1
|
Balkrishna A, Sharma Y, Dabas S, Arya V, Dabas A. Molecular Mechanism of Cynodon dactylon Phytosterols Targeting MAPK3 and PARP1 to Combat Epithelial Ovarian Cancer: A Multifaceted Computational Approach. Cell Biochem Biophys 2024; 82:2625-2650. [PMID: 38961033 DOI: 10.1007/s12013-024-01375-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
Epithelial Ovarian Cancer (EOC) presents a global health concern, necessitating the development of innovative therapeutic strategies to combat its impact. This study was employed to investigate the unexplored therapeutic efficacy of Cynodon dactylon phytochemicals against EOC using a multifaceted computational approach. A total of 19 out of 89 rigorously curated phytochemicals were assessed as potential drug targets via ADMET profiling, while protein-protein interaction analysis scrutinized the top 20 hub genes among 264 disease targets, revealing their involvement in cancer-related pathways and underscoring their significance in EOC pathogenesis. In molecular docking, Stigmasterol acetate showed the highest binding affinity (-10.9 kcal/mol) with Poly [ADP-ribose] polymerase-1 (PDB: 1UK1), while Arundoin and Beta-Sitosterol exhibited strong affinities (-10.4 kcal/mol and -10.1 kcal/mol, respectively); additionally, Beta-Sitosterol interacting with Mitogen-activated protein kinase 3 (PDB: 4QTB) showed a binding affinity of -10.1 kcal/mol, forming 2 hydrogen bonds and a total of 10 bonds with 10 residues. Molecular dynamics simulations exhibited the significant structural stability of the Beta-Sitosterol-4QTB complex with superior binding free energy (-36.61 kcal/mol) among the three complexes. This study identified C. dactylon phytosterols, particularly Beta-Sitosterol, as effective in targeting MAPK3 and PARP1 to combat EOC, laying the groundwork for further experimental validation and drug development efforts.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India
- University of Patanjali, Patanjali Yogpeeth, Haridwar, 249405, Uttarakhand, India
| | - Yoganshi Sharma
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India
| | - Shakshi Dabas
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India
- University of Patanjali, Patanjali Yogpeeth, Haridwar, 249405, Uttarakhand, India
| | - Anurag Dabas
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India.
| |
Collapse
|
2
|
Li X, Liu L, Wan MX, Gong LM, Su J, Xu L. Active Components of Pueraria lobata through the MAPK/ERK Signaling Pathway Alleviate Iron Overload in Alcoholic Liver Disease. Chem Biodivers 2024; 21:e202400005. [PMID: 38504590 DOI: 10.1002/cbdv.202400005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVE To delve into the primary active ingredients and mechanism of Pueraria lobata for alleviating iron overload in alcoholic liver disease. METHODS Pueraria lobata's potential targets and signaling pathways in treating alcohol-induced iron overloads were predicted using network pharmacology analysis. Then, animal experiments were used to validate the predictions of network pharmacology. The impact of puerarin or genistein on alcohol-induced iron accumulation, liver injury, oxidative stress, and apoptosis was assessed using morphological examination, biochemical index test, and immunofluorescence. Key proteins implicated in linked pathways were identified using RT-qPCR, western blot analysis, and immunohistochemistry. RESULTS Network pharmacological predictions combined with animal experiments suggest that the model group compared to the control group, exhibited activation of the MAPK/ERK signaling pathway, suppression of hepcidin expression, and aggravated iron overload, liver damage, oxidative stress, and hepatocyte death. Puerarin and genistein, the active compounds in Pueraria lobata, effectively mitigated the aforementioned alcohol-induced effects. No statistically significant disparities were seen in the effects above between the two groups receiving drug therapy. CONCLUSION This study preliminarily demonstrated that puerarin and genistein in Pueraria lobata may increase hepcidin production to alleviate alcohol-induced iron overload by inhibiting the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Xue Li
- College of Basic Medicine, Dali University, Dali, China
| | - Le Liu
- College of Basic Medicine, Dali University, Dali, China
| | - Mei-Xuan Wan
- College of Basic Medicine, Dali University, Dali, China
| | - Li-Min Gong
- College of Basic Medicine, Dali University, Dali, China
| | - Juan Su
- College of Basic Medicine, Dali University, Dali, China
| | - Li Xu
- College of Basic Medicine, Dali University, Dali, China
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Dali, China
| |
Collapse
|
3
|
