1
|
Ryan TA, Taff CC, Zimmer C, Vitousek MN. Cold temperatures induce priming of the glucose stress response in tree swallows. Comp Biochem Physiol A Mol Integr Physiol 2023; 280:111419. [PMID: 36965830 DOI: 10.1016/j.cbpa.2023.111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
Capricious environments often present wild animals with challenges that coincide or occur in sequence. Conceptual models of the stress response predict that one threat may prime or dampen the response to another. Although evidence has supported this for glucocorticoid responses, much less is known about the effects of previous challenges on energy mobilization. Food limitation may have a particularly important effect, by altering the ability to mobilize energy when faced with a subsequent challenge. We tested the prediction that challenging weather conditions, which reduce food availability, alter the energetic response to a subsequent acute challenge (capture and restraint). Using a three-year dataset from female tree swallows measured during three substages of breeding, we used a model comparison approach to test if weather (temperature, wind speed, and precipitation) over 3- or 72-hour timescales predicted baseline and post-restraint glucose levels, and if so which environmental factors were the strongest predictors. Contrary to our predictions, weather conditions did not affect baseline glucose; however, birds that had experienced lower temperatures over the preceding 72 h tended to have higher stress-induced glucose when faced with an acute stressor. We also saw some support for an effect of rainfall on stress-induced glucose: around the time that eggs hatched, birds that had experienced more rainfall over the preceding 72 h mounted lower responses. Overall, we find support in a wild animal for the idea that the glucose stress response may be primed by exposure to prior challenges.
Collapse
Affiliation(s)
- Thomas A Ryan
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA; Cornell Lab of Ornithology, Ithaca, NY, USA.
| | - Conor C Taff
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA; Cornell Lab of Ornithology, Ithaca, NY, USA
| | - Cedric Zimmer
- Laboratory of Experimental and Comparative Ethology, University Sorbonne Paris Nord, Villetaneuse, France
| | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA; Cornell Lab of Ornithology, Ithaca, NY, USA
| |
Collapse
|
2
|
Nägeli M, Scherler P, Witczak S, Catitti B, Aebischer A, van Bergen V, Kormann U, Grüebler MU. Weather and food availability additively affect reproductive output in an expanding raptor population. Oecologia 2021; 198:125-138. [PMID: 34797425 PMCID: PMC8803806 DOI: 10.1007/s00442-021-05076-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022]
Abstract
The joint effects of interacting environmental factors on key demographic parameters can exacerbate or mitigate the separate factors’ effects on population dynamics. Given ongoing changes in climate and land use, assessing interactions between weather and food availability on reproductive performance is crucial to understand and forecast population dynamics. By conducting a feeding experiment in 4 years with different weather conditions, we were able to disentangle the effects of weather, food availability and their interactions on reproductive parameters in an expanding population of the red kite (Milvus milvus), a conservation-relevant raptor known to be supported by anthropogenic feeding. Brood loss occurred mainly during the incubation phase, and was associated with rainfall and low food availability. In contrast, brood loss during the nestling phase occurred mostly due to low temperatures. Survival of last-hatched nestlings and nestling development was enhanced by food supplementation and reduced by adverse weather conditions. However, we found no support for interactive effects of weather and food availability, suggesting that these factors affect reproduction of red kites additively. The results not only suggest that food-weather interactions are prevented by parental life-history trade-offs, but that food availability and weather conditions are crucial separate determinants of reproductive output, and thus population productivity. Overall, our results suggest that the observed increase in spring temperatures and enhanced anthropogenic food resources have contributed to the elevational expansion and the growth of the study population during the last decades.
Collapse
Affiliation(s)
- Melanie Nägeli
- Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Wintherthurerstrasse 190, 8057, Zurich, Switzerland
| | - Patrick Scherler
- Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland. .,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Wintherthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Stephanie Witczak
- Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Wintherthurerstrasse 190, 8057, Zurich, Switzerland
| | - Benedetta Catitti
- Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Wintherthurerstrasse 190, 8057, Zurich, Switzerland
| | | | | | - Urs Kormann
- Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland
| | - Martin U Grüebler
- Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland
| |
Collapse
|
3
|
Baldan D, Negash M, Ouyang JQ. Are individuals consistent? Endocrine reaction norms under different ecological challenges. J Exp Biol 2021; 224:269204. [PMID: 34142697 DOI: 10.1242/jeb.240499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/21/2021] [Indexed: 12/29/2022]
Abstract
Quantifying organismal capacity for compensatory mechanisms is essential to forecast responses to environmental change. Despite accumulating evidence for individual variation in physiological plasticity, the causes and consequences of this variation remain unclear. An outstanding question is whether individual reaction norms are consistent across different environmental challenges, i.e. whether an individual that is responsive to one environmental variable will be equally responsive to a different environmental variable. Additionally, are these reaction norms themselves consistent over time, i.e. repeatable? Here, we quantified individual baseline glucocorticoid responses in house sparrows, Passer domesticus, to sequential manipulations of temperature, wind speed and food unpredictability that were repeated in discrete blocks of sampling under both control and stressor-exposed conditions. Individuals significantly decreased their baseline corticosterone levels and increased their mass during treatment exposure. This response was consistent across environmental challenge types. There was high repeatability in the intercept and slope of the baseline corticosterone reaction norm between environmental challenges but broad credible intervals in the repeatability of the reaction norm slope, suggesting that although glucocorticoid levels during baseline conditions are repeatable, among-individual variation in the shape of the glucocorticoid response may be higher than within-individual variation. Within-subject variation in baseline corticosterone levels was mainly explained by within-individual variation in body mass during stressor exposure. Despite the high lability in physiological traits, endocrine plasticity is repeatable across environmental challenges and may be able to evolve as a result of genetic accommodation, in which selection acts on genetic variation of reaction norms.
