1
|
Haessler A, Gier S, Jung N, Windbergs M. The Aβ 42:Aβ 40 ratio modulates aggregation in beta-amyloid oligomers and drives metabolic changes and cellular dysfunction. Front Cell Neurosci 2024; 18:1516093. [PMID: 39717390 PMCID: PMC11664223 DOI: 10.3389/fncel.2024.1516093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
The pathophysiological role of Aβ42 oligomers in the onset of Alzheimer's disease (AD) is heavily disputed, pivoting research toward investigating mixed oligomers composed of Aβ42 and Aβ40, which is more abundant but less aggregation-prone. This study investigates Aβ42:Aβ40 oligomers in different ratios, examining their adverse effects on endothelial cells, neurons, astroglia, and microglia, as well as in a human blood-brain barrier (BBB) model. Combining label-free Raman microscopy with complementary imaging techniques and biochemical assays, we show the prominent impact of Aβ40 on Aβ42 fibrillation, suggesting an inhibitory effect on aggregation. Mixed oligomers, especially with low proportions of Aβ42, were equally detrimental as pure Aβ42 oligomers regarding cell viability, functionality, and metabolism. They also differentially affected lipid droplet metabolism in BBB-associated microglia, indicating distinct pathophysiological responses. Our findings demonstrate the overarching significance of the Aβ42:Aβ40 ratio in Aβ oligomers, challenging the traditional focus on Aβ42 in AD research.
Collapse
Affiliation(s)
| | | | | | - Maike Windbergs
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Monroy-Romero AX, Nieto-Rivera B, Xiao W, Hautefeuille M. Microvascular Engineering for the Development of a Nonembedded Liver Sinusoid with a Lumen: When Endothelial Cells Do Not Lose Their Edge. ACS Biomater Sci Eng 2024; 10:7054-7072. [PMID: 39390649 DOI: 10.1021/acsbiomaterials.4c00939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Microvascular engineering seeks to exploit known cell-cell and cell-matrix interactions in the context of vasculogenesis to restore homeostasis or disease development of reliable capillary models in vitro. However, current systems generally focus on recapitulating microvessels embedded in thick gels of extracellular matrix, overlooking the significance of discontinuous capillaries, which play a vital role in tissue-blood exchanges particularly in organs like the liver. In this work, we introduce a novel method to stimulate the spontaneous organization of endothelial cells into nonembedded microvessels. By creating an anisotropic micropattern at the edge of a development-like matrix dome using Marangoni flow, we achieved a long, nonrandom orientation of endothelial cells, laying a premise for stable lumenized microvessels. Our findings revealed a distinctive morphogenetic process leading to mature lumenized capillaries, demonstrated with both murine and human immortalized liver sinusoidal endothelial cell lines (LSECs). The progression of cell migration, proliferation, and polarization was clearly guided by the pattern, initiating the formation of a multicellular cord that caused a deformation spanning extensive regions and generated a wave-like folding of the gel, hinged at a laminin-depleted zone, enveloping the cord with gel proteins. This event marked the onset of lumenogenesis, regulated by the gradual apico-basal polarization of the wrapped cells, leading to the maturation of vessel tight junctions, matrix remodeling, and ultimately the formation of a lumen─recapitulating the development of vessels in vivo. Furthermore, we demonstrate that the process strongly relies on the initial gel edge topography, while the geometry of the vessels can be tuned from a curved to a straight structure. We believe that our facile engineering method, guiding an autonomous self-organization of vessels without the need for supporting cells or complex prefabricated scaffolds, holds promise for future integration into microphysiological systems featuring discontinuous, fenestrated capillaries.
Collapse
Affiliation(s)
- Ana Ximena Monroy-Romero
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, 03100 Mexico, México
- Laboratoire de Biologie du Développement (UMR 7622), Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France
| | - Brenda Nieto-Rivera
- Laboratoire de Biologie du Développement (UMR 7622), Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France
| | - Wenjin Xiao
- Laboratoire de Biologie du Développement (UMR 7622), Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France
| | - Mathieu Hautefeuille
- Laboratoire de Biologie du Développement (UMR 7622), Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
3
|
Doherty EL, Krohn G, Warren EC, Patton A, Whitworth CP, Rathod M, Biehl A, Aw WY, Freytes DO, Polacheck WJ. Human Cell-Derived Matrix Composite Hydrogels with Diverse Composition for Use in Vasculature-on-chip Models. Adv Healthc Mater 2024; 13:e2400192. [PMID: 38518808 PMCID: PMC11281875 DOI: 10.1002/adhm.202400192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Microphysiological and organ-on-chip platforms seek to address critical gaps in human disease models and drug development that underlie poor rates of clinical success for novel interventions. While the fabrication technology and model cells used to synthesize organs-on-chip have advanced considerably, most platforms rely on animal-derived or synthetic extracellular matrix as a cell substrate, limiting mimicry of human physiology and precluding use in modeling diseases in which matrix dynamics play a role in pathogenesis. Here, the development of human cell-derived matrix (hCDM) composite hydrogels for use in 3D microphysiologic models of the vasculature is reported. hCDM composite hydrogels are derived from human donor fibroblasts and maintain a complex milieu of basement membrane, proteoglycans, and nonfibrillar matrix components. The use of hCDM composite hydrogels as 2D and 3D cell culture substrates is demonstrated, and hCDM composite hydrogels are patterned to form engineered human microvessels. Interestingly, hCDM composite hydrogels are enriched in proteins associated with vascular morphogenesis as determined by mass spectrometry, and functional analysis demonstrates proangiogenic signatures in human endothelial cells cultured in these hydrogels. In conclusion, this study suggests that human donor-derived hCDM composite hydrogels could address technical gaps in human organs-on-chip development and serve as substrates to promote vascularization.
