1
|
Babin CH, Leiva FP, Verberk WCEP, Rees BB. Evolution of Key Oxygen-Sensing Genes Is Associated with Hypoxia Tolerance in Fishes. Genome Biol Evol 2024; 16:evae183. [PMID: 39165136 PMCID: PMC11370800 DOI: 10.1093/gbe/evae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Low dissolved oxygen (hypoxia) is recognized as a major threat to aquatic ecosystems worldwide. Because oxygen is paramount for the energy metabolism of animals, understanding the functional and genetic drivers of whole-animal hypoxia tolerance is critical to predicting the impacts of aquatic hypoxia. In this study, we investigate the molecular evolution of key genes involved in the detection of and response to hypoxia in ray-finned fishes: the prolyl hydroxylase domain (PHD)-hypoxia-inducible factor (HIF) oxygen-sensing system, also known as the EGLN (egg-laying nine)-HIF oxygen-sensing system. We searched fish genomes for HIFA and EGLN genes, discovered new paralogs from both gene families, and analyzed protein-coding sites under positive selection. The physicochemical properties of these positively selected amino acid sites were summarized using linear discriminants for each gene. We employed phylogenetic generalized least squares to assess the relationship between these linear discriminants for each HIFA and EGLN and hypoxia tolerance as reflected by the critical oxygen tension (Pcrit) of the corresponding species. Our results demonstrate that Pcrit in ray-finned fishes correlates with the physicochemical variation of positively selected sites in specific HIFA and EGLN genes. For HIF2A, two linear discriminants captured more than 90% of the physicochemical variation of these sites and explained between 20% and 39% of the variation in Pcrit. Thus, variation in HIF2A among fishes may contribute to their capacity to cope with aquatic hypoxia, similar to its proposed role in conferring tolerance to high-altitude hypoxia in certain lineages of terrestrial vertebrates.
Collapse
Affiliation(s)
- Courtney H Babin
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Félix P Leiva
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven 27570, Germany
| | - Wilco C E P Verberk
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Bernard B Rees
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
2
|
Xiao J, Wang WX. Linking HIF oxygen-sensing system diversity to hypoxia fitness in Eleutheronema: Molecular characterization and transcriptional response to hypoxia exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168646. [PMID: 37977389 DOI: 10.1016/j.scitotenv.2023.168646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Hypoxia is a mounting environmental problem affecting coastal waters globally, posing severe consequences for biodiversity and marine life. Metazoans respond to hypoxia stress via the hypoxia-inducible factor (HIF) pathway, but few studies have addressed the gene diversity of the functionally important HIF-pathway. Understanding whether functional diversity exists in the HIF-pathway is a key first step in identifying genes that may impact hypoxia fitness. Here, we leveraged whole-genome resequencing data and bioinformatics tools to identify the key members of the HIF-pathway (HIFα/β, EGLN, and VHL) and genetic diversity in the threatened Eleutheronema. Phylogenetic analysis revealed that teleost-specific duplicates of epas1 (epas1a/b) were followed by the loss of one of each hif1α and hif1αl in Eleutheronema species. Strong collinearity and similarity of gene characteristics suggested the functional conservation of the HIF-pathway during Eleutheronema evolution. Purifying selection was the major theme in HIF-pathway evolution, leading to a reduction in genetic diversity. Substantially low nucleotide diversity of the HIF-pathway was observed among populations, which might indicate the loss of hypoxia fitness in Eleutheronema. Additionally, the normoxic presence of the HIF-pathway differed among tissues and was species-dependent, indicating their diverse roles during development. Significant regulation of HIF-pathway expression levels was observed across tissues under hypoxic conditions, suggesting critical roles in the hypoxia stress response. Moreover, variant molecular characters suggested different roles in response to hypoxia of the HIF-pathway, which were reflected in the different expression patterns across tissues. Our present study provides novel insights into the interplay between gene diversity within the HIF-pathway and hypoxia fitness in threatened Eleutheronema. We highlighted the importance of HIF-pathway-mediated transcriptional regulation in response to hypoxia stress, which provided valuable information for the genetic mechanisms underlying hypoxia adaptation in fish. The bioinformatic methods developed here have broad applications for other species.
Collapse
Affiliation(s)
- Jie Xiao
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
3
|
Chi W, Fu J, Martyniuk CJ, Wang J, Zhou L. Post-Subfunctionalization Functions of HIF-1αA and HIF-1αB in Cyprinid Fish: Fine-Tuning Mitophagy and Apoptosis Regulation Under Hypoxic Stress. J Mol Evol 2023; 91:780-792. [PMID: 37924420 DOI: 10.1007/s00239-023-10138-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/22/2023] [Indexed: 11/06/2023]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a crucial transcriptional factor that can restore oxygen balance in the body by regulating multiple vital activities. Two HIF-1α copies were retained in cyprinid fish after experiencing a teleost-specific genome duplication. How the "divergent collaboration" of HIF-1αA and HIF-1αB proceeds in regulating mitophagy and apoptosis under hypoxic stress in cells of cyprinid fish remains unclear. In this study, zebrafish HIF-1αA/B expression plasmids were constructed and transfected into the epithelioma papulosum cyprini cells and were subjected to hypoxic stress. HIF-1αA induced apoptosis through promoting ROS generation and mitochondrial depolarization when cells were subjected to oxygen deficiency. Conversely, HIF-1αB was primarily responsible for mitophagy induction, prompting ATP production to mitigate apoptosis. HIF-1αA did not induce mitophagy in the mitochondria and lysosomes co-localization assay but it was involved in the regulation of different mitophagy pathways. Over-expression of HIF-1αA increased the expression of bnip3, fundc1, Beclin1, and foxo3, suggesting it has a dual role in mitochondrial autophagy and cell death. Each duplicated copy also experienced functional divergence and target shifting in the regulation of complexes in the mitochondrial electron transport chain (ETC). Our findings shed light on the post-subfunctionalization function of HIF-1αA and HIF-1αB in zebrafish to fine-tune regulation of mitophagy and apoptosis following hypoxia exposure.
Collapse
Affiliation(s)
- Wei Chi
- School of Life Sciences, Huizhou University, Huizhou, 510607, China.
| | | | - Chris J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Jiangyong Wang
- School of Life Sciences, Huizhou University, Huizhou, 510607, China
| | - Libin Zhou
- School of Life Sciences, Huizhou University, Huizhou, 510607, China
| |
Collapse
|
4
|
Shi X, Gao F, Zhao X, Pei C, Zhu L, Zhang J, Li C, Li L, Kong X. Role of HIF in fish inflammation. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109222. [PMID: 37956798 DOI: 10.1016/j.fsi.2023.109222] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
The hypoxia-inducing factor (HIF) is a central transcription factor in cellular oxygen sensing and regulation. It is common that the inflammation always appears in many diseases, like infectious diseases in fishes, and the inflammation is often accompanied by hypoxia, as a hallmark of inflammation. Besides coordinating cellular responses to low oxygen, HIF-mediated hypoxia signaling pathway is also crucial for immune responses such as the regulations of innate immune cell phenotype and function, as well as metabolic reprogramming under the inflammation. However, the understanding of the molecular mechanisms by which HIFs regulate the inflammatory response in fish is still very limited. Here, we review the characteristics of HIF as well as its roles in innate immune cells and the infections caused by bacteria and viruses. The regulatory effects of HIF on the metabolic reprogramming of innate immune cells are also discussed and the future research directions are outlooked. This paper will serve as a reference for elucidating the molecular mechanism of HIF regulating inflammation and identifying treatment strategies to target HIF for fish disease.
Collapse
Affiliation(s)
- Xiaowei Shi
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China; Sanquan Medical College, Henan Province, PR China
| | - Feng Gao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Chen Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China.
| |
Collapse
|
5
|
Zhao SS, Su XL, Yang HQ, Zheng GD, Zou SM. Functional exploration of SNP mutations in HIF2αb gene correlated with hypoxia tolerance in blunt snout bream (Megalobrama amblycephala). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:239-251. [PMID: 36859574 DOI: 10.1007/s10695-023-01173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 02/13/2023] [Indexed: 05/04/2023]
Abstract
Blunt snout bream (Megalobrama amblycephala) is sensitive to hypoxia environment. Hypoxia-inducible factor (HIF) is the most critical factor in the HIF pathway, which strictly regulates the hypoxia stress process of fish. In this study, we found six hifα genes in blunt snout bream that demonstrated different expressions under hypoxia conditions. In HEK293T cells, all six hifαs were detected to activate the HRE region by luciferase reporter assay. More importantly, we identified two linkage-disequilibrium SNP sites at exon 203 and 752 of the hif2αb gene in blunt snout bream. Haplotype II (A203A752) and its homozygous diplotype II (A203A203A752A752) appeared frequently in a selected strain of blunt snout bream with hypoxia tolerance. Diplotype II has a lower oxygen tension threshold for loss of equilibrium (LOEcrit) over a similar range of temperatures. Moreover, its erythrocyte number increased significantly (p < 0.05) than those in diplotype I and diplotype III strains at 48 h of hypoxia. The enzymes related with hypoxia tolerant traits, i.e., reduced glutathione, superoxide dismutase, and catalase, were also significantly (p < 0.05) induced in diplotype II than in diplotype I or III. In addition, the expression of epo in the liver of diplotype II was significantly (p < 0.01) higher than that in the diplotype I or III strains at 48 h of hypoxia. Taken together, our results found that the hypoxia-tolerant-related diplotype II of hif2αb has the potential to be used as a molecular marker in future genetic breeding of hypoxia-tolerant strain.