Isali I, Wong TR, Batur AF, Wu CHW, Schumacher FR, Pope R, Hijaz A, Sheyn D. Recurrent urinary tract infection genetic risk: a systematic review and gene network analysis. Int Urogynecol J 2024; 35:259-271. [PMID: 37917182 DOI: 10.1007/s00192-023-05671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION AND HYPOTHESIS The development of recurrent urinary tract infections (rUTIs) is not completely understood. This review is aimed at investigating the connection between genetics and rUTIs and summarizing the results of studies that have documented variations in gene expression among individuals with rUTIs compared with healthy individuals. METHODS A systematic search was conducted in Cochrane, Ovid, and PubMed, limiting the results to articles published between 1 January 2000, and 5 July 2022. Only studies comparing the difference in gene expression between individuals with rUTI and healthy individuals utilizing molecular techniques to measure gene expression in blood or urine samples were included in this systematic review. Gene network and pathways analyses were performed using Cytoscape software, with input data obtained from our systematic review of differentially expressed genes in rUTIs. RESULTS Six studies met our criteria for inclusion. The selected studies used molecular biology methods to quantify gene expression data from blood specimens. The analysis revealed that gene expressions of CXCR1 and TLR4 decreased, whereas CXCR2, TRIF, and SIGIRR increased in patients with rUTI compared with healthy controls. The analysis demonstrated that the most significant pathways were associated with TLR receptor signaling and tolerance, I-kappa B kinase/NF-kappa B signaling, and MyD88-independent TLR signaling. CONCLUSIONS This systematic review uncovered gene expression variations in several candidate genes and identified a number of underlying biological pathways associated with rUTIs. These findings could shift the treatment and prevention strategies for rUTIs.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Thomas R Wong
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Ali Furkan Batur
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Chen-Han Wilfred Wu
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Fredrick R Schumacher
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Rachel Pope
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Adonis Hijaz
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - David Sheyn
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
4
|
Isali I, Wong TR, Wu CHW, Scarberry K, Gupta S, Erickson BA, Breyer BN. Genomic Risk Factors for Urethral Stricture: A Systematic Review and Gene Network Analysis. Urology 2024; 184:251-258. [PMID: 38160764 DOI: 10.1016/j.urology.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE To identify genes that may play a role in urethral stricture and summarize the results of studies that have documented variations in gene expression among individuals with urethral stricture compared to healthy individuals. METHODS A systematic search was conducted in Cochrane, Ovid, Web of Science, and PubMed, limiting the results to articles published between January 1, 2000 and January 30, 2023. Only studies comparing the difference in gene expression between individuals with urethral stricture and healthy individuals utilizing molecular techniques to measure gene expression in blood, urine, or tissue samples were included in this systematic review. Gene network and pathway analyses were performed using Cytoscape software, with input data obtained from our systematic review of differentially expressed genes in urethral stricture. RESULTS Four studies met our criteria for inclusion. The studies used molecular biology methods to quantify gene expression data from specimens. The analysis revealed gene expressions of CXCR3 and NOS2 were downregulated in urethral tissue samples, while TGFB1, UPK3A, and CTGF were upregulated in plasma, urine and urethral tissue samples, respectively, in patients with urethral stricture compared to healthy controls. The analysis demonstrated that the most significant pathways were associated with phosphoinositide 3-kinase (PI3 kinase) and transforming growth factor beta 1/suppressor of mothers against decapentaplegic (TGF-β1/SMAD) signaling pathways. CONCLUSION This systematic review identified gene expression variations in several candidate genes and identified underlying biological pathways associated with urethral stricture. These findings could inform further research and potentially shift treatment and prevention strategies for urethral stricture.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | - Thomas R Wong
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | - Chen-Han Wilfred Wu
- Department of Urology, Case Western Reserve University, Cleveland, OH; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH
| | - Kyle Scarberry
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | - Shubham Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | | | - Benjamin N Breyer
- Department of Urology, University of California San Francisco, San Francisco, CA; Department of Biostatistics and Epidemiology, University of California San Francisco, San Francisco, CA.
