Zhi Wu
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China.,School of Information and Computer, Anhui Agricultural University, Hefei, 230036, China.,State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - You-Hua Zhang
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China. .,School of Information and Computer, Anhui Agricultural University, Hefei, 230036, China. .,School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
15
|
Saha S, Halder AK, Bandyopadhyay SS, Chatterjee P, Nasipuri M, Basu S. Computational modeling of human-nCoV protein-protein interaction network. Methods 2022; 203:488-497. [PMID: 34902553 PMCID: PMC8662836 DOI: 10.1016/j.ymeth.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 01/25/2023] Open
Abstract
Novel coronavirus(SARS-CoV2) replicates the host cell's genome by interacting with the host proteins. Due to this fact, the identification of virus and host protein-protein interactions could be beneficial in understanding the disease transmission behavior of the virus as well as in potential COVID-19 drug identification. International Committee on Taxonomy of Viruses (ICTV) has declared that nCoV is highly genetically similar to the SARS-CoV epidemic in 2003 (∼89% similarity). With this hypothesis, the present work focuses on developing a computational model for the nCoV-Human protein interaction network, using the experimentally validated SARS-CoV-Human protein interactions. Initially, level-1 and level-2 human spreader proteins are identified in the SARS-CoV-Human interaction network, using Susceptible-Infected-Susceptible (SIS) model. These proteins are considered potential human targets for nCoV bait proteins. A gene-ontology-based fuzzy affinity function has been used to construct the nCoV-Human protein interaction network at a ∼99.98% specificity threshold. This also identifies 37 level-1 human spreaders for COVID-19 in the human protein-interaction network. 2474 level-2 human spreaders are subsequently identified using the SIS model. The derived host-pathogen interaction network is finally validated using six potential FDA-listed drugs for COVID-19 with significant overlap between the known drug target proteins and the identified spreader proteins.
Collapse
Affiliation(s)
- Sovan Saha
- Department of Computer Science & Engineering, Institute of Engineering & Management, Salt Lake Electronics Complex, Kolkata 700091, West Bengal, India
| | - Anup Kumar Halder
- Department of Computer Science & Engineering, University of Engineering & Management, Kolkata 700156, West Bengal, India
| | - Soumyendu Sekhar Bandyopadhyay
- Department of Computer Science & Engineering, School of Engineering and Technology, Adamas University, Kolkata 700126, West Bengal, India; Department of Computer Science & Engineering, Jadavpur University, Jadavpur, Kolkata, West Bengal 700032, India
| | - Piyali Chatterjee
- Department of Computer Science & Engineering, Netaji Subhash Engineering College, Garia, Kolkata, West Bengal 700152, India
| | - Mita Nasipuri
- Department of Computer Science & Engineering, Jadavpur University, Jadavpur, Kolkata, West Bengal 700032, India
| | - Subhadip Basu
- Department of Computer Science & Engineering, Jadavpur University, Jadavpur, Kolkata, West Bengal 700032, India.
| |
Collapse
|
16
|
Noori S, Al‐A'araji N, Al‐Shamery E. Construction of dynamic protein interaction network based on gene expression data and quartile one principle. Proteins 2022; 90:1219-1228. [DOI: 10.1002/prot.26304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Soheir Noori
- Software Department University of Babylon Hillah Babylon Iraq
- Computer Science Department University of Kerbala Karbala Iraq
| | | | - Eman Al‐Shamery
- Software Department University of Babylon Hillah Babylon Iraq
| |
Collapse
|
17
|
Panditrao G, Bhowmick R, Meena C, Sarkar RR. Emerging landscape of molecular interaction networks: Opportunities, challenges and prospects. J Biosci 2022. [PMID: 36210749 PMCID: PMC9018971 DOI: 10.1007/s12038-022-00253-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Network biology finds application in interpreting molecular interaction networks and providing insightful inferences using graph theoretical analysis of biological systems. The integration of computational bio-modelling approaches with different hybrid network-based techniques provides additional information about the behaviour of complex systems. With increasing advances in high-throughput technologies in biological research, attempts have been made to incorporate this information into network structures, which has led to a continuous update of network biology approaches over time. The newly minted centrality measures accommodate the details of omics data and regulatory network structure information. The unification of graph network properties with classical mathematical and computational modelling approaches and technologically advanced approaches like machine-learning- and artificial intelligence-based algorithms leverages the potential application of these techniques. These computational advances prove beneficial and serve various applications such as essential gene prediction, identification of drug–disease interaction and gene prioritization. Hence, in this review, we have provided a comprehensive overview of the emerging landscape of molecular interaction networks using graph theoretical approaches. With the aim to provide information on the wide range of applications of network biology approaches in understanding the interaction and regulation of genes, proteins, enzymes and metabolites at different molecular levels, we have reviewed the methods that utilize network topological properties, emerging hybrid network-based approaches and applications that integrate machine learning techniques to analyse molecular interaction networks. Further, we have discussed the applications of these approaches in biomedical research with a note on future prospects.