Collapse
Affiliation(s)
- Shan-Shan Zhao
- National Demonstration Center for Experimental Fisheries Science Education, Genetics and Breeding Center for Blunt Snout Bream, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
- Zhejiang Ocean University, Zhejiang, 316022, China
| | - Xiao-Lei Su
- National Demonstration Center for Experimental Fisheries Science Education, Genetics and Breeding Center for Blunt Snout Bream, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Hui-Qi Yang
- National Demonstration Center for Experimental Fisheries Science Education, Genetics and Breeding Center for Blunt Snout Bream, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Guo-Dong Zheng
- National Demonstration Center for Experimental Fisheries Science Education, Genetics and Breeding Center for Blunt Snout Bream, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
| | - Shu-Ming Zou
- National Demonstration Center for Experimental Fisheries Science Education, Genetics and Breeding Center for Blunt Snout Bream, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
6
|
Jia Z, Yang M, Zhao Y, Li X, Yang C, Qiao L, Li H, Du J, Lin J, Guan L. CRISPR-Cas9-Mediated NPC1 Gene Deletion Enhances HEK 293 T Cell Adhesion by Regulating E-Cadherin. Mol Biotechnol 2023; 65:252-262. [PMID: 35587334 DOI: 10.1007/s12033-022-00503-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 01/18/2023]
Abstract
NPC1 gene encodes a transmembrane glycoprotein on the late endosome/lysosomal membrane. Its mutation leads to a rare and aggravated autosomal recessive neurovisceral condition, termed Niemann-Pick disease type C1 (NPC1), which is characterized by progressive neurodegeneration, visceral symptoms, and premature death. To investigate the influence of NPC1 gene deletion on cell morphology, adhesion, proliferation, and apoptosis, CRISPR-Cas9 technology was used to knockout the NPC1 gene in HEK 293 T cells. Sanger sequencing, western blotting, and immunofluorescence were used to confirm successful NPC1 ablation. Filipin staining results indicated that deletion of NPC1 gene led to accumulation of unesterified cholesterol in HEK 293 T cells. Phalloidin staining results revealed cell aggregation, synapse shortening, nuclear enlargement, and cytoskeleton filamentous actin thinning in HEK 293 T cells with NPC1 gene mutation. Furthermore, NPC1 gene mutated HEK 293 T cell showed enhanced cell adhesion, inhibited cell proliferation, and increased cell apoptosis. In addition, NPC1 gene mutations significantly increased the protein expression levels of E-cadherin and γ-catenin and significantly decreased the protein expression levels of Wnt 3a, c-Myc, and cyclin D1. These results suggest that NPC1 may regulate cell adhesion by affecting the cadherin-catenin complex through E-cadherin, and that the classical Wnt signaling pathway may be inhibited by restricting β-catenin from entering the nucleus to inhibit cell proliferation.
Collapse
Affiliation(s)
- Zisen Jia
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China.,Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang, China
| | - Minlin Yang
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China.,Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang, China
| | - Yanchun Zhao
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China.,Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang, China
| | - Xiaoying Li
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China.,Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang, China
| | - Ciqing Yang
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China.,Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang, China
| | - Liang Qiao
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China.,Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang, China
| | - Han Li
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China.,Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang, China
| | - Jiang Du
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China.,Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang, China.,School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China. .,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China. .,Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang, China. .,School of Medical Engineering, Xinxiang Medical University, Xinxiang, China.
| | - Lihong Guan
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China. .,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China. .,Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang, China.
| |
Collapse
|
7
|
Townley IK, Babin CH, Murphy TE, Summa CM, Rees BB. Genomic analysis of hypoxia inducible factor alpha in ray-finned fishes reveals missing Ohnologs and evidence of widespread positive selection. Sci Rep 2022; 12:22312. [PMID: 36566251 PMCID: PMC9789988 DOI: 10.1038/s41598-022-26876-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
As aquatic hypoxia worsens on a global scale, fishes will become increasingly challenged by low oxygen, and understanding the molecular basis of their response to hypoxia may help to better define the capacity of fishes to cope with this challenge. The hypoxia inducible factor (HIF) plays a critical role in the molecular response to hypoxia by activating the transcription of genes that serve to improve oxygen delivery to the tissues or enhance the capacity of tissues to function at low oxygen. The current study examines the molecular evolution of genes encoding the oxygen-dependent HIFα subunit (HIFA) in the ray-finned fishes (Actinopterygii). Genomic analyses demonstrate that several lineages retain four paralogs of HIFA predicted from two rounds of genome duplication at the base of vertebrate evolution, broaden the known distribution of teleost-specific HIFA paralogs, and provide evidence for salmonid-specific HIFA duplicates. Evolution of the HIFA gene family is characterized by widespread episodic positive selection at amino acid sites that potentially mediate protein stability, protein-protein interactions, and transcriptional regulation. HIFA transcript abundance depends upon paralog, tissue, and fish lineage. A phylogenetically-informed gene nomenclature is proposed along with avenues for future research on this critical family of transcription factors.
Collapse
Affiliation(s)
- Ian K. Townley
- Science Department, Saint George’s School, Spokane, WA 99208 USA
| | - Courtney H. Babin
- grid.266835.c0000 0001 2179 5031Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148 USA
| | - Taylor E. Murphy
- grid.266835.c0000 0001 2179 5031Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148 USA
| | - Christopher M. Summa
- grid.266835.c0000 0001 2179 5031Department of Computer Sciences, University of New Orleans, New Orleans, LA 70148 USA
| | - Bernard B. Rees
- grid.266835.c0000 0001 2179 5031Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148 USA
| |
Collapse
|
8
|
Nie M, Ni W, Wang L, Gao Q, Liu D, Tian F, Wang Z, Zhang C, Qi D. Insights Into miRNA-mRNA Regulatory Mechanisms of Cold Adaptation in Gymnocypris eckloni: Ubiquitin-Mediated Proteolysis Is Pivotal for Adaptive Energy Metabolism. Front Genet 2022; 13:903995. [PMID: 35937996 PMCID: PMC9354851 DOI: 10.3389/fgene.2022.903995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/03/2022] [Indexed: 12/02/2022] Open
Abstract
This study aimed to understand cold stress adaptations mechanism in fish. Thus, the transcriptional response to cold conditions in Gymnocypris eckloni was evaluated using RNA-seq and microRNA (miRNA)-seq analyses. Low-temperature (LT) group G. eckloni was cultivated outdoors in waters cooled to 2–4°C for 3 weeks, while individuals in the control temperature (CT) group were exposed to 14–16°C. Significantly different responses were observed in both mRNA and miRNA expression profiles, with more mRNAs (1,833 and 1,869 mRNAs were up- and downregulated, respectively) and fewer miRNAs (15 and 6 were up- and downregulated, respectively) observed in the LT group individuals relative to the CT group individuals. A miRNA-mRNA network involved in the regulation of G. eckloni responses to cold stress was constructed; this network included ubiquitin-mediated proteolysis, protein processing, and oxidative phosphorylation. These results provided new insights into mechanisms of cold tolerance by fish, including decreased metabolic activity in addition to proteolysis.
Collapse
Affiliation(s)
- Miaomiao Nie
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Weilin Ni
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Lihan Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Qiang Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Dan Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Zhenji Wang
- Fishery Environmental Monitoring Station of Qinghai Province, Xining, China
| | - Cunfang Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- *Correspondence: Delin Qi,
| |
Collapse
|
9
|
Chafin TK, Regmi B, Douglas MR, Edds DR, Wangchuk K, Dorji S, Norbu P, Norbu S, Changlu C, Khanal GP, Tshering S, Douglas ME. Parallel introgression, not recurrent emergence, explains apparent elevational ecotypes of polyploid Himalayan snowtrout. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210727. [PMID: 34729207 PMCID: PMC8548808 DOI: 10.1098/rsos.210727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The recurrence of similar evolutionary patterns within different habitats often reflects parallel selective pressures acting upon either standing or independently occurring genetic variation to produce a convergence of phenotypes. This interpretation (i.e. parallel divergences within adjacent streams) has been hypothesized for drainage-specific morphological 'ecotypes' observed in polyploid snowtrout (Cyprinidae: Schizothorax). However, parallel patterns of differential introgression during secondary contact are a viable alternative hypothesis. Here, we used ddRADseq (N = 35 319 de novo and N = 10 884 transcriptome-aligned SNPs), as derived from Nepali/Bhutanese samples (N = 48 each), to test these competing hypotheses. We first employed genome-wide allelic depths to derive appropriate ploidy models, then a Bayesian approach to yield genotypes statistically consistent under the inferred expectations. Elevational 'ecotypes' were consistent in geometric morphometric space, but with phylogenetic relationships at the drainage level, sustaining a hypothesis of independent emergence. However, partitioned analyses of phylogeny and admixture identified subsets of loci under selection that retained genealogical concordance with morphology, suggesting instead that apparent patterns of morphological/phylogenetic discordance are driven by widespread genomic homogenization. Here, admixture occurring in secondary contact effectively 'masks' previous isolation. Our results underscore two salient factors: (i) morphological adaptations are retained despite hybridization and (ii) the degree of admixture varies across tributaries, presumably concomitant with underlying environmental or anthropogenic factors.
Collapse
Affiliation(s)
- Tyler K. Chafin
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder 80309, USA
| | - Binod Regmi
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
- National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Marlis R. Douglas
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - David R. Edds
- Department of Biological Sciences, Emporia State University, Emporia, KS 66801, USA
| | - Karma Wangchuk
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
- National Research and Development Centre for Riverine and Lake Fisheries, Ministry of Agriculture and Forests, Royal Government of Bhutan, Haa, Bhutan
| | - Sonam Dorji
- National Research and Development Centre for Riverine and Lake Fisheries, Ministry of Agriculture and Forests, Royal Government of Bhutan, Haa, Bhutan
| | - Pema Norbu
- National Research and Development Centre for Riverine and Lake Fisheries, Ministry of Agriculture and Forests, Royal Government of Bhutan, Haa, Bhutan
| | - Sangay Norbu
- National Research and Development Centre for Riverine and Lake Fisheries, Ministry of Agriculture and Forests, Royal Government of Bhutan, Haa, Bhutan
| | - Changlu Changlu
- National Research and Development Centre for Riverine and Lake Fisheries, Ministry of Agriculture and Forests, Royal Government of Bhutan, Haa, Bhutan
| | - Gopal Prasad Khanal
- National Research and Development Centre for Riverine and Lake Fisheries, Ministry of Agriculture and Forests, Royal Government of Bhutan, Haa, Bhutan
| | - Singye Tshering
- National Research and Development Centre for Riverine and Lake Fisheries, Ministry of Agriculture and Forests, Royal Government of Bhutan, Haa, Bhutan
| | - Michael E. Douglas
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
10
|
Mandic M, Joyce W, Perry SF. The evolutionary and physiological significance of the Hif pathway in teleost fishes. J Exp Biol 2021; 224:272213. [PMID: 34533194 DOI: 10.1242/jeb.231936] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The hypoxia-inducible factor (HIF) pathway is a key regulator of cellular O2 homeostasis and an important orchestrator of the physiological responses to hypoxia (low O2) in vertebrates. Fish can be exposed to significant and frequent changes in environmental O2, and increases in Hif-α (the hypoxia-sensitive subunit of the transcription factor Hif) have been documented in a number of species as a result of a decrease in O2. Here, we discuss the impact of the Hif pathway on the hypoxic response and the contribution to hypoxia tolerance, particularly in fishes of the cyprinid lineage, which includes the zebrafish (Danio rerio). The cyprinids are of specific interest because, unlike in most other fishes, duplicated paralogs of the Hif-α isoforms arising from a teleost-specific genome duplication event have been retained. Positive selection has acted on the duplicated paralogs of the Hif-α isoforms in some cyprinid sub-families, pointing to adaptive evolutionary change in the paralogs. Thus, cyprinids are valuable models for exploring the evolutionary significance and physiological impact of the Hif pathway on the hypoxic response. Knockout in zebrafish of either paralog of Hif-1α greatly reduces hypoxia tolerance, indicating the importance of both paralogs to the hypoxic response. Here, with an emphasis on the cardiorespiratory system, we focus on the role of Hif-1α in the hypoxic ventilatory response and the regulation of cardiac function. We explore the effects of the duration of the hypoxic exposure (acute, sustained or intermittent) on the impact of Hif-1α on cardiorespiratory function and compare relevant data with those from mammalian systems.