| |
Collapse
|
5
|
Wang J, Ye H, Li X, Lv X, Lou J, Chen Y, Yu S, Zhang L. Genome-Wide Analysis of the MADS-Box Gene Family in Hibiscus syriacus and Their Role in Floral Organ Development. Int J Mol Sci 2023; 25:406. [PMID: 38203576 PMCID: PMC10779063 DOI: 10.3390/ijms25010406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Hibiscus syriacus belongs to the Malvaceae family, and is a plant with medicinal, edible, and greening values. MADS-box transcription factor is a large family of regulatory factors involved in a variety of biological processes in plants. Here, we performed a genome-wide characterization of MADS-box proteins in H. syriacus and investigated gene structure, phylogenetics, cis-acting elements, three-dimensional structure, gene expression, and protein interaction to identify candidate MADS-box genes that mediate petal developmental regulation in H. syriacus. A total of 163 candidate MADS-box genes were found and classified into type I (Mα, Mβ, and Mγ) and type II (MIKC and Mδ). Analysis of cis-acting elements in the promoter region showed that most elements were correlated to plant hormones. The analysis of nine HsMADS expressions of two different H. syriacus cultivars showed that they were differentially expressed between two type flowers. The analysis of protein interaction networks also indicated that MADS proteins played a crucial role in floral organ identification, inflorescence and fruit development, and flowering time. This research is the first to analyze the MADS-box family of H. syriacus and provides an important reference for further study of the biological functions of the MADS-box, especially in flower organ development.
Collapse
Affiliation(s)
- Jie Wang
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China; (J.W.); (H.Y.); (X.L.); (J.L.); (Y.C.)
| | - Heng Ye
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China; (J.W.); (H.Y.); (X.L.); (J.L.); (Y.C.)
| | - Xiaolong Li
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China;
| | - Xue Lv
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China; (J.W.); (H.Y.); (X.L.); (J.L.); (Y.C.)
| | - Jiaqi Lou
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China; (J.W.); (H.Y.); (X.L.); (J.L.); (Y.C.)
| | - Yulu Chen
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China; (J.W.); (H.Y.); (X.L.); (J.L.); (Y.C.)
| | - Shuhan Yu
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China; (J.W.); (H.Y.); (X.L.); (J.L.); (Y.C.)
| | - Lu Zhang
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China; (J.W.); (H.Y.); (X.L.); (J.L.); (Y.C.)
| |
Collapse
|
6
|
Luan A, Zhang W, Yang M, Zhong Z, Wu J, He Y, He J. Unveiling the molecular mechanism involving anthocyanins in pineapple peel discoloration during fruit maturation. Food Chem 2023; 412:135482. [PMID: 36753941 DOI: 10.1016/j.foodchem.2023.135482] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Peel color is a key factor that affects the fruit's aesthetic and economic values. Limited knowledge is available on the regulation of pineapple peel discoloration. Here, we report that a decrease in anthocyanin biosynthesis, particularly cyanidin, is predominantly associated with the pineapple peel color change during maturation. The findings suggest that the changes in the expression of key structural genes (early and late biosynthetic genes) of the anthocyanin (cyanidin) biosynthesis pathway are responsible for peel discoloration. Based on a gene co-expression analysis and a transient expression, two transcription factors i.e., AcHOX21 and AcMYB12, were identified, whose' downregulation leads to reduced anthocyanin accumulation with fruit maturation. The endogenous levels of jasmonic acid, gibberellic acid, and auxins are also involved in anthocyanin-content-led peel discoloration. Overall, the discovery of genes regulating anthocyanin biosynthesis in pineapple peel provides a theoretical basis for improving the fruit's aesthetic value through genetic engineering.
Collapse
Affiliation(s)
- Aiping Luan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| | - Wei Zhang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China; Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Mingzhe Yang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China; Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ziqin Zhong
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China; Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jing Wu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China; Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yehua He
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Junhu He
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China.