Collapse
Affiliation(s)
- Gauri Panditrao
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411008 India
| | - Rupa Bhowmick
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Chandrakala Meena
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411008 India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
18
|
Zhang Z, Luo Y, Jiang M, Wu D, Zhang W, Yan W, Zhao B. An efficient strategy for identifying essential proteins based on homology, subcellular location and protein-protein interaction information. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:6331-6343. [PMID: 35603404 DOI: 10.3934/mbe.2022296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High throughput biological experiments are expensive and time consuming. For the past few years, many computational methods based on biological information have been proposed and widely used to understand the biological background. However, the processing of biological information data inevitably produces false positive and false negative data, such as the noise in the Protein-Protein Interaction (PPI) networks and the noise generated by the integration of a variety of biological information. How to solve these noise problems is the key role in essential protein predictions. An Identifying Essential Proteins model based on non-negative Matrix Symmetric tri-Factorization and multiple biological information (IEPMSF) is proposed in this paper, which utilizes only the PPI network proteins common neighbor characters to develop a weighted network, and uses the non-negative matrix symmetric tri-factorization method to find more potential interactions between proteins in the network so as to optimize the weighted network. Then, using the subcellular location and lineal homology information, the starting score of proteins is determined, and the random walk algorithm with restart mode is applied to the optimized network to mark and rank each protein. We tested the suggested forecasting model against current representative approaches using a public database. Experiment shows high efficiency of new method in essential proteins identification. The effectiveness of this method shows that it can dramatically solve the noise problems that existing in the multi-source biological information itself and cased by integrating them.
Collapse
Affiliation(s)
- Zhihong Zhang
- College of Computer Engineering and Applied Mathematics, Changsha University, Changsha, Hunan 410022, China
| | - Yingchun Luo
- Department of Ultrasound, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
| | - Meiping Jiang
- Department of Ultrasound, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
| | - Dongjie Wu
- Department of Banking and Finance, Monash University, Clayton, Victoria 3168, Australia
| | - Wang Zhang
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Wei Yan
- College of Computer Engineering and Applied Mathematics, Changsha University, Changsha, Hunan 410022, China
| | - Bihai Zhao
- College of Computer Engineering and Applied Mathematics, Changsha University, Changsha, Hunan 410022, China
| |
Collapse
|
19
|
Combination of Enrichment Using Gene Ontology and Transcriptomic Analysis Revealed Contribution of Interferon Signaling to Severity of COVID-19. Interdiscip Perspect Infect Dis 2022; 2022:3515001. [PMID: 35422859 PMCID: PMC9002903 DOI: 10.1155/2022/3515001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction The severity of coronavirus disease 2019 (COVID-19) was known to be affected by hyperinflammation. Identification of important proteins associated with hyperinflammation is critical. These proteins can be a potential target either as biomarkers or targets in drug discovery. Therefore, we combined enrichment analysis of these proteins to identify biological knowledge related to hyperinflammation. Moreover, we conducted transcriptomic data analysis to reveal genes contributing to disease severity. Methods We performed large-scale gene function analyses using gene ontology to identify significantly enriched biological processes, molecular functions, and cellular components associated with our proteins. One of the appropriate methods to functionally group large-scale protein-protein interaction (PPI) data into small-scale clusters is fuzzy K-partite clustering. We collected the transcriptomics data from GEO Database (GSE 164805 and GPL26963 platform). Moreover, we created a data set and analyzed gene expression using Orange Data-mining version 3.30. PPI analysis was performed using the STRING database with a confidence score >0.9. Results This study indicated that four proteins were associated with 25 molecular functions, three were associated with 22 cellular components, and one was associated with ten biological processes. All GOs of molecular function, cellular components, and 9 of 14 biological processes were associated with important cytokines related to the COVID-19 cytokine storm present in the resulting cluster. The expression analysis showed the interferon-related genes IFNAR1, IFI6, IFIT1, and IFIT3 were significant genes, whereas PPIs showed their interactions were closely related. Conclusion A combination of enrichment using GOs and transcriptomic analysis showed that hyperinflammation and severity of COVID-19 may be caused by interferon signaling.