Collapse
Affiliation(s)
- Elizabeth L Doherty
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Grace Krohn
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Emily C Warren
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Alexandra Patton
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Chloe P Whitworth
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill School of Medicine, 130 Mason Farm Road, Chapel Hill, Carolina, NC 27599, USA
| | - Mitesh Rathod
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Andreea Biehl
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Wen Yih Aw
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Donald O Freytes
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - William J Polacheck
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, 111 Mason Farm Road, Chapel Hill, Carolina, NC 27599, USA
| |
Collapse
|
4
|
Finding EJT, Faulkner A, Nash L, Wheeler-Jones CPD. Equine Endothelial Cells Show Pro-Angiogenic Behaviours in Response to Fibroblast Growth Factor 2 but Not Vascular Endothelial Growth Factor A. Int J Mol Sci 2024; 25:6017. [PMID: 38892205 PMCID: PMC11172845 DOI: 10.3390/ijms25116017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Understanding the factors which control endothelial cell (EC) function and angiogenesis is crucial for developing the horse as a disease model, but equine ECs remain poorly studied. In this study, we have optimised methods for the isolation and culture of equine aortic endothelial cells (EAoECs) and characterised their angiogenic functions in vitro. Mechanical dissociation, followed by magnetic purification using an anti-VE-cadherin antibody, resulted in EC-enriched cultures suitable for further study. Fibroblast growth factor 2 (FGF2) increased the EAoEC proliferation rate and stimulated scratch wound closure and tube formation by EAoECs on the extracellular matrix. Pharmacological inhibitors of FGF receptor 1 (FGFR1) (SU5402) or mitogen-activated protein kinase (MEK) (PD184352) blocked FGF2-induced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and functional responses, suggesting that these are dependent on FGFR1/MEK-ERK signalling. In marked contrast, vascular endothelial growth factor-A (VEGF-A) had no effect on EAoEC proliferation, migration, or tubulogenesis and did not promote ERK1/2 phosphorylation, indicating a lack of sensitivity to this classical pro-angiogenic growth factor. Gene expression analysis showed that unlike human ECs, FGFR1 is expressed by EAoECs at a much higher level than both VEGF receptor (VEGFR)1 and VEGFR2. These results suggest a predominant role for FGF2 versus VEGF-A in controlling the angiogenic functions of equine ECs. Collectively, our novel data provide a sound basis for studying angiogenic processes in horses and lay the foundations for comparative studies of EC biology in horses versus humans.
Collapse
Affiliation(s)
- Elizabeth J. T. Finding
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK; (A.F.); (L.N.); (C.P.D.W.-J.)
| | | | | | | |
Collapse
|
5
|
Ehnert S, Rinderknecht H, Liu C, Voss M, Konrad FM, Eisler W, Alexander D, Ngamsri KC, Histing T, Rollmann MF, Nussler AK. Increased Levels of BAMBI Inhibit Canonical TGF-β Signaling in Chronic Wound Tissues. Cells 2023; 12:2095. [PMID: 37626905 PMCID: PMC10453918 DOI: 10.3390/cells12162095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic wounds affect more than 2% of the population worldwide, with a significant burden on affected individuals, healthcare systems, and societies. A key regulator of the entire wound healing cascade is transforming growth factor beta (TGF-β), which regulates not only inflammation and extracellular matrix formation but also revascularization. This present work aimed at characterizing wound tissues obtained from acute and chronic wounds regarding angiogenesis, inflammation, as well as ECM formation and degradation, to identify common disturbances in the healing process. Serum and wound tissues from 38 patients (N = 20 acute and N = 18 chronic wounds) were analyzed. The patients' sera suggested a shift from VEGF/VEGFR to ANGPT/TIE2 signaling in the chronic wounds. However, this shift was not confirmed in the wound tissues. Instead, the chronic wound tissues showed increased levels of MMP9, a known activator of TGF-β. However, regulation of TGF-β target genes, such as CTGF, COL1A1, or IL-6, was absent in the chronic wounds. In wound tissues, all three TGF-β isoforms were expressed with increased levels of TGF-β1 and TGF-β3 and a reporter assay confirmed that the expressed TGF-β was activated. However, Western blots and immunostaining showed decreased canonical TGF-β signaling in the respective chronic wound tissues, suggesting the presence of a TGF-β inhibitor. As a potential regulatory mechanism, the TGF-β proteome profiler array suggested elevated levels of the TGF-β pseudo-receptor BAMBI. Also, tissue expression of BAMBI was significantly increased not only in chronic wounds (10.6-fold) but also in acute wounds that had become chronic (9.5-fold). In summary, our data indicate a possible regulatory role of BAMBI in the development of chronic wounds. The available few in vivo studies support our findings by postulating a therapeutic potential of BAMBI for controlling scar formation.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Siegfried Weller Research Institute, BG Unfallklinik Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany (W.E.); (M.F.R.); (A.K.N.)
| | - Helen Rinderknecht
- Siegfried Weller Research Institute, BG Unfallklinik Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany (W.E.); (M.F.R.); (A.K.N.)
| | - Chao Liu
- Siegfried Weller Research Institute, BG Unfallklinik Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany (W.E.); (M.F.R.); (A.K.N.)
| | - Melanie Voss
- Siegfried Weller Research Institute, BG Unfallklinik Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany (W.E.); (M.F.R.); (A.K.N.)
| | - Franziska M. Konrad
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany; (F.M.K.); (K.-C.N.)
| | - Wiebke Eisler
- Siegfried Weller Research Institute, BG Unfallklinik Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany (W.E.); (M.F.R.); (A.K.N.)