Collapse
Affiliation(s)
- Milica Mandic
- Department of Animal Science, 2251 Meyer Hall, University of California Davis, Davis, CA 95616, USA
| | - William Joyce
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5.,Department of Biology - Zoophysiology, Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus C, Denmark
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
11
|
Tong C, Li M, Tang Y, Zhao K. Genomic Signature of Shifts in Selection and Alkaline Adaptation in Highland Fish. Genome Biol Evol 2021; 13:evab086. [PMID: 33892511 PMCID: PMC8126726 DOI: 10.1093/gbe/evab086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Understanding how organisms adapt to aquatic life at high altitude is fundamental in evolutionary biology. This objective has been addressed primarily related to hypoxia adaptation by recent comparative studies, whereas highland fish has also long suffered extreme alkaline environment, insight into the genomic basis of alkaline adaptation has rarely been provided. Here, we compared the genomes or transcriptomes of 15 fish species, including two alkaline tolerant highland fish species and their six alkaline intolerant relatives, three alkaline tolerant lowland fish species, and four alkaline intolerant species. We found putatively consistent patterns of molecular evolution in alkaline tolerant species in a large number of shared orthologs within highland and lowland fish taxa. Remarkably, we identified consistent signatures of accelerated evolution and positive selection in a set of shared genes associated with ion transport, apoptosis, immune response, and energy metabolisms in alkaline tolerant species within both highland and lowland fish taxa. This is one of the first comparative studies that began to elucidate the consistent genomic signature of alkaline adaptation shared by highland and lowland fish. This finding also highlights the adaptive molecular evolution changes that support fish adapting to extreme environments at high altitude.
Collapse
Affiliation(s)
- Chao Tong
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Miao Li
- Center for Advanced Retinal and Ocular Therapeutics, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yongtao Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
12
|
Chen J, Guan L, Zou M, He S, Li D, Chi W. Specific cyprinid HIF isoforms contribute to cellular mitochondrial regulation. Sci Rep 2020; 10:17246. [PMID: 33057104 PMCID: PMC7560723 DOI: 10.1038/s41598-020-74210-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) functions as a master regulator of the cellular response to hypoxic stress. Two HIF-1α paralogs, HIF-1αA and HIF-1αB, were generated in euteleosts by the specific, third round of genome duplication, but one paralog was later lost in most families with the exception of cyprinid fish. How these duplicates function in mitochondrial regulation and whether their preservation contributes to the hypoxia tolerance demonstrated by cyprinid fish in freshwater environments is not clear. Here we demonstrated the divergent function of these two zebrafish Hif-1a paralogs through cellular approaches. The results showed that Hif-1aa played a role in tricarboxylic acid cycle by increasing the expression of Citrate synthase and the activity of mitochondrial complex II, and it also enhanced mitochondrial membrane potential and ROS production by reducing free Ca2+ in the cytosol. Hif-1ab promoted intracellular ATP content by up-regulating the activity of mitochondrial complexes I, III and IV and the expression of related genes. Furthermore, both the two zebrafish Hif-1a paralogs promoted mitochondrial mass and the expression level of mtDNA, contributing to mitochondrial biogenesis. Our study reveals the divergent functions of Hif-1aa and Hif-1ab in cellular mitochondrial regulation.
Collapse
Affiliation(s)
- Jing Chen
- College of Fisheries, National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Lihong Guan
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Ming Zou
- College of Fisheries, National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Shunping He
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Dapeng Li
- College of Fisheries, National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Wei Chi
- College of Fisheries, National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China.
| |
Collapse
|
13
|
Solari KA, Hadly EA. Experimental study of hypoxia-induced changes in gene expression in an Asian pika, Ochotona dauurica. PLoS One 2020; 15:e0240435. [PMID: 33044983 PMCID: PMC7549823 DOI: 10.1371/journal.pone.0240435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 09/27/2020] [Indexed: 01/09/2023] Open
Abstract
Acclimation to environmental changes driven by alterations in gene expression will serve as an important response for some species facing rapid Anthropogenic climate change. Pikas, genus Ochotona, are particularly vulnerable to climate change and current trends suggest that only the highest, coldest elevations within their ranges may remain suitable habitat for these species. In this study we aimed to assess the role of changes in gene expression in potentially facilitating elevational movements in pikas by measuring gene expression in the only known captive pika population, Ochotona dauurica, in response to hypoxic conditions. Using a controlled experiment, we exposed four male pikas to oxygen concentrations characteristic of sea-level, 2,000 m, and 4,000 m for 5 days each. Using blood samples collected after each treatment, we used RNAseq to determine if candidate pathways were undergoing significant changes in gene expression at different levels of oxygen (~100%, ~77%, and ~61% of sea-level oxygen concentrations). Gene set enrichment analyses showed that gene sets associated with the oxidative phosphorylation pathway and electron transport chain were significantly enriched for up-regulated genes in the 4,000 m samples compared to samples from the same individuals at lower-elevation conditions. Up-regulation of these pathways is consistent with known mechanisms of oxygen compensation. Our results suggest that these pikas have the acclimation capacity to tolerate oxygen concentrations characteristic of any elevation within their species range and that gene expression can be changed in a matter of days to accommodate drastically different oxygen concentrations. Thus, rapid and radical elevational movements that may be required of some pika species to avoid warmer temperatures in the Anthropocene will likely not be limited by hypoxic stress.
Collapse
Affiliation(s)
- Katherine A. Solari
- Department of Biology, Stanford University, Stanford, California, United States of America
- Program for Conservation Genomics, Stanford University, Stanford, California, United States of America
- * E-mail:
| | - Elizabeth A. Hadly
- Department of Biology, Stanford University, Stanford, California, United States of America
- Program for Conservation Genomics, Stanford University, Stanford, California, United States of America
- Woods Institute for the Environment, Stanford University, Stanford, California, United States of America
- Center for Innovation in Global Health, Stanford University, Stanford, California, United States of America
| |
Collapse
|
14
|
Chen J, Yang L, Zhang R, Uebbing S, Zhang C, Jiang H, Lei Y, Lv W, Tian F, Zhao K, He S. Transcriptome-Wide Patterns of the Genetic and Expression Variations in Two Sympatric Schizothoracine Fishes in a Tibetan Plateau Glacier Lake. Genome Biol Evol 2020; 12:3725-3737. [PMID: 31917411 PMCID: PMC6978627 DOI: 10.1093/gbe/evz276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2019] [Indexed: 12/25/2022] Open
Abstract
Sympatric speciation remains a central focus of evolutionary biology. Although some evidence shows speciation occurring in this way, little is known about the gene expression evolution and the characteristics of population genetics as species diverge. Two closely related Gymnocypris fish (Gymnocypris chui and Gymnocypris scleracanthus), which come from a small glacier lake in the Tibetan Plateau, Lake Langcuo, exist a possible incipient sympatric adaptive ecological speciation. We generated large amounts of RNA-Seq data from multiple individuals and tissues from each of the two species and compared gene expression patterns and genetic polymorphisms between them. Ordination analysis separated samples by organ rather than by species. The degree of expression difference between organs within and between species was different. Phylogenetic analyses indicated that the two closely related taxa formed a monophyletic complex. Population structure analysis displayed two distinctly divergent clusters of G. chui and G. scleracanthus populations. By contrast, G. scleracanthus population genetic diversity is higher than that of G. chui. Considerable sites of the two populations were differentiated with a coefficient of FST = 0.25–0.50, implying that a small proportion of loci nevertheless exhibited deep divergence in two comparisons. Concomitantly, putatively selected genes during speciation revealed functional categories are enriched in bone morphogenesis, cell growth, neurogenetics, enzyme activity, and binding activity in G. chui population. In contrast, nutrition and localization were highlighted in G. scleracanthus. Collectively, morphological traits and dietary preference combine with genetic variation and expression variation, probably contributed to the incipient speciation of two sympatric populations.
Collapse
Affiliation(s)
- Juan Chen
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liandong Yang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Renyi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Severin Uebbing
- Department of Genetics, Yale University School of Medicine, New Haven, CT
| | - Cunfang Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Haifeng Jiang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Lei
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenqi Lv
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
15
|
Chen J, Shen Y, Wang J, Ouyang G, Kang J, Lv W, Yang L, He S. Analysis of Multiplicity of Hypoxia-Inducible Factors in the Evolution of Triplophysa Fish (Osteichthyes: Nemacheilinae) Reveals Hypoxic Environments Adaptation to Tibetan Plateau. Front Genet 2020; 11:433. [PMID: 32477402 PMCID: PMC7235411 DOI: 10.3389/fgene.2020.00433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
HIF (Hypoxia-inducible factor) gene family members function as master regulators of cellular and systemic oxygen homeostasis during changes in oxygen availability. Qinghai-Tibet Plateau is a natural laboratory for for long-term hypoxia and cold adaptation. In this context, T. scleroptera that is restricted to >3500 m high-altitude freshwater rivers was selected as the model to compare with a representative species from the plain, P. dabryanus. We cloned different HIF-α and carried out a phylogenetic analysis from invertebrates to vertebrates for identifying HIF-α genes and analyzing their evolutionary history. Intriguingly, the HIF-α has undergone gene duplications might be due to whole-genome duplication (WGD) events during evolution. PAML analysis indicated that HIF-1αA was subjected to positive selection acted on specific sites in Triplophysa lineages. To investigate the relationship between hypoxia adaptation and the regulation of HIF-α stability by pVHL in plateau and plain fish, a series of experiments were carried out. Comparison the luciferase transcriptional activity and protein levels of HIF-αs and the differing interactions of HIF-αs with pVHL, show clear differences between plateau and plain fish. T. scleroptera pVHL could enhance HIF-α transcriptional activity under hypoxia, and functional validation through pVHL protein mutagenesis showed that these mutations increased the stability of HIF-α and its hetero dimerization affinity to ARNT. Our research shows that missense mutations of pVHL induced evolutionary molecular adaptation in Triplophysa fishes living in high altitude hypoxic environments.