Collapse
|
20
|
Lu H, Shang C, Zou S, Cheng L, Yang S, Wang L. A Novel Method for Predicting Essential Proteins by Integrating Multidimensional Biological Attribute Information and Topological Properties. Curr Bioinform 2022. [DOI: 10.2174/1574893617666220304201507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Essential proteins are indispensable to the maintenance of life activities and play essential roles in the areas of synthetic biology. Identification of essential proteins by computational methods has become a hot topic in recent years because of its efficiency.
Objective:
Identification of essential proteins is of important significance and practical use in the areas of synthetic biology, drug targets, and human disease genes.
Method:
In this paper, a method called EOP(Edge clustering coefficient -Orthologous-Protein) is proposed to infer potential essential proteins by combining Multidimensional Biological Attribute Information of proteins with Topological Properties of the protein-protein interaction network.
Results:
The simulation results on the yeast protein interaction network show that the number of essential proteins identified by this method is more than the number identified by the other 12 methods(DC, IC, EC, SC, BC, CC, NC, LAC, PEC, CoEWC, POEM, DWE). Especially compared with DC(Degree Centrality), the SN(sensitivity) is 9% higher, when the candidate protein is 1%, the recognition rate is 34% higher, when the candidate protein is 5%, 10%, 15%, 20%, 25% the recognition rate is 36%, 22%, 15%, 11%, 8% higher respectively.
Conclusion:
Experimental results show that our method can achieve satisfactory prediction results, which may provide references for future research.
Collapse
Affiliation(s)
- Hanyu Lu
- College of Big Data and Information Engineering, Guizhou University, Guizhou, China
| | - Chen Shang
- College of Big Data and Information Engineering, Guizhou University, Guizhou, China
| | - Sai Zou
- College of Big Data and Information Engineering, Guizhou University, Guizhou, China
| | - Lihong Cheng
- College of Foreign Languages, Dalian Jiaotong University, China
| | - Shikong Yang
- College of Big Data and Information Engineering, Guizhou University, Guizhou, China
| | - Lei Wang
- College of Computer Engineering and Applied Mathematics, Changsha University, China
| |
Collapse
|
21
|
Xiao Q, Dai J, Luo J. A survey of circular RNAs in complex diseases: databases, tools and computational methods. Brief Bioinform 2021; 23:6407737. [PMID: 34676391 DOI: 10.1093/bib/bbab444] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 01/22/2023] Open
Abstract
Circular RNAs (circRNAs) are a category of novelty discovered competing endogenous non-coding RNAs that have been proved to implicate many human complex diseases. A large number of circRNAs have been confirmed to be involved in cancer progression and are expected to become promising biomarkers for tumor diagnosis and targeted therapy. Deciphering the underlying relationships between circRNAs and diseases may provide new insights for us to understand the pathogenesis of complex diseases and further characterize the biological functions of circRNAs. As traditional experimental methods are usually time-consuming and laborious, computational models have made significant progress in systematically exploring potential circRNA-disease associations, which not only creates new opportunities for investigating pathogenic mechanisms at the level of circRNAs, but also helps to significantly improve the efficiency of clinical trials. In this review, we first summarize the functions and characteristics of circRNAs and introduce some representative circRNAs related to tumorigenesis. Then, we mainly investigate the available databases and tools dedicated to circRNA and disease studies. Next, we present a comprehensive review of computational methods for predicting circRNA-disease associations and classify them into five categories, including network propagating-based, path-based, matrix factorization-based, deep learning-based and other machine learning methods. Finally, we further discuss the challenges and future researches in this field.