| |
Collapse
|
7
|
Ibrahim N, Nadian I, Noor DR, Fadilah F. Prediction of Translational Regulation by Network Interaction in Synaptic Plasticity Induced with Centella asiatica. ScientificWorldJournal 2023; 2023:4199614. [PMID: 37440991 PMCID: PMC10335753 DOI: 10.1155/2023/4199614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 07/15/2023] Open
Abstract
Background Recently, human life expectancy, aging, and age-related health disorders, especially neurodegenerative diseases such as Alzheimer's disease (AD), have increased. The increasing number of AD patients causes a heavy social and economic burden on society. Since there is no treatment for AD, utilization of natural products is currently accepted as an alternative or integrative treatment agent against AD. Methods Selection of protein databases related to synaptic plasticity was obtained from a gene bank. The protein-protein interaction (PPI) analysis was performed using Cytoscape 3.9.1. Prediction of Centella asiatica target constituents and their relationship with target synaptic plasticity was performed using STITCH, followed by GO and KEGG pathway enrichment analysis and molecular binding of ligands to presynaptic and postsynaptic receptors afterwards. Results From the protein database, 446 protein coding genes related to synaptic plasticity were found. PPI and KEGG pathway analysis showed potentiality to inhibit AKT and mTORC1 pathways. The targeted proteins were TSC1, Rheb, and FMRP. Conclusion This study showed potentiality of Centella asiatica in AD through its binding to several proteins such as TSC1, Rheb, and FMRP. This compound in Centella asiatica was able to bind to the AKT1 and mTOR signaling pathways. Centella asiatica may behold greater potency in AD therapy.
Collapse
Affiliation(s)
- Nurhadi Ibrahim
- Department of Medical Physiology and Biophysics, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Ibrahim Nadian
- Department of Medical Physiology and Biophysics, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Dimas R. Noor
- Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Human Cancer Research Center, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Fadilah Fadilah
- Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Bioinformatics Core Facilities-IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| |
Collapse
|
8
|
Gao J, Su G, Chen W, Wu Q, Liu J, Liu J, Chai M, Dong Y, Wang H, Chen L, Zhang Z, Wang M. Mechanism of ligusticum cycloprolactam against neuroinflammation based on network pharmacology and experimental verification. Clin Exp Pharmacol Physiol 2023. [PMID: 37308175 DOI: 10.1111/1440-1681.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 06/14/2023]
Abstract
Ligustilide, a natural phthalide mainly derived from chuanxiong rhizomes and Angelica Sinensis roots, possesses anti-inflammatory activity, particularly in the context of the nervous system. However, its application is limited because of its unstable chemical properties. To overcome this limitation, ligusticum cycloprolactam (LIGc) was synthesized through structural modification of ligustilide. In this study, we combined network pharmacological methods with experimental verification to investigate the anti-neuroinflammatory effects and mechanisms of ligustilide and LIGc. Based on our network pharmacology analysis, we identified four key targets of ligustilide involved in exerting an anti-inflammatory effect, with the nuclear factor (NF)-κB signal pathway suggested as the main signalling pathway. To verify these results, we examined the expression of inflammatory cytokines and inflammation-related proteins, analysed the phosphorylation level of NF-κB, inhibitor of κBα (IκBα) and inhibitor of κB kinase α and β (IKKα+β), and evaluated the effect of BV2 cell-conditioned medium on HT22 cells in vitro. Our results, demonstrate for the first time that LIGc can downregulate the activation of the NF-κB signal pathway in BV2 cells induced by lipopolysaccharide, suppress the production of inflammatory cytokines and reduce nerve injury in HT22 cells mediated by BV2 cells. These findings suggest that LIGc inhibits the neuroinflammatory response mediated by BV2 cells, providing strong scientific support for the development of anti-inflammatory drugs based on natural ligustilide or its derivatives. However, there are some limitations to our current study. In the future, further experiments using in vivo models may provide additional evidence to support our findings.