Collapse
Affiliation(s)
- Juan Chen
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanjun Shen
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jingliang Kang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenqi Lv
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liandong Yang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
16
|
Genomic signature of accelerated evolution in a saline-alkaline lake-dwelling Schizothoracine fish. Int J Biol Macromol 2020; 149:341-347. [DOI: 10.1016/j.ijbiomac.2020.01.207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/21/2019] [Accepted: 01/15/2020] [Indexed: 12/18/2022]
|
17
|
Shen Y, Yang N, Liu Z, Chen Q, Li Y. Phylogenetic perspective on the relationships and evolutionary history of the Acipenseriformes. Genomics 2020; 112:3511-3517. [PMID: 32105795 DOI: 10.1016/j.ygeno.2020.02.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/06/2020] [Accepted: 02/21/2020] [Indexed: 11/16/2022]
Abstract
The Acipenseriformes, as one of the earliest extant vertebrates, plays an important role in the evolution of fishes and even the whole vertebrates. Here we collected and analyzed all complete mitochondrial genomes of Acipenseriformes species. Phylogenetic analyses demonstrated that the polytomous branch included Acipenseridae and Polyodontidae formed five clades. The Polyodontidae clade and the Scaphirhynchus clade both were monophyletic group, whereas the Acipenser species and the Huso species both were polyphyletic group. The Bayesian divergence times showed that the origin time for Acipenseriformes was at 318.0 Mya, which was similar to the some previous results of 312.1 Mya, 346.9 Mya and 389.7 Mya. The result was in good consistent with the paleontological data available and the split time of the Pacific and Atlantic Oceans from the Jurassic to the Cretaceous (Laurasia splits in North America and Eurasia). The dN/dS ratios showed the evolutionary rates gradually slow down in five major Acipenseriformes clades from the Clade A (the Pacific sturgeons species) to Clade C (the genus Scaphirhynchus), which was related to the process of geographical formation.
Collapse
Affiliation(s)
- Yanjun Shen
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Na Yang
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhihao Liu
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qiliang Chen
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yingwen Li
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
18
|
Wang C, Wu X, Hu X, Jiang H, Chen L, Xu Q. Hypoxia-inducible factor 1α from a high-altitude fish enhances cytoprotection and elevates nitric oxide production in hypoxic environment. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:39-49. [PMID: 31595407 DOI: 10.1007/s10695-019-00694-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Hypoxia-inducible factors (HIFs) are master transcription factor regulating hypoxic responses in vertebrates. Species of Schizothoracine, a sub-family of cyprinidae, are highly endemic to the hypoxic Qinghai-Tibetan Plateau (QTP). What roles the HIFs play in hypoxic adaptation in the Schizothoracine fish is little known. In this study, the HIF-1α/B gene from Gymnocypris dobula (Gd) was characterized. The predicted protein for Gd-HIF-1α/B contains the main domains (bHLH, PAS, PAC, ODD, N-TAD, and C-TAD). Moreover, a specific mutation that the proline hydroxylation motif (LXXLAP) mutated into PxxLAP was observed in Gd-HIF-1α/B CODD domain, which may lead to changes in the function. To clarify whether HIF-1α/B of G. dobula possesses hypoxic adaptive features, Gd-HIF1α/B and Schizothorax prenanti-HIF1α/B (Sp-HIF1α/B) were cloned into an expression vector and transfected into 293T cells. Cell viability was found to be significantly higher in cells transfected with Gd-HIF-1α/B than those transfected with Sp-HIF-1α/B under hypoxic conditions. In addition, G. dobula HIF-1α/B showed stronger activity in transactivating the expression of nitric oxide (NO)-synthesizing enzyme, NOS2B under hypoxia stresses than the orthologous gene from S. prenanti, which were accompanied with upregulated expressions of NOS2B in heart of G. dobula, which may attribute to elevated NO levels detected in G. dobula than the lower land species. These results indicated that the HIF-1α plays an important role in mediating the iNOS signaling system in the process of evolutionary adaptation of the Schizothoracine to the highland environment.
Collapse
Affiliation(s)
- Congcong Wang
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Shanghai, 201306, People's Republic of China
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Shanghai, 201306, People's Republic of China
| | - Xiaohui Wu
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Shanghai, 201306, People's Republic of China
| | - Xingxing Hu
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Shanghai, 201306, People's Republic of China
| | - Huapeng Jiang
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Shanghai, 201306, People's Republic of China
| | - Liangbiao Chen
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Shanghai, 201306, People's Republic of China.
| | - Qianghua Xu
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Shanghai, 201306, People's Republic of China.
- National Distant-water Fisheries Engineering Research Center, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Collaborative Innovation Center for Distant-water Fisheries, Shanghai, 201306, China.
| |
Collapse
|
19
|
Tong C, Li M. Transcriptomic signature of rapidly evolving immune genes in a highland fish. FISH & SHELLFISH IMMUNOLOGY 2020; 97:587-592. [PMID: 31891809 DOI: 10.1016/j.fsi.2019.12.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/21/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Recent genome-wide studies have begun to elucidate the genomic basis of hypoxia, long-term cold and high saline and alkaline adaptation in highland fish, and a number of key genes contributed to its highland adaptation were identified. An increasing number of studies indicated that immune genes of Tibetan endemic fish species underwent positive selection towards functional shift, while the insight into immune gene repertoire of Tibetan highland fishes from genome-wide studies has largely lagged behind. In this study, we performed one of the first comparative genomics study in particular focusing on the signatures of immune genes in a highland fish, Gymnocypris przewalskii based on immune-relevant tissue transcriptome assemblies. We identified seven putative rapidly evolving immune genes with elevated molecular evolutionary rate (dN/dS) relative to lowland fish species. Using tissue-transcriptome data, we found most of rapidly evolving immune genes were broadly expressed in head-kidney, spleen, gills and skin tissues, which significantly enriched for complement activation and inflammatory response processes. In addition, we found a set of complement activation related genes underwent accelerated evolution and showed consistently repressed expression patterns in response to parasite Ichthyophthirius multifiliis infection. Moreover, we detected a number of immune genes involved in adaptive immune system exhibited distinct signature of upregulated expression patterns after parasite infection. Taken together, this study provided putative transcriptomic signatures of rapidly evolving immune genes, and will gain the insight into Schizothoracine fish adaptation to high-altitude extreme aquatic environments including diversified pathogen challenge.
Collapse
Affiliation(s)
- Chao Tong
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Miao Li
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Sun S, Wu Y, Ge X, Jakovlić I, Zhu J, Mahboob S, Al-Ghanim KA, Al-Misned F, Fu H. Disentangling the interplay of positive and negative selection forces that shaped mitochondrial genomes of Gammarus pisinnus and Gammarus lacustris. ROYAL SOCIETY OPEN SCIENCE 2020; 7:190669. [PMID: 32218929 PMCID: PMC7029888 DOI: 10.1098/rsos.190669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/29/2019] [Indexed: 05/16/2023]
Abstract
We hypothesized that the mitogenome of Gammarus lacustris (GL), native to the Qinghai-Tibet Plateau, might exhibit genetic adaptations to the extreme environmental conditions associated with high altitudes (greater than 3000 m). To test this, we also sequenced the mitogenome of Gammarus pisinnus (GP), whose native range is close to the Tibetan plateau, but at a much lower altitude (200-1500 m). The two mitogenomes exhibited conserved mitochondrial architecture, but low identity between genes (55% atp8 to 76.1% cox1). Standard (homogeneous) phylogenetic models resolved Gammaridae as paraphyletic, but 'heterogeneous' CAT-GTR model as monophyletic. In indirect support of our working hypothesis, GL, GP and Gammarus fossarum exhibit evidence of episodic diversifying selection within the studied Gammaroidea dataset. The mitogenome of GL generally evolves under a strong purifying selection, whereas GP evolves under directional (especially pronounced in atp8) and/or relaxed selection. This is surprising, as GP does not inhabit a unique ecological niche compared to other gammarids. We propose that this rapid evolution of the GP mitogenome may be a reflection of its relatively recent speciation and heightened non-adaptive (putatively metabolic rate-driven) mutational pressures. To test these hypotheses, we urge sequencing mitogenomes of remaining Gammarus species populating the same geographical range as GP.
Collapse
Affiliation(s)
- Shengming Sun
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, People's Republic of China
| | - Ying Wu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, People's Republic of China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, People's Republic of China
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, People's Republic of China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Wuhan, People's Republic of China
| | - Jian Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, People's Republic of China
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, People's Republic of China
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh-11451, Riyadh, Saudi Arabia
- Department of Zoology, GC University, Faisalabad, Pakistan
| | - Khalid Abdullah Al-Ghanim
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh-11451, Riyadh, Saudi Arabia
| | - Fahad Al-Misned
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh-11451, Riyadh, Saudi Arabia
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, People's Republic of China
| |
Collapse
|
21
|
Zhang J, Dong C, Feng J, Li J, Li S, Feng J, Duan X, Sun G, Xu P, Li X. Effects of dietary supplementation of three strains of Lactococcus lactis on HIFs genes family expression of the common carp following Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2019; 92:590-599. [PMID: 31252044 DOI: 10.1016/j.fsi.2019.06.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/23/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
HIFs (Hypoxia inducible factors) are the main regulators of the expression change of oxygen-dependent genes, in addition, they also play important roles in immune regulation. HIFs participate in infectious diseases and inflammatory responses, providing us a new therapeutic target for the treatment of diseases. In this study, 16 HIFs were identified in common carp genome database. Comparative genomics analysis showed large expansion of HIF gene family and approved the four round whole genome duplication (WGD) event in common carp. To further understand the function of HIFs, the domain architectures were predicted. All HIF proteins had the conserved HLH-PAS domain, which were essential for them to form dimer and bind to the downstream targets. The differences in domain of HIFα and HIFβ might result in their different functions. Phylogenetic analysis revealed that all HIFs were divided into two subfamilies and the HIFs in common carp were clustered with their teleost counterparts indicating they are highly conservative during evolution. In addition, the tissue distribution was examined by RT-PCR showed that most of HIF genes had a wide range of tissue distribution but exhibited tissue-specific expression patterns. The expression divergences were observed between the copy genes, for example, HIF1A-1, HIF2A-1, ARNT-2 had wide tissue distribution while their copies had limited tissue distribution, proving the function divergence of copies post the WGD event. In order to find an effective activation of HIFs and apply to treatment of aquatic diseases, we investigate the dietary supplementation effects of different strains of Lactococcus lactis on the expression of HIFα subfamily members in kidney of common carp infected with A. hydrophila. In addition, all of the HIF genes have a high expression in the early stages of infection, and decreased in the treatment time point of 48 h in common carp. This phenomenon confirms that as a switch, the main function of HIFs is to regulate the production of immune response factors in early infection. So activation of the switch may be an effective method for infectious disease treatment. As expected, the treatment groups improved the expression of HIFs compared with the control group, and the effects of the three strains are different. The strain1 of L. lactis had a stronger induction on HIF genes than strain2 and strain3, and it might be applied as a potential activation of HIF genes for disease treatment. So, adding befitting L. lactis maybe a well method to activate the HIF genes to protect them from mycobacterial infection.
