1
|
Rubenstein JL, Nord AS, Ekker M. DLX genes and proteins in mammalian forebrain development. Development 2024; 151:dev202684. [PMID: 38819455 PMCID: PMC11190439 DOI: 10.1242/dev.202684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The vertebrate Dlx gene family encode homeobox transcription factors that are related to the Drosophila Distal-less (Dll) gene and are crucial for development. Over the last ∼35 years detailed information has accrued about the redundant and unique expression and function of the six mammalian Dlx family genes. DLX proteins interact with general transcriptional regulators, and co-bind with other transcription factors to enhancer elements with highly specific activity in the developing forebrain. Integration of the genetic and biochemical data has yielded a foundation for a gene regulatory network governing the differentiation of forebrain GABAergic neurons. In this Primer, we describe the discovery of vertebrate Dlx genes and their crucial roles in embryonic development. We largely focus on the role of Dlx family genes in mammalian forebrain development revealed through studies in mice. Finally, we highlight questions that remain unanswered regarding vertebrate Dlx genes despite over 30 years of research.
Collapse
Affiliation(s)
- John L. Rubenstein
- UCSF Department of Psychiatry and Behavioral Sciences, Department of UCSF Weill Institute for Neurosciences, Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Alex S. Nord
- Department of Neurobiology, Physiology, and Behavior and Department of Psychiatry and 20 Behavioral Sciences, Center for Neuroscience, University of California Davis, Davis, CA 95618, USA
| | - Marc Ekker
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
2
|
Zhu H, Bendall AJ. Measuring transcription factor function with cell type-specific somatic transgenesis in chicken embryos. Dev Biol 2024; 508:1-7. [PMID: 38218394 DOI: 10.1016/j.ydbio.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Retroviral-mediated misexpression in chicken embryos has been a powerful research tool for developmental biologists in the last two decades. In the RCASBP retroviral vectors that are widely used for in vivo somatic transgenesis, a coding sequence of interest is under the transcriptional control of a strong viral promoter in the long terminal repeat. While this has proven to be effective for studying secreted signalling proteins, interpretation of the mechanisms of action of nuclear factors is more difficult using this system since it is not clear whether phenotypic effects are cell-autonomous or not, and therefore whether they represent a function of the endogenous protein. Here, we report the consequences of retroviral expression using the RCANBP backbone, in which the transcription factor Dlx5 is expressed under the control of chondrocyte-specific regulatory sequences from the Col2a1 gene. To our knowledge, this is the first demonstration of a tissue-specific phenotype in the chicken embryo.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Andrew J Bendall
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
3
|
Yu EPY, Saxena V, Perin S, Ekker M. Loss of dlx5a/ dlx6a Locus Alters Non-Canonical Wnt Signaling and Meckel's Cartilage Morphology. Biomolecules 2023; 13:1347. [PMID: 37759750 PMCID: PMC10526740 DOI: 10.3390/biom13091347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
The dlx genes encode transcription factors that establish a proximal-distal polarity within neural crest cells to bestow a regional identity during craniofacial development. The expression regions of dlx paralogs are overlapping yet distinct within the zebrafish pharyngeal arches and may also be involved in progressive morphologic changes and organization of chondrocytes of the face. However, how each dlx paralog of dlx1a, dlx2a, dlx5a and dlx6a affects craniofacial development is still largely unknown. We report here that the average lengths of the Meckel's, palatoquadrate and ceratohyal cartilages in different dlx mutants were altered. Mutants for dlx5a-/- and dlx5i6-/-, where the entire dlx5a/dlx6a locus was deleted, have the shortest lengths for all three structures at 5 days post fertilization (dpf). This phenotype was also observed in 14 dpf larvae. Loss of dlx5i6 also resulted in increased proliferation of neural crest cells and expression of chondrogenic markers. Additionally, altered expression and function of non-canonical Wnt signaling were observed in these mutants suggesting a novel interaction between dlx5i6 locus and non-canonical Wnt pathway regulating ventral cartilage morphogenesis.
Collapse
Affiliation(s)
| | | | | | - Marc Ekker
- Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON K1N 94A, Canada (S.P.)
| |
Collapse
|
4
|
Varberg KM, Dominguez EM, Koseva B, Varberg JM, McNally RP, Moreno-Irusta A, Wesley ER, Iqbal K, Cheung WA, Schwendinger-Schreck C, Smail C, Okae H, Arima T, Lydic M, Holoch K, Marsh C, Soares MJ, Grundberg E. Extravillous trophoblast cell lineage development is associated with active remodeling of the chromatin landscape. Nat Commun 2023; 14:4826. [PMID: 37563143 PMCID: PMC10415281 DOI: 10.1038/s41467-023-40424-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
The extravillous trophoblast cell lineage is a key feature of placentation and successful pregnancy. Knowledge of transcriptional regulation driving extravillous trophoblast cell development is limited. Here, we map the transcriptome and epigenome landscape as well as chromatin interactions of human trophoblast stem cells and their transition into extravillous trophoblast cells. We show that integrating chromatin accessibility, long-range chromatin interactions, transcriptomic, and transcription factor binding motif enrichment enables identification of transcription factors and regulatory mechanisms critical for extravillous trophoblast cell development. We elucidate functional roles for TFAP2C, SNAI1, and EPAS1 in the regulation of extravillous trophoblast cell development. EPAS1 is identified as an upstream regulator of key extravillous trophoblast cell transcription factors, including ASCL2 and SNAI1 and together with its target genes, is linked to pregnancy loss and birth weight. Collectively, we reveal activation of a dynamic regulatory network and provide a framework for understanding extravillous trophoblast cell specification in trophoblast cell lineage development and human placentation.