Collapse
Affiliation(s)
- Juan Gao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wei Chen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Qionghui Wu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Junxi Liu
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jifei Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Miao Chai
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Ying Dong
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - He Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lixia Chen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhenchang Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
9
|
Liu Y, He G, He Y, Tang Y, Zhao F, He T. Discovery of cadmium-tolerant biomacromolecule (StCAX1/4 transportproteins) in potato and its potential regulatory relationship with WRKY transcription factors. Int J Biol Macromol 2023; 228:385-399. [PMID: 36581029 DOI: 10.1016/j.ijbiomac.2022.12.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/04/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022]
Abstract
The cation/H+ exchanger (CAX) involved in Ca2+, Mg2+ and Mn2+ transport is a special class of vacuolar transporters that play an important role in maintaining ion homeostasis in plant cells. However, it has been rarely reported whether CAX proteins have unique tolerance to cadmium stress. In our research, the cadmium-resistant potato variety "Yunshu 505" was taken as the object, through biological etc. methods, explored 1: response mode of StCAXs to cadmium stress; 2: the evolutionary characteristics and Cd ion binding sites of StCAXs; and 3: possible upstream regulatory pathways of StCAXs. The results showed that cadmium stress significantly induced the expression of StCAX1/4, and there were specific mutations in the evolution process, thus the possible main binding site of Cd ion (EDEE/DH/GxxxxxS/EEEE) was speculated. StCAX1/4 interacts with several proteins, and be regulated by transcription factors, especially the WRKY6. This synergistic regulation through WRKY6 may be an important pathway through which StCAX1/4 imparts high cadmium tolerance to potato. These results provide certain support for understanding the binding sites and specific evolutionary mechanisms of key amino acid residues of cadmium ion in StCAXs, also provide new clues for the identification and regulatory model of potato CAX key positive stress-responsive proteins under cadmium stress.
Collapse
Affiliation(s)
- Yao Liu
- College of Agricultural, Guizhou University, Guiyang 550025, PR China.
| | - Guandi He
- College of Agricultural, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, PR China.
| | - Yeqing He
- College of Agricultural, Guizhou University, Guiyang 550025, PR China.
| | - Yueyue Tang
- College of Agricultural, Guizhou University, Guiyang 550025, PR China.
| | - Fulin Zhao
- College of Agricultural, Guizhou University, Guiyang 550025, PR China.
| | - Tengbing He
- College of Agricultural, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, PR China; Institute of New Rural Development of Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
10
|
Wang B, Liu F, Li Y, Chen N. Role of Single Nucleotide Polymorphism-Related Genes in Tumour Immune Cell Infiltration and Prognosis of Cutaneous Melanoma. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3754094. [PMID: 37205232 PMCID: PMC10188268 DOI: 10.1155/2023/3754094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/20/2022] [Accepted: 02/14/2023] [Indexed: 05/21/2023]
Abstract
Background Advances in cancer research have allowed for early diagnosis and improved treatment of cutaneous melanoma (CM). However, its invasiveness and recurrent metastasis, along with rising resistance to newer therapies, have lent urgency to the search for novel biomarkers and the underlying molecular mechanisms of CM. Methods Single nucleotide polymorphism- (SNP-) related genes were obtained from the sequencing data of 428 CM samples in The Cancer Genome Atlas. Functional enrichment of these genes was analysed in clusterProfiler. Additionally, a protein-protein interaction (PPI) network was constructed with the Search Tool for the Retrieval of Interacting Gene (STRING) database. Gene Expression Profiling Interactive Analysis (GEPIA) was used to identify the expression and prognostic value of mutated genes. Finally, the Tumour Immune Estimation Resource (TIMER) analysed the relationship between gene expression and immune cell infiltration. Results We constructed a PPI network from the top 60 SNP-related genes. Mutated genes were mainly involved in calcium and oxytocin signalling pathways, as well as circadian entrainment. In addition, three SNP-related genes, BRAF, FLG, and SORL1, were significantly associated with patient prognosis. BRAF and SORL1 were positively associated with infiltration abundance of B cells, CD8+ T cells, CD4+ T cells, neutrophils, and dendritic cells, whereas FLG expression was negatively associated. Furthermore, higher immune cell infiltration was positively correlated with good prognosis. Conclusions Our study provides vital bioinformatic data and a relevant theoretical basis to further explore the molecular pathogenesis of CM and improve patient prognosis.
Collapse
Affiliation(s)
- Baihe Wang
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Fanxiao Liu
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yuanyuan Li
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Nan Chen
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| |
Collapse
|
11
|
Mousavian Z, Folkesson E, Fröberg G, Foroogh F, Correia-Neves M, Bruchfeld J, Källenius G, Sundling C. A protein signature associated with active tuberculosis identified by plasma profiling and network-based analysis. iScience 2022; 25:105652. [PMID: 36561889 PMCID: PMC9763869 DOI: 10.1016/j.isci.2022.105652] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/19/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Annually, approximately 10 million people are diagnosed with active tuberculosis (TB), and 1.4 million die of the disease. If left untreated, each person with active TB will infect 10-15 new individuals. The lack of non-sputum-based diagnostic tests leads to delayed diagnoses of active pulmonary TB cases, contributing to continued disease transmission. In this exploratory study, we aimed to identify biomarkers associated with active TB. We assessed the plasma levels of 92 proteins associated with inflammation in individuals with active TB (n = 20), latent TB (n = 14), or healthy controls (n = 10). Using co-expression network analysis, we identified one module of proteins with strong association with active TB. We removed proteins from the module that had low abundance or were associated with non-TB diseases in published transcriptomic datasets, resulting in a 12-protein plasma signature that was highly enriched in individuals with pulmonary and extrapulmonary TB and was further associated with disease severity.