Collapse
Affiliation(s)
- Jiangfan Zhang
- College of Fishery, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Chuanju Dong
- College of Fishery, Henan Normal University, Xinxiang, Henan, 453007, China; Key Laboratory of Tropical&;Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, CAFS, Guangzhou, 510380, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China.
| | - Junchang Feng
- College of Fishery, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Junpeng Li
- Xinxiang Central Hospital, Xinxiang, Henan, 453000, China
| | - Shengjie Li
- Key Laboratory of Tropical&;Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, CAFS, Guangzhou, 510380, China
| | - Jianxin Feng
- Henan Academy of Fishery Science, Zhengzhou, 450044, China
| | - Xiaodi Duan
- College of Fishery, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Gaigai Sun
- College of Fishery, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Peng Xu
- College of Fishery, Henan Normal University, Xinxiang, Henan, 453007, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China.
| | - Xuejun Li
- College of Fishery, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
22
|
Tarade D, Lee JE, Ohh M. Evolution of metazoan oxygen-sensing involved a conserved divergence of VHL affinity for HIF1α and HIF2α. Nat Commun 2019; 10:3293. [PMID: 31337753 PMCID: PMC6650433 DOI: 10.1038/s41467-019-11149-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/26/2019] [Indexed: 12/18/2022] Open
Abstract
Duplication of ancestral hypoxia-inducible factor (HIF)α coincided with the evolution of vertebrate species. Paralogs HIF1α and HIF2α are the most well-known factors for modulating the cellular transcriptional profile following hypoxia. However, how the processes of natural selection acted upon the coding region of these two genes to optimize the cellular response to hypoxia during evolution remains unclear. A key negative regulator of HIFα is von Hippel-Lindau (VHL) tumour suppressor protein. Here we show that evolutionarily-relevant substitutions can modulate a secondary contact between HIF1α Met561 and VHL Phe91. Notably, HIF1α binds more tightly than HIF2α to VHL due to a conserved Met to Thr substitution observed in the vertebrate lineage. Similarly, substitution of VHL Phe91 with Tyr, as seen in invertebrate species, decreases VHL affinity for both HIF1α and HIF2α. We propose that vertebrate evolution involved a more complex hypoxia response with fine-tuned divergence of VHL affinity for HIF1α and HIF2α. Paralogs HIF1α and HIF2α are important modulators regulating cellular transcriptional profile following hypoxia. Here, the authors investigate evolutionary substitutions that fine tune the interaction between HIFα and their regulator VHL in the vertebrate and invertebrate lineages.
Collapse
Affiliation(s)
- Daniel Tarade
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Michael Ohh
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
23
|
Divergence, evolution and adaptation in ray-finned fish genomes. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1003-1018. [PMID: 31098893 DOI: 10.1007/s11427-018-9499-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023]
Abstract
With the rapid development of next-generation sequencing technologies and bioinformatics, over 50 ray-finned fish genomes by far have been sequenced with high quality. The genomic work provides abundant genetic resources for deep understanding of divergence, evolution and adaptation in the fish genomes. They are also instructive for identification of candidate genes for functional verification, molecular breeding, and development of novel marine drugs. As an example of other omics data, the Fish-T1K project generated a big database of fish transcriptomes to integrate with these published fish genomes for potential applications. In this review, we highlight the above-mentioned recent investigations and core topics on the ray-finned fish genome research, with a main goal to obtain a deeper understanding of fish biology for theoretical and practical applications.
Collapse
|
24
|
Convergent evolution misled taxonomy in schizothoracine fishes (Cypriniformes: Cyprinidae). Mol Phylogenet Evol 2019; 134:323-337. [PMID: 30641272 DOI: 10.1016/j.ympev.2019.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 12/26/2018] [Accepted: 01/07/2019] [Indexed: 12/23/2022]
Abstract
Highly specialized grade (HSG; genera Gymnocypris, Oxygymnocypris, Schizopygopsis, Platypharodon and Chuanchia) of the Schizothoracinae (Cypriniformes: Cyprinidae) are endemic to the Qinghai-Tibet Plateau (QTP). Previously, two distinct ecomorphs were recognized according to trophic traits. One was a limnetic omnivore with normal lower jaw morphology, terminal mouth, and moderate or dense gill rakers, mostly inhabiting in open water of lakes, including Gymnocypris and Oxygymnocypris. Another was a benthic feeder with inferior mouth, sparse gill rakers and sharp horny sheath on the lower jaw for scraping of attached prey off hard substrates, including Schizopygopsis, Platypharodon and Chuanchia. However, traditional taxonomy of HSG based on these trophic traits presented extensive conflicts with the molecular studies in recent years. The possible cause could be convergent evolution in morphology, retention of ancestral polymorphisms or mitochondrial introgression, but these hypotheses could not be assessed due to incomplete taxon sampling and only mitochondrial data employed in previous works. Here, we conducted the most comprehensive molecular analysis on HSG fishes to date, using four mitochondrial loci and 152,464 genome-wide SNPs, and including 21 of 24 putative species and one undescribed Schizopygopsis species. Both SNP and mtDNA trees confirmed extensive paraphyly of genera Gymnocypris and Schizopygopsis, where species often were clustered together by watershed instead of by genus. Basal split into the north clade B and the south clade C (ca. 3.03 Ma) approximately by the Tanggula-Tanitawen Mountains in SLAF tree coincided with a violent uplift of the QTP during the phase A of 'Qingzang movement' (ca. 3.6 Ma). Ancestral state reconstruction of the trophic ecomorph showed that the limnetic omnivore ecomorph had evolved repeatedly in clade B and C. Furthermore, we presented a striking case of convergent evolution between two 'subspecies' Gymnocypris chui chui and G. chui longimandibularis, which had diverged as early as two million years ago (ca. 2.42 Ma). Ecological analyses revealed that similar food utilization, particularly in zooplankton, was the main underlying driving force. This work showed an example of taxonomy with the most extensive errors at the genus/species levels due to convergent evolution and suggested that trophic traits could be misleading in fish taxonomy. Therefore, we propose a major generic revision for HSG species.
Collapse
|
25
|
Solari KA, Hadly EA. Evolution for extreme living: variation in mitochondrial cytochrome c oxidase genes correlated with elevation in pikas (genus Ochotona). Integr Zool 2018; 13:517-535. [PMID: 29851233 DOI: 10.1111/1749-4877.12332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The genus Ochotona (pikas) is a clade of cold-tolerant lagomorphs that includes many high-elevation species. Pikas offer a unique opportunity to study adaptations and potential limitations of an ecologically important mammal to high-elevation hypoxia. We analyzed the evolution of 3 mitochondrial genes encoding the catalytic core of cytochrome c oxidase (COX) in 10 pika species occupying elevations from sea level to 5000 m. COX is an enzyme highly reliant on oxygen and essential for cell function. One amino acid property, the equilibrium constant (ionization of COOH), was found to be under selection in the overall protein complex. We observed a strong relationship between the net value change in this property and the elevation each species occupies, with higher-elevation species having potentially more efficient proteins. We also found evidence of selection in low-elevation species for potentially less efficient COX, perhaps trading efficiency for heat production in the absence of hypoxia. Our results suggest that different pika species may have evolved elevation-specific COX proteins, specialization that may indicate limitations in their ability to shift their elevational ranges in response to future climate change.
Collapse
Affiliation(s)
| | - Elizabeth A Hadly
- Department of Biology, Stanford University, Stanford, California, USA.,Woods Institute for the Environment, Stanford University, Stanford, California, USA.,Program for Conservation Genomics, Stanford University, Stanford, California, USA
| |
Collapse
|
26
|
Qi D, Chao Y, Wu R, Xia M, Chen Q, Zheng Z. Transcriptome Analysis Provides Insights Into the Adaptive Responses to Hypoxia of a Schizothoracine Fish ( Gymnocypris eckloni). Front Physiol 2018; 9:1326. [PMID: 30298021 PMCID: PMC6160557 DOI: 10.3389/fphys.2018.01326] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/03/2018] [Indexed: 01/12/2023] Open
Abstract
The schizothoracine fish endemic to the Qinghai-Tibetan Plateau are comparatively well adapted to aquatic environments with low oxygen partial pressures. However, few studies have used transcriptomic profiling to investigate the adaptive responses of schizothoracine fish tissues to hypoxic stress. This study compared the transcriptomes of Gymnocypris eckloni subjected to 72 h of hypoxia (Dissolved oxygen, DO = 3.0 ± 0.1 mg/L) to those of G. eckloni under normoxia (DO = 8.4 ± 0.1 mg/L). To identify the potential genes and pathways activated in response to hypoxic stress, we collected muscle, liver, brain, heart, and blood samples from normoxic and hypoxic fish for RNA-Seq analysis. We annotated 337,481 gene fragments. Of these, 462 were differentially expressed in the hypoxic fish as compared to the normoxic fish. Under hypoxia, the transcriptomic profiles of the tissues differed, with muscle the most strongly affected by hypoxia. Our data indicated that G. eckloni underwent adaptive changes in gene expression in response to hypoxia. Several strategies used by G. eckloni to cope with hypoxia were similar to those used by other fish, including a switch from aerobic oxidation to anaerobic glycolysis and the suppression of major energy-requiring processes. However, G. eckloni used an additional distinct strategy to survive hypoxic environments: a strengthening of the antioxidant system and minimization of ischemic injury. Here, we identified several pathways and related genes involved in the hypoxic response of the schizothoracine fish. This study provides insights into the mechanisms used by schizothoracine fish to adapt to hypoxic environments.
Collapse
Affiliation(s)
- Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Yan Chao
- Animal Science Department, Agriculture and Animal Husbandry College, Qinghai University, Xining, China
| | - Rongrong Wu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Mingzhe Xia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Qichang Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Zhiqin Zheng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
27
|
Pelster B, Egg M. Hypoxia-inducible transcription factors in fish: expression, function and interconnection with the circadian clock. J Exp Biol 2018; 221:221/13/jeb163709. [DOI: 10.1242/jeb.163709] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ABSTRACT
The hypoxia-inducible transcription factors are key regulators for the physiological response to low oxygen availability. In vertebrates, typically three Hif-α isoforms, Hif-1α, Hif-2α and Hif-3α, are expressed, each of which, together with Hif-1β, may form a functional heterodimer under hypoxic conditions, controlling expression of hundreds of genes. A teleost-specific whole-genome duplication complicates the analysis of isoform-specific functions in fish, but recent studies suggest that the existence of paralogues of a specific isoform opens up the possibility for a subfunctionalization. In contrast to during development inside the uterus, fish eggs are freely accessible and studies analyzing Hif expression in fish embryos during development have revealed that Hif proteins are not only controlling the hypoxic response, but are also crucial for proper development and organ differentiation. Significant advances have been made in our knowledge about tissue-specific functions of Hif proteins, especially with respect to gill or gonadal tissue. The hypoxia signalling pathway is known to be tightly and mutually intertwined with the circadian clock in zebrafish and mammals. Recently, a mechanistic explanation for the hypoxia-induced dampening of the transcriptional clock was detected in zebrafish, including also metabolically induced alterations of cellular redox signalling. In turn, MAP kinase-mediated H2O2 signalling modulates the temporal expression of Hif-1α protein, similar to the redox regulation of the circadian clock itself. Once again, the zebrafish has emerged as an excellent model organism with which to explore these specific functional aspects of basic eukaryotic cell biology.