Collapse
Affiliation(s)
- Kaela M Varberg
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA.
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Esteban M Dominguez
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Boryana Koseva
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Joseph M Varberg
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Ross P McNally
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ayelen Moreno-Irusta
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Emily R Wesley
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Warren A Cheung
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Carl Schwendinger-Schreck
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Craig Smail
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Hiroaki Okae
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Michael Lydic
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Kristin Holoch
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Courtney Marsh
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Michael J Soares
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA.
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Center for Perinatal Research, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.
| | - Elin Grundberg
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA.
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.
| |
Collapse
|
5
|
S J R, Ahmed N, Kumari S, Sreenivas Prasad VG, Naik LN, Kumar V. Expression of DLX6 Gene in Mandibular Deficiency (Retrognathic Mandible): A Randomized Clinical and Genetic Study. Cureus 2021; 13:e13572. [PMID: 33815981 PMCID: PMC8008976 DOI: 10.7759/cureus.13572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Introduction There are various genes that affect craniofacial development and among the important genes that affect jaw development is distal-less homeobox (DLX) 6 genes. The present study was carried out to determine the role of DLX6 gene variations in mandibular deficiency. Methods Thirty subjects having retrognathic mandible were evaluated by clinical examination and assessed using lateral cephalometric radiographs based on cephalometrics for orthognathic surgery (COGS) analysis of hard tissue with N-Pog parameters being less than -13 mm. For the same subjects, saliva samples were taken and sent to biotechnology labs for genetic evaluation. DNA was isolated from salivary samples using a DNA extraction kit and was subjected to polymerase chain reaction (PCR) amplification and sequencing. Single nucleotide polymorphisms (SNP) analysis was done to assess the role of DLX6 gene in these study subjects. Results All 30 subjects showed N-POG parameters of COGS analysis for hard tissue to be less than -13mm, confirming retrognathic mandible. SNP analysis of subjects showed no SNPs in any EXON of the DLX6 gene for all 30 study samples. Conclusion No variations in DLX6 gene were found in the present study. Further studies are required to investigate other genes that could be involved in the cause of retrognathic mandible with a larger sample size and to include subjects in the sample having features other than mandibular retrognathia like hearing loss, abnormal pinnae, ectrodactyly, cleft palate, developmental delay and abnormal teeth to determine the contribution of DLX6 gene variations in mandibular deficiency.
Collapse
Affiliation(s)
- Rajalakshmi S J
- Orthodontics and Dentofaical Orthopedics, Government Dental College and Research Institute, Bangalore, IND
| | - Nausheer Ahmed
- Orthodontics and Dentofacial Orthopedics, Government Dental College and Research Institute, Bangalore, IND
| | - Shashikala Kumari
- Orthodontics and Dentofacial Orthopedics, Government Dental College and Research Institute, Bangalore, IND
| | | | - Lohit N Naik
- Orthodontics and Dentofacial Orthopedics, Government Dental College and Research Institute, Bangalore, IND
| | - Vinod Kumar
- Pedodontics, Navodaya Dental College and Hospital, Raichur, IND
| |
Collapse
|
6
|
Sun S, Yang F, Zhu Y, Zhang S. RETRACTED: KDM4A promotes the growth of non-small cell lung cancer by mediating the expression of Myc via DLX5 through the Wnt/β-catenin signaling pathway. Life Sci 2020; 262:118508. [PMID: 33002480 DOI: 10.1016/j.lfs.2020.118508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the authors as they “found major problems in the data and conclusions through their later research”. 1. When the authors performed flow cytometry to detect apoptosis, the Annexin-V-coupled fluorophore they used was Fluor 647 (as described in the Methods section), which was incorrectly labelled as the Annexin-V-coupled fluorophore as FITC in their Figures (Fig. 5E, 7C and Fig. S1D). The excitation wavelengths of Alexa Fluor 647 (594/633 nm) are different from that of FITC (490 nm/520 nm), this mistake would lead to unreliability of their data. 2. The authors discovered a major error during the traceability of the antibodies used in the experiments. The primary antibody they used to detect KDM4A was actually a primary antibody for KDM6B, as evidenced by the western blots. KDM6B is a 177-kDa protein (consistent with the kDa shown in Fig. 1K and Fig. 2B), while KDM4A is a 150-kDa protein. 3. Lastly, the authors carelessly mislabeled KDM4A as KDM4B in Fig. 7. The authors and the Editors believe that the conclusions of the paper are not dependable, so we have decided to retract the paper. Apologies are offered to readers of the journal that this was not detected during the submission process.
Collapse
Affiliation(s)
- Shanshan Sun
- Department of General Oncotherapy, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, Shandong, PR China
| | - Fujun Yang
- Department of General Oncotherapy, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, Shandong, PR China
| | - Yongcun Zhu
- Department of Pathology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, Shandong, PR China
| | - Shukun Zhang
- Department of Pathology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, Shandong, PR China.
| |
Collapse
|