Collapse
Affiliation(s)
- Zaynab Mousavian
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
| | - Elin Folkesson
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Gabrielle Fröberg
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Fariba Foroogh
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Margarida Correia-Neves
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga, Portugal
| | - Judith Bruchfeld
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Gunilla Källenius
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Corresponding author
| |
Collapse
|
12
|
Qin T, Ali K, Wang Y, Dormatey R, Yao P, Bi Z, Liu Y, Sun C, Bai J. Global transcriptome and coexpression network analyses reveal cultivar-specific molecular signatures associated with different rooting depth responses to drought stress in potato. FRONTIERS IN PLANT SCIENCE 2022; 13:1007866. [PMID: 36340359 PMCID: PMC9629812 DOI: 10.3389/fpls.2022.1007866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Potato is one of the most important vegetable crops worldwide. Its growth, development and ultimately yield is hindered by drought stress condition. Breeding and selection of deep-rooted and drought-tolerant potato varieties has become a prime approach for improving the yield and quality of potato (Solanum tuberosum L.) in arid and semiarid areas. A comprehensive understanding of root development-related genes has enabled scientists to formulate strategies to incorporate them into breeding to improve complex agronomic traits and provide opportunities for the development of stress tolerant germplasm. Root response to drought stress is an intricate process regulated through complex transcriptional regulatory network. To understand the rooting depth and molecular mechanism, regulating root response to drought stress in potato, transcriptome dynamics of roots at different stages of drought stress were analyzed in deep (C119) and shallow-rooted (C16) cultivars. Stage-specific expression was observed for a significant proportion of genes in each cultivar and it was inferred that as compared to C16 (shallow-rooted), approximately half of the genes were differentially expressed in deep-rooted cultivar (C119). In C16 and C119, 11 and 14 coexpressed gene modules, respectively, were significantly associated with physiological traits under drought stress. In a comparative analysis, some modules were different between the two cultivars and were associated with differential response to specific drought stress stage. Transcriptional regulatory networks were constructed, and key components determining rooting depth were identified. Through the results, we found that rooting depth (shallow vs deep) was largely determined by plant-type, cell wall organization or biogenesis, hemicellulose metabolic process, and polysaccharide metabolic process. In addition, candidate genes responding to drought stress were identified in deep (C119) and shallow (C16) rooted potato varieties. The results of this study will be a valuable source for further investigations on the role of candidate gene(s) that affect rooting depth and drought tolerance mechanisms in potato.
Collapse
Affiliation(s)
- Tianyuan Qin
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Kazim Ali
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Islamabad, Pakistan
| | - Yihao Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Richard Dormatey
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Panfeng Yao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zhenzhen Bi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Jiangping Bai
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
13
|
LncRNA CARMN Affects Hepatocellular Carcinoma Prognosis by Regulating the miR-192-5p/LOXL2 Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9277360. [PMID: 36254230 PMCID: PMC9569233 DOI: 10.1155/2022/9277360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022]
Abstract
Background. Hepatocellular carcinoma (HCC) is aggressive cancer with a poor prognosis. It has been suggested that the aberrant expression of LOXL2 is associated with the development of HCC, but the exact mechanism remains unclear. This research is aimed at examining the expression level and prognostic value of LOXL2 in hepatocellular carcinoma and its relationship with immune infiltration and at predicting its upstream noncoding RNAs (ncRNAs). Method. The transcriptome data of HCC was first downloaded from The Cancer Genome Atlas (TCGA) database to investigate the expression and prognosis of LOXL2. Then, the starBase database was used to find the upstream ncRNAs of LOXL2, and correlation analysis and expression analysis were performed. Finally, the Tumor Immune Estimation Resource (TIMER) was used to explore the association between LOXL2 and immune cell infiltration. Result. CARMN was considered to be the potential upstream lncRNA for the hsa-miR-192-5p/LOXL2 axis in HCC. Furthermore, the level LOXL2 was markedly positively associated with tumor immune cell infiltration and immune checkpoint expression in HCC. Conclusion. Higher expression of LOXL2 mediated by microRNA (miRNA) and long noncoding RNAs (lncRNA) is associated with poor overall survival (OS), immune infiltration, and immune checkpoint expression in HCC.