Collapse
Affiliation(s)
- Bernd Pelster
- Institute of Zoology, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
- Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Margit Egg
- Institute of Zoology, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| |
Collapse
|
28
|
Qi D, Chao Y, Zhao Y, Xia M, Wu R. Molecular evolution of myoglobin in the Tibetan Plateau endemic schizothoracine fish (Cyprinidae, Teleostei) and tissue-specific expression changes under hypoxia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:557-571. [PMID: 29230594 DOI: 10.1007/s10695-017-0453-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Myoglobin (Mb) is an oxygen-binding hemoprotein that was once thought to be exclusively expressed in oxidative myocytes of skeletal and cardiac muscle where it serves in oxygen storage and facilitates intracellular oxygen diffusion. In this study, we cloned the coding sequence of the Mb gene from four species, representing three groups, of the schizothoracine fish endemic to the Qinghai-Tibetan Plateau (QTP), then conducted molecular evolution analyses. We also investigated tissue expression patterns of Mb and the expression response to moderate and severe hypoxia at the mRNA and protein levels in a representative of the highly specialized schizothoracine fish species, Schizopygopsis pylzovi. Molecular evolution analyses showed that Mb from the highly specialized schizothoracine fish have undergone positive selection and one positively selected residue (81L) was identified, which is located in the F helix, close to or in contact with the heme. We present tentative evidence that the Mb duplication event occurred in the ancestor of the schizothoracine and Cyprininae fish (common carp and goldfish), and that the Mb2 paralog was subsequently lost in the schizothoracine fish. In S. pylzovi, Mb mRNA is expressed in various tissues with the exception of the intestine and gill, but all such tissues, including the liver, muscle, kidney, brain, eye, and skin, expressed very low levels of Mb mRNA (< 8.0%) relative to that of the heart. The trace levels of Mb expression in non-muscle tissues are perhaps the major reason why non-muscle Mb remained undiscovered for so long. The expression response of the Mb gene to hypoxia at the mRNA and protein levels was strikingly different in S. pylzovi compared to that found in the common carp, medaka, zebrafish, and goldfish, suggesting that the hypoxia response of Mb in fish may be species and tissue-specific. Notably, severe hypoxia induced significant expression of Mb at the mRNA and protein levels in the S. pylzovi heart, which suggests Mb has a major role in the supply of oxygen to the heart of Tibetan Plateau fish.
Collapse
Affiliation(s)
- Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, No. 251 Ningda Road, Xining, 810016, China.
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, No. 251 Ningda Road, Xining, 810016, China.
| | - Yan Chao
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Yongli Zhao
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Mingzhe Xia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Rongrong Wu
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| |
Collapse
|
29
|
Qi D, Chao Y, Liang J, Gao Q, Wu R, Mather I, Zhao Y, Chen Q. Adaptive evolution of interferon regulatory factors is not correlated with body scale reduction or loss in schizothoracine fish. FISH & SHELLFISH IMMUNOLOGY 2018; 73:145-151. [PMID: 29246809 DOI: 10.1016/j.fsi.2017.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/06/2017] [Accepted: 12/10/2017] [Indexed: 06/07/2023]
Abstract
Body scales in teleost fish are the first line of defense in protecting the fish from invading pathogens. However, the relationship between the adaptive evolution of immune-related genes and changes in the body scale-covering of fish has not been previously studied. Schizothoracine fish, characterized by progressive reduction of body scales from the primitive to the highly specialized species, are a good group to investigate this relationship. We obtained 11 IRF genes (IRF1-11) from 14 of schizothoracine fish representing primitive, specialized, and highly specialized species, of which seven IRF genes (IRF2, IRF3, IRF5, IRF6, IRF7, IRF8 and IRF9) contained the complete CDS. Sequence analysis demonstrated the deletion or insertion of 4-7 amino acids in IRF2, IRF3, IRF6 and IRF9, which seems to be a common phenomenon in the schizothoracine fish. Selection pressure analysis supported the hypothesis that positive selection has been driving the rapid evolution of IRFs in specific lineages of the schizothoracine fish. This, however, is not correlated with body scale reduction or loss in the evolution of these IRFs. Remarkably, the deletion or insertion found in IRF protein sequences presented a regular pattern corresponding to the scale-covering changes in schizothoracine fish. Our study provides evidence for positive selection in the IRF family, contributing to a better understanding of the adaptive evolution of immune-related genes in schizothoracine fish in response to environmental changes of the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, Xining 810016, China.
| | - Yan Chao
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, Xining 810016, China
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Qiang Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Rongrong Wu
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, Xining 810016, China
| | - Ian Mather
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Yongli Zhao
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, Xining 810016, China
| | - Qichang Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| |
Collapse
|
30
|
Guan L, Zhu S, Han Y, Yang C, Liu Y, Qiao L, Li X, Li H, Lin J. Knockout of CTNNB1 by CRISPR-Cas9 technology inhibits cell proliferation through the Wnt/β-catenin signaling pathway. Biotechnol Lett 2017; 40:501-508. [DOI: 10.1007/s10529-017-2491-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/01/2017] [Indexed: 11/28/2022]
|
31
|
Tong C, Tian F, Zhao K. Genomic signature of highland adaptation in fish: a case study in Tibetan Schizothoracinae species. BMC Genomics 2017; 18:948. [PMID: 29207953 PMCID: PMC5718033 DOI: 10.1186/s12864-017-4352-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
Background Genome-wide studies on highland adaptation mechanism in terrestrial animal have been widely reported with few available for aquatic animals. Tibetan Schizothoracinae species are ideal model systems to study speciation and adaptation of fish. The Schizothoracine fish, Gymnocypris przewalskii ganzihonensis had underwent the ecological niche shift from salt water to freshwater, and also experienced a recent split from Gymnocypris przewalskii przewalskii. In addition, G. p. ganzihonensis inhabited harsh aquatic environment including low temperature and hypoxia as well as other Schizothoracinae species, its genetic mechanism of highland adaptation have yet to be determined. Results Our study used comparative genomic analysis based on the transcriptomic data of G. p. ganzihonensis and other four fish genome datasets to investigate the genetic basis of highland adaptation in Schizothoracine fish. We found that Schizothoracine fish lineage on the terminal branch had an elevated dN/dS ratio than its ancestral branch. A total of 202 gene ontology (GO) categories involved into transport, energy metabolism and immune response had accelerated evolutionary rates than zebrafish. Interestingly, we also identified 162 genes showing signature of positive selection (PSG) involved into energy metabolism, transport and immune response in G. p. ganzihonesis. While, we failed to find any PSG related to hypoxia response as previous studies. Conclusions Comparative genomic analysis based on G. p. ganzihonensis transcriptome data revealed significant genomic signature of accelerated evolution ongoing within Tibetan Schizothoracinae species lineage. Molecular evolution analysis suggested that genes involved in energy metabolism, transport and immune response functions in Schizothoracine fish underwent positive selection, especially in innate immunity including toll-like receptor signaling pathway genes. Taken together, our result as a case study in Schizothoracinae species provides novel insights in understanding the aquatic animal adaptation to extreme environment on the Tibetan Plateau, and also provides valuable genomic resource for further functional verification studies. Electronic supplementary material The online version of this article (10.1186/s12864-017-4352-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao Tong
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Key Laboratory of Animal Ecological Genomics, Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104-6018, USA.
| | - Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Key Laboratory of Animal Ecological Genomics, Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Key Laboratory of Animal Ecological Genomics, Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.
| |
Collapse
|
32
|
Molecular characterization and expression analysis of WRKY family genes in Dendrobium officinale. Genes Genomics 2017; 40:265-279. [DOI: 10.1007/s13258-017-0602-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/03/2017] [Indexed: 10/18/2022]
|
33
|
Integrated mRNA and microRNA transcriptome analyses reveal regulation of thermal acclimation in Gymnocypris przewalskii: A case study in Tibetan Schizothoracine fish. PLoS One 2017; 12:e0186433. [PMID: 29045433 PMCID: PMC5646821 DOI: 10.1371/journal.pone.0186433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/29/2017] [Indexed: 11/19/2022] Open
Abstract
Environmental acclimation is important episode in wildlife occupation of the high-altitude Tibetan Plateau (TP). Transcriptome-wide studies on thermal acclimation mechanism in fish species are rarely revealed in Tibetan Plateau fish at high altitude. Thus, we used mRNA and miRNA transcriptome sequencing to investigate regulation of thermal acclimation in larval Tibetan naked carp, Gymnocypris przewalskii. We first remodeled the regulation network of mRNA and miRNA in thermal acclimation, and then identified differential expression of miRNAs and target mRNAs enriched in metabolic and digestive pathways. Interestingly, we identified two candidate genes contributed to normal skeletal development. The altered expression of these gene groups could potentially be associated with the developmental issues of deformity and induced larval death. Our results have three important implications: first, these findings provide strong evidences to support our hypothesis that G. przewalskii possess ability to build heat-tolerance against the controversial issue. Second, this study shows that transcriptional and post-transcriptional regulations are extensively involved in thermal acclimation. Third, the integrated mRNA and microRNA transcriptome analyses provide a large number of valuable genetic resources for future studies on environmental stress response in G. przewalskii and as a case study in Tibetan Schizothoracine fish.
Collapse
|
34
|
Qi D, Xia M, Chao Y, Zhao Y, Wu R. Identification, molecular evolution of toll-like receptors in a Tibetan schizothoracine fish (Gymnocypris eckloni) and their expression profiles in response to acute hypoxia. FISH & SHELLFISH IMMUNOLOGY 2017; 68:102-113. [PMID: 28698123 DOI: 10.1016/j.fsi.2017.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Hypoxia plays an important role in regulating a variety of physiological responses as well as in pathological situations, but to date the roles of Toll-like receptors (TLRs) in fish in response to hypoxia are still poorly understood. Here, we sequenced the transcriptome of G. eckloni and identified the members of TLR family by scanning transcriptome, and then investigated the expression profiles of a complete set of TLRs in G. eckloni in response to acute hypoxia (4 h at DO = 0.3 ± 0.1 mg/L). The de novo-assembled transcriptome consisted of a total of 162,235 transcripts, further clustered into 110,231 unigenes. Based on the transcriptome, a total of 18 TLRs were identified in G. eckloni, and of them three TLRs (TLR5, TLR8 and TLR22) possessed two distinct paralogous genes. The duplicated genes of TLR22 were discovered for the first time in cyprinid fish, but did not origin from a recent duplication event. Of them TLR22b may be specific for schizothoracine fish, at least for G. eckloni. Phylogenetic analysis supported the classification of TLRs into six families as in other vertebrates but was partly different from the previous study. The sliding window analysis showed strong signals of positive selection in TLR2, TLR 4, TLR 5a, TLR 7, TLR 19, TLR 20, TLR 21, TLR 22a and TLR 22b, but most codons under positive selection were located in the putative LRR regions. The mRNA expression of most TLRs in head kidney, spleen and gill decreased significantly or remained unchanged under acute hypoxia, whereas acute hypoxia increased expressions of TLR2 and TLR3 in head kidney, of TLR8a, TLR12 and TLR19 in spleen, and of TLR1 in gill, suggesting tissues-specific expressions of TLRs play important roles in mediating innate immune responses for host defense against tissue damages or physiological changes induced by hypoxia.