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstr 2-8, 72076 Tübingen, Germany;
| | - Kristian-Christos Ngamsri
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany; (F.M.K.); (K.-C.N.)
| | - Tina Histing
- Siegfried Weller Research Institute, BG Unfallklinik Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany (W.E.); (M.F.R.); (A.K.N.)
| | - Mika F. Rollmann
- Siegfried Weller Research Institute, BG Unfallklinik Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany (W.E.); (M.F.R.); (A.K.N.)
| | - Andreas K. Nussler
- Siegfried Weller Research Institute, BG Unfallklinik Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany (W.E.); (M.F.R.); (A.K.N.)
| |
Collapse
|
6
|
Rinderknecht H, Mayer A, Histing T, Ehnert S, Nüssler A. Herbal Extracts of Ginseng and Maqui Berry Show Only Minimal Effects on an In Vitro Model of Early Fracture Repair of Smokers. Foods 2023; 12:2960. [PMID: 37569229 PMCID: PMC10419284 DOI: 10.3390/foods12152960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Smoking is a major risk factor for delayed fracture healing, affecting several aspects of early fracture repair, including inflammation, osteogenesis, and angiogenesis. Panax ginseng (GE) and maqui berry extract (MBE) were shown in our previous studies to reduce smoke-induced cellular damage in late bone-healing in vitro models. We aimed here to analyze their effects on the early fracture repair of smokers in a 3D co-culture model of fracture hematomas and endothelial cells. Both extracts did not alter the cellular viability at concentrations of up to 100 µg/mL. In early fracture repair in vitro, they were unable to reduce smoking-induced inflammation and induce osteo- or chondrogenicity. Regarding angiogenesis, smoking-induced stress in HUVECs could not be counteracted by both extracts. Furthermore, smoking-impaired tube formation was not restored by GE but was harmed by MBE. However, GE promoted angiogenesis initiation under smoking conditions via the Angpt/Tie2 axis. To summarize, cigarette smoking strikingly affected early fracture healing processes in vitro, but herbal extracts at the applied doses had only a limited effect. Since both extracts were shown before to be very effective in later stages of fracture healing, our data suggest that their early use immediately after fracture does not appear to negatively impact later beneficial effects.
Collapse
Affiliation(s)
| | | | | | | | - Andreas Nüssler
- Siegfried-Weller Institute for Trauma Research, BG Trauma Center, University of Tuebingen, Schnarrenbergstrasse 95, 72070 Tuebingen, Germany; (H.R.); (A.M.); (T.H.); (S.E.)
| |
Collapse
|
7
|
Wang Y, Keshavarz M, Barhouse P, Smith Q. Strategies for Regenerative Vascular Tissue Engineering. Adv Biol (Weinh) 2022; 7:e2200050. [PMID: 35751461 DOI: 10.1002/adbi.202200050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/15/2022] [Indexed: 11/11/2022]
Abstract
Vascularization remains one of the key challenges in creating functional tissue-engineered constructs for therapeutic applications. This review aims to provide a developmental lens on the necessity of blood vessels in defining tissue function while exploring stem cells as a suitable source for vascular tissue engineering applications. The intersections of stem cell biology, material science, and engineering are explored as potential solutions for directing vascular assembly.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemical and Biomolecular Engineering University of California Irvine CA 92697 USA
- Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA
| | - Mozhgan Keshavarz
- Department of Chemical and Biomolecular Engineering University of California Irvine CA 92697 USA
- Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA
| | - Patrick Barhouse
- Department of Chemical and Biomolecular Engineering University of California Irvine CA 92697 USA
- Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering University of California Irvine CA 92697 USA
- Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA
| |
Collapse
|
8
|
Riddle RB, Jennbacken K, Hansson KM, Harper MT. Endothelial inflammation and neutrophil transmigration are modulated by extracellular matrix composition in an inflammation-on-a-chip model. Sci Rep 2022; 12:6855. [PMID: 35477984 PMCID: PMC9046410 DOI: 10.1038/s41598-022-10849-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/11/2022] [Indexed: 12/20/2022] Open
Abstract
Inflammatory diseases are often characterised by excessive neutrophil infiltration from the blood stream to the site of inflammation, which damages healthy tissue and prevents resolution of inflammation. Development of anti-inflammatory drugs is hindered by lack of in vitro and in vivo models which accurately represent the disease microenvironment. In this study, we used the OrganoPlate to develop a humanized 3D in vitro inflammation-on-a-chip model to recapitulate neutrophil transmigration across the endothelium and subsequent migration through the extracellular matrix (ECM). Human umbilical vein endothelial cells formed confluent vessels against collagen I and geltrex mix, a mix of basement membrane extract and collagen I. TNF-α-stimulation of vessels upregulated inflammatory cytokine expression and promoted neutrophil transmigration. Intriguingly, major differences were found depending on the composition of the ECM. Neutrophils transmigrated in higher number and further in geltrex mix than collagen I, and did not require an N-formyl-methionyl-leucyl-phenylalanine (fMLP) gradient for transmigration. Inhibition of neutrophil proteases inhibited neutrophil transmigration on geltrex mix, but not collagen I. These findings highlight the important role of the ECM in determining cell phenotype and response to inhibitors. Future work could adapt the ECM composition for individual diseases, producing accurate models for drug development.