Collapse
|
14
|
Mining Candidate Genes Related to Heavy Metals in Mature Melon ( Cucumis melo L.) Peel and Pulp Using WGCNA. Genes (Basel) 2022; 13:genes13101767. [PMID: 36292652 PMCID: PMC9602089 DOI: 10.3390/genes13101767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/04/2022] Open
Abstract
The content of metal ions in fruits is inseparable from plant intake of trace elements and health effects in the human body. To understand metal ion content in the fruit and pericarp of melon (Cucumis melo L.) and the candidate genes responsible for controlling this process, we analyzed the metal ion content in distinct parts of melon fruit and pericarp and performed RNA-seq. The results showed that the content of metal ions in melon fruit tissue was significantly higher than that in the pericarp. Based on transcriptome expression profiling, we found that the fruit and pericarp contained elevated levels of DEGs. GO functional annotations included cell surface receptor signaling, signal transduction, organic substance metabolism, carbohydrate derivative binding, and hormone-mediated signaling pathways. KEGG pathways included pectate lyase, pentose and glucuronate interconversions, H+-transporting ATPase, oxidative phosphorylation, plant hormone signal transduction, and MAPK signaling pathways. We also analyzed the expression patterns of genes and transcription factors involved in hormone biosynthesis and signal transduction. Using weighted gene co-expression network analysis (WGCNA), a co-expression network was constructed to identify a specific module that was significantly correlated with the content of metal ions in melon, after which the gene expression in the module was measured. Connectivity and qRT–PCR identified five candidate melon genes, LOC103501427, LOC103501539, LOC103503694, LOC103504124, and LOC107990281, associated with metal ion content. This study provides a theoretical basis for further understanding the molecular mechanism of heavy metal ion content in melon fruit and peel and provides new genetic resources for the study of heavy metal ion content in plant tissues.
Collapse
|
15
|
Chen Y, Yang Z, Zhou X, Jin M, Dai Z, Ming D, Zhang Z, Zhu L, Jiang L. Sequence, structure, and function of the Dps DNA-binding protein from Deinococcus wulumuqiensis R12. Microb Cell Fact 2022; 21:132. [PMID: 35780107 PMCID: PMC9250271 DOI: 10.1186/s12934-022-01857-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 06/21/2022] [Indexed: 11/28/2022] Open
Abstract
Deinococcus wulumuqiensis R12, which was isolated from arid irradiated soil in Xinjiang province of China, belongs to a genus that is well-known for its extreme resistance to ionizing radiation and oxidative stress. The DNA-binding protein Dps has been studied for its great contribution to oxidative resistance. To explore the role of Dps in D. wulumuqiensis R12, the Dps sequence and homology-modeled structure were analyzed. In addition, the dps gene was knocked out and proteomics was used to verify the functions of Dps in D. wulumuqiensis R12. Docking data and DNA binding experiments in vitro showed that the R12 Dps protein has a better DNA binding ability than the Dps1 protein from D. radiodurans R1. When the dps gene was deleted in D. wulumuqiensis R12, its resistance to H2O2 and UV rays was greatly reduced, and the cell envelope was destroyed by H2O2 treatment. Additionally, the qRT-PCR and proteomics data suggested that when the dps gene was deleted, the catalase gene was significantly down-regulated. The proteomics data indicated that the metabolism, transport and oxidation-reduction processes of D. wulumuqiensis R12 were down-regulated after the deletion of the dps gene. Overall, the data conformed that Dps protein plays an important role in D. wulumuqiensis R12.
Collapse
Affiliation(s)
- Yao Chen
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhihan Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xue Zhou
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Mengmeng Jin
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zijie Dai
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Dengming Ming
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhidong Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Key Laboratory of Special Environmental Microbiology, Ürümqi, 830091, Xinjiang, China.