Collapse
Affiliation(s)
- Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, Xining 810016, China.
| | - Mingzhe Xia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, Xining 810016, China
| | - Yan Chao
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, Xining 810016, China
| | - Yongli Zhao
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, Xining 810016, China
| | - Rongrong Wu
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, Xining 810016, China
| |
Collapse
|
35
|
Chi W, Ma X, Niu J, Zou M. Genome-wide identification of genes probably relevant to the adaptation of schizothoracins (Teleostei: Cypriniformes) to the uplift of the Qinghai-Tibet Plateau. BMC Genomics 2017; 18:310. [PMID: 28427344 PMCID: PMC5397779 DOI: 10.1186/s12864-017-3703-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 04/12/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Molecular adaptation to the severe environments present during the uplift of the Qinghai-Tibet Plateau has attracted the attention of researchers. The divergence of the three specialization groups of schizothoracins (Primitive, Specialized and Highly Specialized) may correspond to the three phases of plateau uplift. Based on the transcripts of representative species of the three specialized groups and an outgroup, genes in schizothoracins that may have played important roles during the adaptation to new environments were investigated. RESULTS The contigs of Gymnodiptychus dybowskii and Schizothorax pseudaksaiensis were compared with those of Gymnocypris przewalskii ganzihonensis and the outgroup Sinocyclocheilus angustiporus, and 5,894 ortholog groups with an alignment length longer than 90 nt after deleting gaps were retained. Evolutionary analyses indicated that the average evolutionary rate of the branch leading to the Specialized group was faster than that of the branch leading to the Highly Specialized group. Moreover, the numbers of gene categories in which more than half of the genes evolved faster than the average values of the genome were 117 and 15 along the branches leading to the Specialized and Highly Specialized groups, respectively. A total of 40, 36, and 55 genes were likely subject to positive selection along the branches leading to the Primitive, Specialized and Highly Specialized groups, respectively, and many of these genes are likely relevant to adaptation to the cold temperatures, low oxygen concentrations, and strong ultraviolet radiation that result from elevation. CONCLUSIONS By selecting representative species of the three groups of schizothoracins and applying next-generation sequencing technology, several candidate genes corresponding to adaptation to the three phases of plateau uplift were identified. Some of the genes identified in this report that were likely subject to positive selection are good candidates for subsequent evolutionary and functional analyses of adaptation to high altitude.
Collapse
Affiliation(s)
- Wei Chi
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Xufa Ma
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Jiangong Niu
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Fisheries Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Ming Zou
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
36
|
Genetic Adaptation of Schizothoracine Fish to the Phased Uplifting of the Qinghai-Tibetan Plateau. G3-GENES GENOMES GENETICS 2017; 7:1267-1276. [PMID: 28209761 PMCID: PMC5386875 DOI: 10.1534/g3.116.038406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many species of Schizothoracine, a subfamily of Cyprinidae, are highly endemic to the Qinghai–Tibetan Plateau (QTP). To characterize the adaptive changes associated with the Schizothoracine expansion at high altitudes, we sequenced tissue transcriptomes of two highland and two subhighland Schizothoracines and analyzed gene evolution patterns by comparing with lowland cyprinids. Phylogenetic tree reconstruction and divergence time estimation indicated that the common ancestor of Schizothoracine fish lived ∼32.7 million years ago (MYA), coinciding with the timing of the first phase of QTP uplifting. Both high- and subhigh-Schizothoracines demonstrated elevated dN/dS ratios in the protein-coding genes compared to lowland cyprinids, from which some biological processes implicated in altitude adaptation were commonly identified. On the other hand, the highland and subhighland lineages presented drastically divergent landscapes of positively selected genes (PSGs), enriched with very different gene ontology (GO) profiles, including those in “sensory organ morphogenesis,” “regulation of protein ubiquitination,” “blood circulation,” and “blood vessel development.” These results indicated different selection pressures imposed on the highland and subhighland lineages of the Schizothoracine subfamily, with a higher number of genes in the high-altitude species involved in adaptations such as sensory perception, blood circulation, and protein metabolism. Our study indicated divergent genetic adaptations in the aquatic species facing the phased uplifting of QTP.
Collapse
|
37
|
Yu M, Zhang D, Hu P, Peng S, Li W, He S, Zhai W, Xu Q, Chen L. Divergent adaptation to Qinghai-Tibetan Plateau implicated from transciptome study of Gymnocypris dobula and Schizothorax nukiangensis. BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2017.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
38
|
Tong C, Tian F, Zhang C, Zhao K. The microRNA repertoire of Tibetan naked carp Gymnocypris przewalskii: A case study in Schizothoracinae fish on the Tibetan Plateau. PLoS One 2017; 12:e0174534. [PMID: 28358922 PMCID: PMC5373569 DOI: 10.1371/journal.pone.0174534] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/11/2017] [Indexed: 12/12/2022] Open
Abstract
Tibetan naked carp Gymnocypris przewalskii is an ideal model system to study highland adaptation of fish, because it evolved specific genetic and phenotypic characteristics to adapt to chronic cold and alkaline environments in Lake Qinghai. MicroRNAs (miRNAs) are small noncoding RNAs that regulating gene expression post-transcriptionally in a wide range of biological processes. In this study, we focus on the role of miRNAs in adaptation of G. przewalskii to extreme conditions in Lake Qinghai. We generate the first miRNAome of G. przewalskii in Schizothoracinae fish. Using several genomic resources, we inferred 341 conserved miRNAs belonged to 152 miRNA families and 43 novel miRNAs in G. przewalskii, and also identified 15 teleost-specific miRNAs. Using a large scale of conserved miRNAs, we constructed a high-confidence phylogenetic tree between teleost and mammals than mitochondria and nuclear genes. In addition, we found that several miRNA family (e.g. miR-10 and let-7) members highly expressed in G. przewalskii, which may function in multiple biological processes. Finally, we predicted a total of 34,258 miRNA targets genes. Conserved miRNAs target genes participating in signal transduction, cell differentiation and biosynthetic process, and showed signature of functional constraint. While novel miRNAs in a species displayed species-specific targets and involved in ion binding, transport and oxidoreductase activity, may affect the expression patterns of targets with signature of gene family expansion or positive selection under extreme environment. Taken together, this study demonstrated that miRNAs may involve into roles of adaptation of G. przewalskii to highland aquatic environment, and also provide insights into miRNA regulatory network in Schizothoracinae fish as a case study.
Collapse
Affiliation(s)
- Chao Tong
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Cunfang Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
39
|
Tong C, Fei T, Zhang C, Zhao K. Comprehensive transcriptomic analysis of Tibetan Schizothoracinae fish Gymnocypris przewalskii reveals how it adapts to a high altitude aquatic life. BMC Evol Biol 2017; 17:74. [PMID: 28274203 PMCID: PMC5343388 DOI: 10.1186/s12862-017-0925-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/23/2017] [Indexed: 11/13/2022] Open
Abstract
Background Understanding the genetic basis of adaptation to high altitude life is of paramount importance for preserving and managing genetic diversity in highland animals. This objective has been addressed mainly in terrestrial fauna but rarely in aquatic animals. Tibetan Schizothoracinae fish is the ideal model system in evolutionary biology, carrying key insights into evolutionary genetics of speciation and adaptation at high altitude. Gymnocypris przewalskii is the newly formed Schizothoracinae fish species in the Tibetan Plateau, inhabits chronic cold, extreme saline and alkaline aquatic environment in Lake Qinghai, thus evolving the unique genomic signatures to adapt extremely severe environments. Results To characterize its genomic features, we assembled de novo transcriptome of G. przewalskii from Lake Qinghai. Intriguingly, by comparative genomic analyses of G. przewalskii and 8 other fish species, we identified potential expansions in gene families related to energy metabolism, transport and developmental functions, possibly underlying the adaptation to these environmental stresses. Through comprehensive molecular evolution analyses, we found that sets of genes controlling mitochondrion, ion homoeostasis, acid-base balance and innate immunity show significant signals of positive selection. Compared to previous studies on highland fishes, we failed to identify any positively selected genes related to hypoxia response. Conclusions Our findings provide comprehensive insights into the genetic basis of teleost fish that underlie their adaptation to extreme high altitude aquatic life on the Tibetan Plateau. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0925-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao Tong
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.,Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.,Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian Fei
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.,Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.,Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China
| | - Cunfang Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.,Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.,Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China. .,Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China. .,Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.
| |
Collapse
|
40
|
Tong C, Tian F, Tang Y, Feng C, Guan L, Zhang C, Zhao K. Positive Darwinian selection within interferon regulatory factor genes of Gymnocypris przewalskii (Cyprinidae) on the Tibetan Plateau. FISH & SHELLFISH IMMUNOLOGY 2016; 50:34-42. [PMID: 26774494 DOI: 10.1016/j.fsi.2016.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
Tibetan Plateau (TP) had experienced phased uplift, resulting in inhospitable environment of low temperature, hypoxia and high ultraviolet radiation for Tibetan wildlife. Many organisms can well adapt to TP, it is of ecological and evolutionary interest to untangle how organisms adapt to extreme environment on TP through evolution. Previous studies mainly focused on hypoxia and metabolism related genes, but we know little about the evolutionary history of immune genes in Tibetan wildlife. In this study, we first identified 10 interferon regulatory factor (IRF) genes from Tibetan naked carp Gymnocypris przewalskii. Within this gene family, IRF3, IRF5, IRF7 and IRF8 contained positive selection sites. Evidences indicated that positive selection may lead to IRF genes functional alternations, presumably driving genes towards adaptation to the environmental changes. Taken together, our results suggested 4 candidate genes as interesting targets for further experimental confirmation of their functional variations and contributions to high altitude adaptation in Tibet fish.