Collapse
Affiliation(s)
- Rebecca B Riddle
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Karin Jennbacken
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Kenny M Hansson
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Rinderknecht H, Nussler AK, Steinestel K, Histing T, Ehnert S. Smoking Impairs Hematoma Formation and Dysregulates Angiogenesis as the First Steps of Fracture Healing. Bioengineering (Basel) 2022; 9:bioengineering9050186. [PMID: 35621464 PMCID: PMC9137559 DOI: 10.3390/bioengineering9050186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 01/02/2023] Open
Abstract
Bone fracture healing is an overly complex process in which inflammation, osteogenesis, and angiogenesis are tightly coupled, and delayed fracture repair is a very common health risk. One of the major causes of delayed healing is the formation of insufficient vasculature. Precise regulation of blood vessels in bone and their interplay with especially osteogenic processes has become an emerging topic within the last years; nevertheless, regulation of angiogenesis in (early) diseased fracture repair is still widely unknown. Here, we aim to develop an in vitro model for the analysis of early fracture healing which also enables the analysis of angiogenesis as a main influencing factor. As smoking is one of the main risk factors for bone fractures and developing a delay in healing, we model smoking and non-smoking conditions in vitro to analyze diverging reactions. Human in vitro fracture hematomas mimicking smokers’ and non-smokers’ hematomas were produced and analyzed regarding cell viability, inflammation, osteogenic and chondrogenic differentiation, and angiogenic potential. We could show that smokers’ blood hematomas were viable and comparable to non-smokers. Smokers’ hematomas showed an increase in inflammation and a decrease in osteogenic and chondrogenic differentiation potential. When analyzing angiogenesis, we could show that the smokers’ hematomas secrete factors that drastically reduced HUVEC proliferation and tube formation. With an angiogenesis array and gene expression analysis, we could identify the main influencing factors: Anpgt1/2, Tie2, and VEGFR2/3. In conclusion, our model is suitable to mimic smoking conditions in vitro showing that smoking negatively impacts early vascularization of newly formed tissue.
Collapse
Affiliation(s)
- Helen Rinderknecht
- Siegfried-Weller Institute for Trauma Research, BG Trauma Center, University of Tuebingen, Schnarrenbergstrasse 95, 72070 Tuebingen, Germany; (H.R.); (A.K.N.); (T.H.)
| | - Andreas K. Nussler
- Siegfried-Weller Institute for Trauma Research, BG Trauma Center, University of Tuebingen, Schnarrenbergstrasse 95, 72070 Tuebingen, Germany; (H.R.); (A.K.N.); (T.H.)
| | - Konrad Steinestel
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany;
| | - Tina Histing
- Siegfried-Weller Institute for Trauma Research, BG Trauma Center, University of Tuebingen, Schnarrenbergstrasse 95, 72070 Tuebingen, Germany; (H.R.); (A.K.N.); (T.H.)
| | - Sabrina Ehnert
- Siegfried-Weller Institute for Trauma Research, BG Trauma Center, University of Tuebingen, Schnarrenbergstrasse 95, 72070 Tuebingen, Germany; (H.R.); (A.K.N.); (T.H.)
- Correspondence:
| |
Collapse
|
10
|
Lane JAE, Faulkner A, Finding EJT, Lynam EG, Wheeler-Jones CPD. Use of a Thin Layer Assay for Assessing the Angiogenic Potential of Endothelial Cells In Vitro. Methods Mol Biol 2022; 2475:197-204. [PMID: 35451758 DOI: 10.1007/978-1-0716-2217-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Angiogenesis is essential for wound healing and regeneration and plays a significant role in several pathologies including cancer and atherosclerosis. In vitro assays offer simple and powerful tools for investigating the regulation of the angiogenic functions of primary endothelial cells (ECs) before moving to in vivo studies. The classic in vitro two-dimensional angiogenesis assay utilizes Basement Membrane Extract (BME) to study the differentiation and sprouting of ECs over a 24-h period. The protocol described here details a thin layer BME adaptation of the angiogenesis assay requiring significantly less BME and carried out in 96-well plates, allowing for a larger data yield at a greatly reduced cost, while maintaining the robustness of an assay used extensively over the past three decades.
Collapse
Affiliation(s)
- James A E Lane
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Ashton Faulkner
- Experimental Cardiovascular Medicine, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Eleanor G Lynam
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | | |
Collapse
|
11
|
Li Z, Li JN, Li Q, Liu C, Zhou LH, Zhang Q, Xu Y. miR-25-5p regulates endothelial progenitor cell differentiation in response to shear stress through targeting ABCA1. Cell Biol Int 2021; 45:1876-1886. [PMID: 33945659 DOI: 10.1002/cbin.11621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/07/2021] [Accepted: 05/01/2021] [Indexed: 11/10/2022]
Abstract
The importance of flow shear stress (SS) on the differentiation of endothelial progenitor cells (EPCs) has been demonstrated in various studies. Cholesterol retention and microRNA regulation have been also proposed as relevant factors involved in this process, though evidence regarding their regulatory roles in the differentiation of EPCs is currently lacking. In the present study on high shear stress (HSS)-induced differentiation of EPCs, we investigated the importance of ATP-binding cassette transporter 1 (ABCA1), an important regulator in cholesterol efflux, and miR-25-5p, a potential regulator of endothelial reconstruction. We first revealed an inverse correlation between miR-25-5p and ABCA1 expression levels in EPCs under HSS treatment; their direct interaction was subsequently validated by a dual-luciferase reporter assay. Further studies using flow cytometry and quantitative polymerase chain reaction demonstrated that both miR-25-5p overexpression and ABCA1 inhibition led to elevated levels of specific markers of endothelial cells, with concomitant downregulation of smooth muscle cell markers. Finally, knockdown of ABCA1 in EPCs significantly promoted tube formation, which confirmed our conjecture. Our current results suggest that miR-25-5p might regulate the differentiation of EPCs partially through targeting ABCA1, and such a mechanism might account for HSS-induced differentiation of EPCs.