Collapse
Affiliation(s)
- Qiu Xiao
- Hunan Normal University and Hunan Xiangjiang Artificial Intelligence Academy, Changsha, China
| | - Jianhua Dai
- Hunan Normal University and Hunan Xiangjiang Artificial Intelligence Academy, Changsha, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| |
Collapse
|
22
|
Saha S, Chatterjee P, Nasipuri M, Basu S. Detection of spreader nodes in human-SARS-CoV protein-protein interaction network. PeerJ 2021; 9:e12117. [PMID: 34567845 PMCID: PMC8428263 DOI: 10.7717/peerj.12117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/15/2021] [Indexed: 12/20/2022] Open
Abstract
The entire world is witnessing the coronavirus pandemic (COVID-19), caused by a novel coronavirus (n-CoV) generally distinguished as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). SARS-CoV-2 promotes fatal chronic respiratory disease followed by multiple organ failure, ultimately putting an end to human life. International Committee on Taxonomy of Viruses (ICTV) has reached a consensus that SARS-CoV-2 is highly genetically similar (up to 89%) to the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), which had an outbreak in 2003. With this hypothesis, current work focuses on identifying the spreader nodes in the SARS-CoV-human protein-protein interaction network (PPIN) to find possible lineage with the disease propagation pattern of the current pandemic. Various PPIN characteristics like edge ratio, neighborhood density, and node weight have been explored for defining a new feature spreadability index by which spreader proteins and protein-protein interaction (in the form of network edges) are identified. Top spreader nodes with a high spreadability index have been validated by Susceptible-Infected-Susceptible (SIS) disease model, first using a synthetic PPIN followed by a SARS-CoV-human PPIN. The ranked edges highlight the path of entire disease propagation from SARS-CoV to human PPIN (up to level-2 neighborhood). The developed network attribute, spreadability index, and the generated SIS model, compared with the other network centrality-based methodologies, perform better than the existing state-of-art.
Collapse
Affiliation(s)
- Sovan Saha
- Computer Science and Engineering, Institute of Engineering and Management, Kolkata, West Bengal, India
| | - Piyali Chatterjee
- Computer Science and Engineering, Netaji Subhash Engineering College, Kolkata, West Bengal, India
| | - Mita Nasipuri
- Computer Science and Engineering, Jadavpur University, Kolkata, West Bengal, India
| | - Subhadip Basu
- Computer Science and Engineering, Jadavpur University, Kolkata, West Bengal, India
| |
Collapse
|
23
|
Zhang Z, Jiang M, Wu D, Zhang W, Yan W, Qu X. A Novel Method for Identifying Essential Proteins Based on Non-negative Matrix Tri-Factorization. Front Genet 2021; 12:709660. [PMID: 34422014 PMCID: PMC8378176 DOI: 10.3389/fgene.2021.709660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022] Open
Abstract
Identification of essential proteins is very important for understanding the basic requirements to sustain a living organism. In recent years, there has been an increasing interest in using computational methods to predict essential proteins based on protein–protein interaction (PPI) networks or fusing multiple biological information. However, it has been observed that existing PPI data have false-negative and false-positive data. The fusion of multiple biological information can reduce the influence of false data in PPI, but inevitably more noise data will be produced at the same time. In this article, we proposed a novel non-negative matrix tri-factorization (NMTF)-based model (NTMEP) to predict essential proteins. Firstly, a weighted PPI network is established only using the topology features of the network, so as to avoid more noise. To reduce the influence of false data (existing in PPI network) on performance of identify essential proteins, the NMTF technique, as a widely used recommendation algorithm, is performed to reconstruct a most optimized PPI network with more potential protein–protein interactions. Then, we use the PageRank algorithm to compute the final ranking score of each protein, in which subcellular localization and homologous information of proteins were used to calculate the initial scores. In addition, extensive experiments are performed on the publicly available datasets and the results indicate that our NTMEP model has better performance in predicting essential proteins against the start-of-the-art method. In this investigation, we demonstrated that the introduction of non-negative matrix tri-factorization technology can effectively improve the condition of the protein–protein interaction network, so as to reduce the negative impact of noise on the prediction. At the same time, this finding provides a more novel angle of view for other applications based on protein–protein interaction networks.
Collapse
Affiliation(s)
- Zhihong Zhang
- College of Computer Engineering and Applied Mathematics, Changsha University, Changsha, China.,School of Information Technology and Management, Hunan University of Finance and Economics, Changsha, China
| | - Meiping Jiang
- Department of Ultrasound, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Dongjie Wu
- Department of Banking and Finance, Monash University, Clayton, VIC, Australia
| | - Wang Zhang
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Wei Yan
- College of Computer Engineering and Applied Mathematics, Changsha University, Changsha, China
| | - Xilong Qu
- School of Information Technology and Management, Hunan University of Finance and Economics, Changsha, China.,Hunan Provincial Key Laboratory of Finance and Economics Big Data Science and Technology, Hunan University of Finance and Economics, Changsha, China
| |
Collapse
|