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Ling Jiang
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
16
|
Xi P, Niu Y, Zhang Y, Li W, Gao F, Gu W, Kui F, Liu Z, Lu L, Du G. The mechanism of dioscin preventing lung cancer based on network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115138. [PMID: 35245631 DOI: 10.1016/j.jep.2022.115138] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dioscorea nipponica Makino as a Chinese folk medicine has been used for the treatment of chronic bronchitis, cough, and asthma. Several studies have established the antimetastatic potential of Dioscorea nipponica Makino extract. Dioscin is a major bioactive compound in Dioscorea nipponica Makino and has anti-tumor property in lung cancer cell lines. However, the preventive effect of dioscin against lung cancer and its key mechanism haven't been identified yet. AIM OF STUDY To identify the prevention effect of dioscin on lung cancer and explore its key mechanism based on network pharmacology and experimental validation. METHODS The potential targets of dioscin were obtained from the HERB database. The therapeutic targets of lung cancer were acquired from the GeneCards database. Protein-protein interaction network (PPI) was constructed in the STRING 11.0 database. The David database was used for enrichment analysis. Molecular Docking was finished by the AutoDock Vina. NSCLC cell lines and mouse lung cancer model were used to confirm the prevention effect of dioscin on lung cancer and its key mechanism. RESULTS 76 potential targets of dioscin were identified to be involved in lung cancer treatment, which refer to 512 biological processes, 47 molecular functions, 77 cellular components and 107 signal pathways. The molecular docking suggested that dioscin might bind to AKT1, Caspase3, TP53, C-JUN and IL-6. The DARTS indicated that dioscin could bind to AKT1. In vitro, dioscin could decrease proliferation, invasion and migration in A549 and PC-9 cells with the significant reduction in the expression of p-AKT, MMP2, and PCNA. In vivo, dioscin could reduce lung nodules, lung injury, and mortality in mouse lung cancer model with reducing the expression of p-AKT, MMP2, PCNA and increasing the expression of active-caspase3. CONCLUSION Dioscin could prevent lung cancer and its key target is AKT1 kinase, a center protein of PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Peng Xi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yuji Niu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, 475004, China
| | - Yaru Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, 475004, China
| | - Wenwen Li
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, 475004, China
| | - Fan Gao
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, 475004, China
| | - Wenwen Gu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, 475004, China
| | - Fuguang Kui
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, 475004, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Linlin Lu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Gangjun Du
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, 475004, China.
| |
Collapse
|
17
|
Ma X, Zhang X, Kong Y, Su B, Wu L, Liu D, Wang X. Therapeutic effects of Panax notoginseng saponins in rheumatoid arthritis: network pharmacology and experimental validation. Bioengineered 2022; 13:14438-14449. [PMID: 36694450 PMCID: PMC9995134 DOI: 10.1080/21655979.2022.2086379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Panax notoginseng saponins (PNS) have been reported to have good anti-inflammatory effects. However, the anti-inflammatory effect mechanism in rheumatoid arthritis (RA) remains unknown. The focus of this research was to investigate the molecular mechanism of PNS in the treatment of RA. The primary active components of PNS were tested utilizing the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and Analysis Platform based on oral bioavailability and drug-likeness. The target databases for knee osteoarthritis were created using GeneCards and Online Mendelian Inheritance in Man (OMIM). The visual interactive network structure 'active component - action target - illness' was created using Cytoscape software. A protein interaction network was built, and associated protein interactions were analyzed using the STRING database. The key targets were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) biological process enrichment analyses. The effects of PNS on cell growth were studied in human umbilical vein endothelial cells (HUVECs) treated with various doses of PNS, and the optimum concentration of PNS was identified. PNS was studied for its implication on angiogenesis and migration. The active components of PNS had 114 common targets, including cell metabolism and apoptosis, according to the network analysis. The therapeutic effects of the PNS components were suggested to be mediated through apoptotic and cytokine signaling pathways. In vitro, PNS therapy boosted HUVEC proliferation. Wound healing, Boyden chamber and tube formation tests suggested that PNS may increase HUVEC activity and capillary-like tube branching. This study clarified that for the treatment of RA, PNS has multisystem, multicomponent, and multitargeted properties.
Collapse
Affiliation(s)
- Xinnan Ma
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xin Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuanhang Kong
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Su
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Leilei Wu
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Daqian Liu
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xintao Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|