Collapse
Affiliation(s)
- Zhe Li
- Department of Cerebrovascular Diseases, Blue Cross Brain Hospital affiliated to Tongji University, Shanghai, China
| | - Jia-Nan Li
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Qiang Li
- Department of Neurosurgery, Changhai Hospital of Shanghai affiliated to Naval Military Medical University, Shanghai, China
| | - Chun Liu
- Department of Cerebrovascular Diseases, Blue Cross Brain Hospital affiliated to Tongji University, Shanghai, China
| | - Lin-Hua Zhou
- Department of Cerebrovascular Diseases, Blue Cross Brain Hospital affiliated to Tongji University, Shanghai, China
| | - Qi Zhang
- Department of Cerebrovascular Diseases, Blue Cross Brain Hospital affiliated to Tongji University, Shanghai, China
| | - Yi Xu
- Department of Neurosurgery, Changhai Hospital of Shanghai affiliated to Naval Military Medical University, Shanghai, China
| |
Collapse
|
12
|
Xu L, Willumeit-Römer R, Luthringer-Feyerabend BJC. Mesenchymal Stem Cell and Oxygen Modulate the Cocultured Endothelial Cells in the Presence of Magnesium Degradation Products. ACS APPLIED BIO MATERIALS 2021; 4:2398-2407. [DOI: 10.1021/acsabm.0c01289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lei Xu
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), Geesthacht 21502, Germany
| | - Regine Willumeit-Römer
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), Geesthacht 21502, Germany
| | | |
Collapse
|
13
|
Faulkner A, Lynam E, Purcell R, Jones C, Lopez C, Board M, Wagner KD, Wagner N, Carr C, Wheeler-Jones C. Context-dependent regulation of endothelial cell metabolism: differential effects of the PPARβ/δ agonist GW0742 and VEGF-A. Sci Rep 2020; 10:7849. [PMID: 32398728 PMCID: PMC7217938 DOI: 10.1038/s41598-020-63900-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/07/2020] [Indexed: 12/30/2022] Open
Abstract
Peroxisome proliferator activated receptor β/δ (PPARβ/δ) has pro-angiogenic functions, but whether PPARβ/δ modulates endothelial cell metabolism to support the dynamic phenotype remains to be established. This study characterised the metabolic response of HUVEC to the PPARβ/δ agonist, GW0742, and compared these effects with those induced by VEGF-A. In HUVEC monolayers, flux analysis revealed that VEGF-A promoted glycolysis at the expense of fatty acid oxidation (FAO), whereas GW0742 reduced both glycolysis and FAO. Only VEGF-A stimulated HUVEC migration and proliferation whereas both GW0742 and VEGF-A promoted tubulogenesis. Studies using inhibitors of PPARβ/δ or sirtuin-1 showed that the tubulogenic effect of GW0742, but not VEGF-A, was PPARβ/δ- and sirtuin-1-dependent. HUVEC were reliant on glycolysis and FAO, and inhibition of either pathway disrupted cell growth and proliferation. VEGF-A was a potent inducer of glycolysis in tubulogenic HUVEC, while FAO was maintained. In contrast, GW0742-induced tubulogenesis was associated with enhanced FAO and a modest increase in glycolysis. These novel data reveal a context-dependent regulation of endothelial metabolism by GW0742, where metabolic activity is reduced in monolayers but enhanced during tubulogenesis. These findings expand our understanding of PPARβ/δ in the endothelium and support the targeting of PPARβ/δ in regulating EC behaviour and boosting tissue maintenance and repair.
Collapse
Affiliation(s)
- Ashton Faulkner
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK.,Experimental Cardiovascular Medicine, Bristol Medical School, University of Bristol, Bristol, UK
| | - Eleanor Lynam
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Robert Purcell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Coleen Jones
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Colleen Lopez
- Department of Physiology Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Mary Board
- Department of Physiology Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Kay-Dietrich Wagner
- Université Côte d'Azur, Institute of Biology Valrose, Nice (iBV), CNRS UMR7277, INSERM U1091, Nice, France
| | - Nicole Wagner
- Université Côte d'Azur, Institute of Biology Valrose, Nice (iBV), CNRS UMR7277, INSERM U1091, Nice, France
| | - Carolyn Carr
- Department of Physiology Anatomy & Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|
14
|
Takov K, He Z, Johnston HE, Timms JF, Guillot PV, Yellon DM, Davidson SM. Small extracellular vesicles secreted from human amniotic fluid mesenchymal stromal cells possess cardioprotective and promigratory potential. Basic Res Cardiol 2020; 115:26. [PMID: 32146560 PMCID: PMC7060967 DOI: 10.1007/s00395-020-0785-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cells (MSCs) exhibit antiapoptotic and proangiogenic functions in models of myocardial infarction which may be mediated by secreted small extracellular vesicles (sEVs). However, MSCs have frequently been harvested from aged or diseased patients, while the isolated sEVs often contain high levels of impurities. Here, we studied the cardioprotective and proangiogenic activities of size-exclusion chromatography-purified sEVs secreted from human foetal amniotic fluid stem cells (SS-hAFSCs), possessing superior functional potential to that of adult MSCs. We demonstrated for the first time that highly pure (up to 1.7 × 1010 particles/µg protein) and thoroughly characterised SS-hAFSC sEVs protect rat hearts from ischaemia-reperfusion injury in vivo when administered intravenously prior to reperfusion (38 ± 9% infarct size reduction, p < 0.05). SS-hAFSC sEVs did not protect isolated primary cardiomyocytes in models of simulated ischaemia-reperfusion injury in vitro, indicative of indirect cardioprotective effects. SS-hAFSC sEVs were not proangiogenic in vitro, although they markedly stimulated endothelial cell migration. Additionally, sEVs were entirely responsible for the promigratory effects of the medium conditioned by SS-hAFSC. Mechanistically, sEV-induced chemotaxis involved phosphatidylinositol 3-kinase (PI3K) signalling, as its pharmacological inhibition in treated endothelial cells reduced migration by 54 ± 7% (p < 0.001). Together, these data indicate that SS-hAFSC sEVs have multifactorial beneficial effects in a myocardial infarction setting.