Collapse
Affiliation(s)
- Chao Tong
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China
| | - Yongtao Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenguang Feng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lihong Guan
- Department of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Cunfang Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.
| |
Collapse
|
41
|
Xu Q, Zhang C, Zhang D, Jiang H, Peng S, Liu Y, Zhao K, Wang C, Chen L. Analysis of the erythropoietin of a Tibetan Plateau schizothoracine fish (Gymnocypris dobula) reveals enhanced cytoprotection function in hypoxic environments. BMC Evol Biol 2016; 16:11. [PMID: 26768152 PMCID: PMC4714423 DOI: 10.1186/s12862-015-0581-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/30/2015] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Erythropoietin (EPO) is a glycoprotein hormone that plays a principal regulatory role in erythropoiesis and initiates cell homeostatic responses to environmental challenges. The Qinghai-Tibet Plateau is a natural laboratory for hypoxia adaptation. Gymnocypris dobula is a highly specialized plateau schizothoracine fish that is restricted to > 4500 m high-altitude freshwater rivers and ponds in the Qinghai-Tibet Plateau. The role of EPO in the adaptation of schizothoracine fish to hypoxia is unknown. RESULTS The EPO and EPO receptor genes from G. dobula and four other schizothoracine fish from various altitudinal habitats were characterized. Schizothoracine EPOs are predicted to possess 2-3 N-glycosylation (NGS) sites, 4-5 casein kinase II phosphorylation (CK2) sites, 1-2 protein kinase C (PKC) phosphorylation sites, and four conserved cysteine residues within four helical domains, with variations in the numbers of NGS and CK2 sites in G. dobula. PAML analysis indicated a d N/d S value (ω) = 1.112 in the G. dobula lineage, and a few amino acids potentially under lineage-specific positive selection were detected within the G. dobula EPO. Similarly, EPO receptors of the two high-altitude schizothoracines (G. dobula and Ptychobarbus kaznakovi), were found to be statistically on the border of positive selection using the branch-site model (P-value = 0.096), and some amino acids located in the ligand-binding domain and the fibronectin type III domain were identified as potentially positive selection sites. Tissue EPO expression profiling based on transcriptome sequencing of three schizothoracines (G. dobula, Schizothorax nukiangensis Tsao, and Schizothorax prenanti) showed significant upregulation of EPO expression in the brain and less significantly in the gill of G. dobula. The elevated expression together with the rapid evolution of the EPO gene in G. dobula suggested a possible role for EPO in adaptation to hypoxia. To test this hypothesis, Gd-EPO and Sp-EPO were cloned into an expression vector and transfected into the cultured cell line 293 T. Significantly higher cell viability was observed in cells transfected with Gd-EPO than cells harboring Sp-EPO when challenged by hypoxia. CONCLUSION The deduced EPO proteins of the schizothoracine fish contain characteristic structures and important domains similar to EPOs from other taxa. The presence of potentially positive selection sites in both EPO and EPOR in G. dobula suggest possible adaptive evolution in the ligand-receptor binding activity of the EPO signaling cascade in G. dobula. Functional study indicated that the EPO from high-altitude schizothoracine species demonstrated features of hypoxic adaptation by reducing toxic effects or improving cell survival when expressed in cultured cells, providing evidence of molecular adaptation to hypoxic conditions in the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Qianghua Xu
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.
- Collaborative Innovation Center for Distant-water Fisheries, Shanghai, China.
| | - Chi Zhang
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.
| | - Dongsheng Zhang
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China.
| | - Huapeng Jiang
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.
| | - Sihua Peng
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China.
| | - Yang Liu
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.
| | - Congcong Wang
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.
| | - Liangbiao Chen
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
42
|
Giannetto A, Maisano M, Cappello T, Oliva S, Parrino V, Natalotto A, De Marco G, Barberi C, Romeo O, Mauceri A, Fasulo S. Hypoxia-Inducible Factor α and Hif-prolyl Hydroxylase Characterization and Gene Expression in Short-Time Air-Exposed Mytilus galloprovincialis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:768-781. [PMID: 26277612 DOI: 10.1007/s10126-015-9655-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/02/2015] [Indexed: 06/04/2023]
Abstract
Aquatic organisms experience environmental hypoxia as a result of eutrophication and naturally occurring tidal cycles. Mytilus galloprovincialis, being an anoxic/hypoxic-tolerant bivalve, provides an excellent model to investigate the molecular mechanisms regulating oxygen sensing. Across the animal kingdom, inadequacy in oxygen supply is signalled predominantly by hypoxia-inducible factors (HIF) and Hif-prolyl hydroxylases (PHD). In this study, hif-α 5'-end and partial phd mRNA sequences from M. galloprovincialis were obtained. Phylogenetic and molecular characterization of both HIF-α and PHD putative proteins showed shared key features with the respective orthologues from animals strongly suggesting their crucial involvement in the highly conserved oxygen sensing pathway. Both transcripts displayed a tissue-specific distribution with prominent expression in gills. Quantitative gene expression analysis of hif-α and phd mRNAs from gills of M. galloprovincialis demonstrated that both these key sensors are transcriptionally modulated by oxygen availability during the short-time air exposure and subsequent re-oxygenation treatments proving that they are critical players of oxygen-sensing mechanisms in mussels. Remarkably, hif-α gene expression showed a prompt and transient response suggesting the precocious implication of this transcription factor in the early phase of the adaptive response to hypoxia in Mytilus. HIF-α and PHD proteins were modulated in a time-dependent manner with trends comparable to mRNA expression patterns, thus suggesting a central role of their transcriptional regulation in the hypoxia tolerance strategies in marine bivalves. These results provide molecular information about the effects of oxygen deficiency and identify hypoxia-responsive biomarker genes in mussels applicable in ecotoxicological studies of natural marine areas.
Collapse
Affiliation(s)
- Alessia Giannetto
- Department of Biological and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Maria Maisano
- Department of Biological and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Tiziana Cappello
- Department of Biological and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Sabrina Oliva
- Department of Biological and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Vincenzo Parrino
- Department of Biological and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Antonino Natalotto
- Department of Biological and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Giuseppe De Marco
- Department of Biological and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Chiara Barberi
- Department of Biological and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Orazio Romeo
- Department of Biological and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Angela Mauceri
- Department of Biological and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Salvatore Fasulo
- Department of Biological and Environmental Sciences, University of Messina, 98166, Messina, Italy
| |
Collapse
|
43
|
Yonezawa T, Hasegawa M, Zhong Y. Polyphyletic origins of schizothoracine fish (Cyprinidae, Osteichthyes) and adaptive evolution in their mitochondrial genomes. Genes Genet Syst 2015; 89:187-91. [PMID: 25747043 DOI: 10.1266/ggs.89.187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The schizothoracine fish, also called snow trout, are members of the Cyprinidae, and are the most diversified teleost fish in the Qinghai-Tibetan Plateau (QTP). Clarifying the evolutionary history of the schizothoracine fish is therefore important for better understanding the biodiversity of the QTP. Although morphological and molecular phylogenetic studies have supported the monophyly of the Schizothoracinae, a recent molecular phylogenetic study based on the mitochondrial genome questioned the monophyly of this taxon. However, the phylogenetic analysis of that study was on the basis of only three schizothoracine species, and the support values were low. In this report, we inferred the phylogenetic tree on the basis of mitochondrial genome data including 21 schizothoracine species and five closely related species, and the polyphyletic origins of the Schizothoracinae were strongly supported. The tree further suggests that the Schizothoracinae consists of two clades, namely the "morphologically specialized clade" and the "morphologically primitive clade", and that these two clades migrated independently of each other to the QTP and adapted to high altitude. We also detected in their mitochondrial genomes strong signals of positive selection, which probably represent evidence of high-altitude adaptation. In the case of the morphologically specialized clade, positive selection mainly occurred during the Late Paleocene to the Early Oligocene. Its migration also seems to have occurred in the Early Eocene, and this timing is consistent with the drastic uplifting of the QTP. On the other hand, positive selection in the morphologically primitive clade has mainly occurred since the Late Miocene. Because its members are thought to have migrated to the QTP recently, it is possible that they are now undergoing high-altitude adaptation.
Collapse
Affiliation(s)
- Takahiro Yonezawa
- School of Life Sciences, Fudan University, SongHu Rd. 2005, Shanghai 200438, China; Institute of Statistical Mathematics, Midori-cho 10-3, Tachikawa Tokyo 190-8562, Japan
| | | | | |
Collapse
|
44
|
Wang Y, Yang L, Wu B, Song Z, He S. Transcriptome analysis of the plateau fish (Triplophysa dalaica): Implications for adaptation to hypoxia in fishes. Gene 2015; 565:211-20. [DOI: 10.1016/j.gene.2015.04.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/02/2015] [Accepted: 04/07/2015] [Indexed: 12/28/2022]
|
45
|
Meng W, Yang TY, Guo Y, Hai S, Ma YW, Ma XF, Cai LG. Remarkable genetic divergence of Gymnodiptychus dybowskii between south and north of Tianshan Mountain in northwest China. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2014.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
46
|
Guan L, Chi W, Xiao W, Chen L, He S. Analysis of hypoxia-inducible factor alpha polyploidization reveals adaptation to Tibetan Plateau in the evolution of schizothoracine fish. BMC Evol Biol 2014; 14:192. [PMID: 25205386 PMCID: PMC4162920 DOI: 10.1186/s12862-014-0192-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/15/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hypoxia-inducible factor (HIF) is a master regulator that mediates major changes in gene expression under hypoxic conditions. Though HIF family has been identified in many organisms, little is known about this family in schizothoracine fish. RESULTS Duplicated hif-α (hif-1αA, hif-1αB, hif-2αA, and hif-2αB) genes were identified in schizothoracine fish. All the deduced HIF-α proteins contain the main domains (bHLH-PAS, ODDD, and TAD), also found in humans. Evidence suggests a Cyprinidae-specific deletion, specifically, a conserved proline hydroxylation motif LxxLAP, in the NODD domain of schizothoracine fish HIF-1αA. In addition, a schizothoracine-specific mutation was observed in the CODD domain of the specialized and highly specialized schizothoracine fish HIF-1αB, which is the proline hydroxylation motif mutated into PxxLAP. Standard and stochastic branch-site codon model analysis indicated that only HIF-1αB has undergone positive selection, which may have led to changes in function. To confirm this hypothesis, HIF-αs tagged with Myc were transfected into HEK 293 T cells. Each HIF-1αB was found to significantly upregulate luciferase activity under normoxic and hypoxic conditions, which indicated that the HIF-1αB protein was more stable than other HIF-αs. CONCLUSIONS All deduced HIF-α proteins of schizothoracine fish contain important domains, like their mammalian counterparts, and each HIF-α is shorter than that of human. Our experiments reveal that teleost-specific duplicated hif-α genes played different roles under hypoxic conditions, and HIF-1αB may be the most important regulator in the adaptation of schizothoracine fish to the environment of the Tibetan Plateau.
Collapse
Affiliation(s)
- Lihong Guan
- />Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei P. R. China
- />University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Wei Chi
- />College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei P. R. China
| | - Wuhan Xiao
- />Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei P. R. China
| | - Liangbiao Chen
- />College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, P. R. China
| | - Shunping He
- />Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei P. R. China
| |
Collapse
|