Collapse
Affiliation(s)
- Kaloyan Takov
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Zhenhe He
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Harvey E Johnston
- EGA Institute for Women's Health, University College London, London, UK
| | - John F Timms
- EGA Institute for Women's Health, University College London, London, UK
| | - Pascale V Guillot
- EGA Institute for Women's Health, University College London, London, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
15
|
Nguyen EH, Murphy WL. Customizable biomaterials as tools for advanced anti-angiogenic drug discovery. Biomaterials 2018; 181:53-66. [PMID: 30077137 DOI: 10.1016/j.biomaterials.2018.07.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/17/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022]
Abstract
The inhibition of angiogenesis is a critical element of cancer therapy, as cancer vasculature contributes to tumor expansion. While numerous drugs have proven to be effective at disrupting cancer vasculature, patient survival has not significantly improved as a result of anti-angiogenic drug treatment. Emerging evidence suggests that this is due to a combination of unintended side effects resulting from the application of anti-angiogenic compounds, including angiogenic rebound after treatment and the activation of metastasis in the tumor. There is currently a need to better understand the far-reaching effects of anti-angiogenic drug treatments in the context of cancer. Numerous innovations and discoveries in biomaterials design and tissue engineering techniques are providing investigators with tools to develop physiologically relevant vascular models and gain insights into the holistic impact of drug treatments on tumors. This review examines recent advances in the design of pro-angiogenic biomaterials, specifically in controlling integrin-mediated cell adhesion, growth factor signaling, mechanical properties and oxygen tension, as well as the implementation of pro-angiogenic materials into sophisticated co-culture models of cancer vasculature.
Collapse
Affiliation(s)
- Eric H Nguyen
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA; Human Models for Analysis of Pathways (Human MAPs) Center, University of Wisconsin, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA; Human Models for Analysis of Pathways (Human MAPs) Center, University of Wisconsin, Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
16
|
Czekanska EM, Geng J, Glinka M, White K, Kanczler J, Evans ND, Oreffo ROC, Bradley M. Combinatorial delivery of bioactive molecules by a nanoparticle-decorated and functionalized biodegradable scaffold. J Mater Chem B 2018; 6:4437-4445. [PMID: 32254661 DOI: 10.1039/c8tb00474a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The combination of supportive biomaterials and bioactive factors to stimulate endogenous progenitor cells is of key interest for the treatment of conditions in which intrinsic bone healing capacities are compromised. To address this need a "scaffold-decoration platform" was developed in which a biocompatible, biotin-functionalised 3D structural polymer network was generated through a solvent blending process, and used to recruit avidin modified nanoparticles within its 3D structure through biotin-avidin conjugation. This was enabled via the generation of a suite of poly(lactic-co-glycolic acid) (PLGA) nanoparticles, encapsulating two bioactive factors, vascular endothelial growth factor (VEGF) and l-ascorbic acid 2-phosphate (AA2P) and conjugated to streptavidin to allow attachment to the bone generating scaffold. The levels of encapsulated and released VEGF and AA2P were tailored to fall within the desired range to promote biological activity as confirmed by an increase in endothelial cell tubule formation and collagen production by osteoblast cells in response to nanoparticle release of VEGF and AA2P, respectively. The release of VEGF from the scaffolds produced a significant effect on vasculature development within the chick chorioallantoic membrane (CAM) angiogenic assay. Similarly, the scaffolds showed strong biological effects in ex vivo assays indicating the potential of this platform for localised delivery of bioactive molecules with applications in both hard and soft tissue engineering.
Collapse
Affiliation(s)
- Ewa M Czekanska
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, Southampton University, Southampton, SO16 6YD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Mathew SA, Bhonde RR. Omega-3 polyunsaturated fatty acids promote angiogenesis in placenta derived mesenchymal stromal cells. Pharmacol Res 2018; 132:90-98. [PMID: 29665425 DOI: 10.1016/j.phrs.2018.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
Abstract
Enhancement of angiogenesis is solicited in wound repair and regeneration. Mesenchymal stromal cells derived from the placenta (P-MSCs) have an inherent angiogenic potential. Polyunsaturated fatty acids (PUFAs) in turn, specifically the omega-3 (N-3) are essential for growth and development. They are also recommended as dietary supplements during pregnancy. We therefore hypothesized that addition of N-3 PUFAs in P-MSC culture media may enhance their angiogenic potential. Hence, we treated P-MSCs with omega-3 (N-3) fatty acids -Docosahexaenoic acid (DHA) and Eicosapentaenoic acid (EPA) at different concentrations and tested their angiogenic potential. We saw an upregulation of both bFGF and VEGFA. We also found enhanced in vitro tube formation ability of P-MSCs treated with DHA: EPA. We then looked at the influence of the conditioned medium (CM) collected from P-MSCs exposed to DHA: EPA on the key effector cells -HUVECs (Human Umbilical Vein derived endothelial cells and their functionality was further confirmed on chick yolk sac membrane. We found that the CM of P-MSCs exposed to DHA: EPA could enhance angiogenesis in both cases. These result were finally validated in an in vivo matrigel plug assay which revealed enhanced migration and vessel formation in CM treated with DHA: EPA. Our data thus reveals for the first time that supplementation with lower concentration of PUFA enhances the angiogenic potential of P-MSCs making them suitable for chronic wound healing applications.
Collapse
Affiliation(s)
- Suja Ann Mathew
- School of Regenerative Medicine, Manipal University, MAHE, GKVK Post, Bellary Road, Allalasandra, Near Royal Orchid, Yelahanka, Bangalore, 560 065, India.
| | - Ramesh R Bhonde
- Dr. D.Y. Patil Vidyapeeth - (DPU), Pimpri, Pune, 411018, India.
| |
Collapse
|
18
|
Abstract
The physiological relevance of Matrigel as a cell-culture substrate and in angiogenesis assays is often called into question. Here, we describe an array-based method for the identification of synthetic hydrogels that promote the formation of robust in vitro vascular networks for the detection of putative vascular disruptors, and that support human embryonic stem cell expansion and pluripotency. We identified hydrogel substrates that promoted endothelial-network formation by primary human umbilical vein endothelial cells and by endothelial cells derived from human induced pluripotent stem cells, and used the hydrogels with endothelial networks to identify angiogenesis inhibitors. The synthetic hydrogels show superior sensitivity and reproducibility over Matrigel when evaluating known inhibitors, as well as in a blinded screen of a subset of 38 chemicals, selected according to predicted vascular disruption potential, from the Toxicity ForeCaster library of the US Environmental Protection Agency. The identified synthetic hydrogels should be suitable alternatives to Matrigel for common cell-culture applications.
Collapse
|
19
|
Morioka M, Kawakubo-Yasukochi T, Hayashi Y, Hazekawa M, Nishinakagawa T, Ono K, Kawano S, Nakamura S, Nakashima M. Exosomes from oral squamous carcinoma cell lines, SQUU-A and SQUU-B, define the tropism of lymphatic dissemination. J Oral Biosci 2016; 58:180-184. [DOI: 10.1016/j.job.2016.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 04/27/2016] [Accepted: 05/10/2016] [Indexed: 11/29/2022]
|
20
|
Wilhelm EN, González-Alonso J, Parris C, Rakobowchuk M. Exercise intensity modulates the appearance of circulating microvesicles with proangiogenic potential upon endothelial cells. Am J Physiol Heart Circ Physiol 2016; 311:H1297-H1310. [PMID: 27638881 DOI: 10.1152/ajpheart.00516.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/12/2016] [Indexed: 12/22/2022]
Abstract
The effect of endurance exercise on circulating microvesicle dynamics and their impact on surrounding endothelial cells is unclear. Here we tested the hypothesis that exercise intensity modulates the time course of platelet (PMV) and endothelial-derived (EMV) microvesicle appearance in the circulation through hemodynamic and biochemical-related mechanisms, and that microvesicles formed during exercise would stimulate endothelial angiogenesis in vitro. Nine healthy young men had venous blood samples taken before, during, and throughout the recovery period after 1 h of moderate [46 ± 2% maximal oxygen uptake (V̇o2max)] or heavy (67 ± 2% V̇o2max) intensity semirecumbent cycling and a time-matched resting control trial. In vitro experiments were performed by incubating endothelial cells with rest and exercise-derived microvesicles to examine their effects on cell angiogenic capacities. PMVs (CD41+) increased from baseline only during heavy exercise (from 21 ± 1 × 103 to 55 ± 8 × 103 and 48 ± 6 × 103 PMV/μl at 30 and 60 min, respectively; P < 0.05), returning to baseline early in postexercise recovery (P > 0.05), whereas EMVs (CD62E+) were unchanged (P > 0.05). PMVs were related to brachial artery shear rate (r2 = 0.43) and plasma norepinephrine concentrations (r2 = 0.21) during exercise (P < 0.05). Exercise-derived microvesicles enhanced endothelial proliferation, migration, and tubule formation compared with rest microvesicles (P < 0.05). These results demonstrate substantial increases in circulating PMVs during heavy exercise and that exercise-derived microvesicles stimulate human endothelial cells by enhancing angiogenesis and proliferation. This involvement of microvesicles may be considered a novel mechanism through which exercise mediates vascular healing and adaptation.
Collapse
Affiliation(s)
- Eurico N Wilhelm
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Christopher Parris
- Institute for the Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom; and
| | - Mark Rakobowchuk
- Faculty of Science, Department of Biological Sciences, Thompson Rivers University Kamloops, British Columbia, Canada
| |
Collapse
|
21
|
Latham Birt SH, Purcell R, Botham KM, Wheeler-Jones CPD. Endothelial HO-1 induction by model TG-rich lipoproteins is regulated through a NOX4-Nrf2 pathway. J Lipid Res 2016; 57:1204-18. [PMID: 27185859 PMCID: PMC4918850 DOI: 10.1194/jlr.m067108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Indexed: 12/17/2022] Open
Abstract
Circulating levels of chylomicron remnants (CMRs) increase postprandially and their composition directly reflects dietary lipid intake. These TG-rich lipoproteins likely contribute to the development of endothelial dysfunction, albeit via unknown mechanisms. Here, we investigated how the FA composition of CMRs influences their actions on human aortic endothelial cells (HAECs) by comparing the effects of model CMRs-artificial TG-rich CMR-like particles (A-CRLPs)-containing TGs extracted from fish, DHA-rich algal, corn, or palm oils. HAECs responded with distinct transcriptional programs according to A-CRLP TG content and oxidation status, with genes involved in antioxidant defense and cytoprotection most prominently affected by n-3 PUFA-containing A-CRLPs. These particles were significantly more efficacious inducers of heme oxygenase-1 (HO-1) than n-6 PUFA corn or saturated FA-rich palm CRLPs. Mechanistically, HO-1 induction by all CRLPs requires NADPH oxidase 4, with PUFA-containing particles additionally dependent upon mitochondrial reactive oxygen species. Activation of both p38 MAPK and PPARβ/δ culminates in increased nuclear factor erythroid 2-related factor 2 (Nrf2) expression/nuclear translocation and HO-1 induction. These studies define new molecular pathways coupling endothelial cell activation by model CMRs with adaptive regulation of Nrf2-dependent HO-1 expression and may represent key mechanisms through which dietary FAs differentially impact progression of endothelial dysfunction.
Collapse
Affiliation(s)
- Sally H Latham Birt
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Robert Purcell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Kathleen M Botham
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, United Kingdom
| | | |
Collapse
|
22
|
Bandara N, Gurusinghe S, Chen H, Chen S, Wang LX, Lim SY, Strappe P. Minicircle DNA-mediated endothelial nitric oxide synthase gene transfer enhances angiogenic responses of bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 2016; 7:48. [PMID: 27036881 PMCID: PMC4818467 DOI: 10.1186/s13287-016-0307-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/24/2016] [Accepted: 03/11/2016] [Indexed: 11/10/2022] Open
Abstract
Background Non-viral-based gene modification of adult stem cells with endothelial nitric oxide synthase (eNOS) may enhance production of nitric oxide and promote angiogenesis. Nitric oxide (NO) derived from endothelial cells is a pleiotropic diffusible gas with positive effects on maintaining vascular tone and promoting wound healing and angiogenesis. Adult stem cells may enhance angiogenesis through expression of bioactive molecules, and their genetic modification to express eNOS may promote NO production and subsequent cellular responses. Methods Rat bone marrow-derived mesenchymal stem cells (rBMSCs) were transfected with a minicircle DNA vector expressing either green fluorescent protein (GFP) or eNOS. Transfected cells were analysed for eNOS expression and NO production and for their ability to form in vitro capillary tubules and cell migration. Transcriptional activity of angiogenesis-associated genes, CD31, VEGF-A, PDGFRα, FGF2, and FGFR2, were analysed by quantitative polymerase chain reaction. Results Minicircle vectors expressing GFP (MC-GFP) were used to transfect HEK293T cells and rBMSCs, and were compared to a larger parental vector (P-GFP). MC-GFP showed significantly higher transfection in HEK293T cells (55.51 ± 3.3 %) and in rBMSC (18.65 ± 1.05 %) compared to P-GFP in HEK293T cells (43.4 ± 4.9 %) and rBMSC (15.21 ± 0.22 %). MC-eNOS vectors showed higher transfection efficiency (21 ± 3 %) compared to P-eNOS (9 ± 1 %) and also generated higher NO levels. In vitro capillary tubule formation assays showed both MC-eNOS and P-eNOS gene-modified rBMSCs formed longer (14.66 ± 0.55 mm and 13.58 ± 0.68 mm, respectively) and a greater number of tubules (56.33 ± 3.51 and 51 ± 4, respectively) compared to controls, which was reduced with the NOS inhibitor L-NAME. In an in vitro wound healing assay, MC-eNOS transfected cells showed greater migration which was also reversed by L-NAME treatment. Finally, gene expression analysis in MC-eNOS transfected cells showed significant upregulation of the endothelial-specific marker CD31 and enhanced expression of VEGFA and FGF-2 and their corresponding receptors PDGFRα and FGFR2, respectively. Conclusions A novel eNOS-expressing minicircle vector can efficiently transfect rBMSCs and produce sufficient NO to enhance in vitro models of capillary formation and cell migration with an accompanying upregulation of CD31, angiogenic growth factor, and receptor gene expression.
Collapse
Affiliation(s)
- Nadeeka Bandara
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.,O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
| | - Saliya Gurusinghe
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Haiying Chen
- Central laboratory and key Laboratory of Oral and Maxillofacial-Head and Neck Medical Biology, Liaocheng People's Hospital, Liaocheng, 252000, PR China
| | - Shuangfeng Chen
- Central laboratory and key Laboratory of Oral and Maxillofacial-Head and Neck Medical Biology, Liaocheng People's Hospital, Liaocheng, 252000, PR China
| | - Le-Xin Wang
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.,Central laboratory and key Laboratory of Oral and Maxillofacial-Head and Neck Medical Biology, Liaocheng People's Hospital, Liaocheng, 252000, PR China
| | - Shiang Y Lim
- O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia.,Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, VIC, 3002, Australia
| | - Padraig Strappe
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.
| |
Collapse
|