Collapse
Affiliation(s)
- Davide Baldan
- Department of Biology, University of Nevada, Reno, Reno, NV 89557-0314, USA
| | - Mekail Negash
- Department of Biology, University of Nevada, Reno, Reno, NV 89557-0314, USA
| | - Jenny Q Ouyang
- Department of Biology, University of Nevada, Reno, Reno, NV 89557-0314, USA
| |
Collapse
|
4
|
Gingery TM, Diefenbach DR, Pritchard CE, Ensminger DC, Wallingford BD, Rosenberry CS. Survival is negatively associated with glucocorticoids in a wild ungulate neonate. Integr Zool 2020; 16:214-225. [PMID: 33164347 DOI: 10.1111/1749-4877.12499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
It is unknown how ungulate physiological responses to environmental perturbation influence overall population demographics. Moreover, neonatal physiological responses remain poorly studied despite the importance of neonatal survival to population growth. Glucocorticoid (GC) hormones potentially facilitate critical physiological and behavioral responses to environmental perturbations. However, elevated GC concentrations over time may compromise body condition and indirectly reduce survival. We evaluated baseline salivary cortisol (CORT; a primary GC in mammals) concentrations in 19 wild neonatal white-tailed deer (Odocoileus virginianus) in a northern (NS) and southern (SS) area in Pennsylvania. After ranking survival models consisting of variables hypothesized to influence neonate survival (i.e. weight, sex), the probability of neonate survival was best explained by CORT concentrations, where elevated CORT concentrations were associated with reduced survival probability to 12 weeks of age. Cortisol concentrations were greater in the SS where predation rates and predator densities were lower. As the first evaluation of baseline CORT concentrations in an ungulate neonate to our knowledge, this is also the first study to demonstrate CORT concentrations are negatively associated with ungulate survival at any life stage. Glucocorticoid hormones could provide a framework in which to better understand susceptibility to mortality in neonatal white-tailed deer.
Collapse
Affiliation(s)
- Tess Michelle Gingery
- Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Duane Richard Diefenbach
- Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, Pennsylvania, USA.,U. S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - David Charles Ensminger
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | |
Collapse
|
5
|
Fischer D, Marrotte RR, Chin EH, Coulson S, Burness G. Maternal glucocorticoid levels during incubation predict breeding success, but not reproductive investment, in a free-ranging bird. Biol Open 2020; 9:9/10/bio045898. [PMID: 33077551 PMCID: PMC7595688 DOI: 10.1242/bio.045898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hormone corticosterone (CORT) has been hypothesized to be linked with fitness, but the directionality of the relationship is unclear. The ‘CORT-fitness hypothesis’ proposes that high levels of CORT arise from challenging environmental conditions, resulting in lower reproductive success (a negative relationship). In contrast, the CORT-adaptation hypothesis suggests that, during energetically demanding periods, CORT will mediate physiological or behavioral changes that result in increased reproductive investment and success (a positive relationship). During two breeding seasons, we experimentally manipulated circulating CORT levels in female tree swallows (Tachycineta bicolor) prior to egg laying, and measured subsequent reproductive effort, breeding success, and maternal survival. When females were recaptured during egg incubation and again during the nestling stage, the CORT levels were similar among individuals in each treatment group, and maternal treatment had no effect on indices of fitness. By considering variation among females, we found support for the CORT-adaptation hypothesis; there was a significant positive relationship between CORT levels during incubation and hatching and fledging success. During the nestling stage CORT levels were unrelated to any measure of investment or success. Within the environmental context of our study, relationships between maternal glucocorticoid levels and indices of fitness vary across reproductive stages. Summary: Levels of the stress biomarker corticosterone predict breeding success in female tree swallows. However, correlations between hormone levels and fitness differ between life-history stages.
Collapse
Affiliation(s)
- Devin Fischer
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada K9L 0G2
| | - Robby R Marrotte
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada K9L 0G2
| | - Eunice H Chin
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Smolly Coulson
- Department of Biology, Trent University, Peterborough, Ontario, Canada K9L 0G2
| | - Gary Burness
- Department of Biology, Trent University, Peterborough, Ontario, Canada K9L 0G2
| |
Collapse
|
6
|
Tapper S, Nocera JJ, Burness G. Heat dissipation capacity influences reproductive performance in an aerial insectivore. J Exp Biol 2020; 223:jeb222232. [PMID: 32321750 DOI: 10.1242/jeb.222232] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/08/2020] [Indexed: 12/26/2022]
Abstract
Climatic warming is predicted to increase the frequency of extreme weather events, which may reduce an individual's capacity for sustained activity because of thermal limits. We tested whether the risk of overheating may limit parental provisioning of an aerial insectivorous bird in population decline. For many seasonally breeding birds, parents are thought to operate close to an energetic ceiling during the 2-3 week chick-rearing period. The factors determining the ceiling remain unknown, although it may be set by an individual's capacity to dissipate body heat (the heat dissipation limitation hypothesis). Over two breeding seasons we experimentally trimmed the ventral feathers of female tree swallows (Tachycineta bicolor) to provide a thermal window. We then monitored maternal and paternal provisioning rates, nestling growth rates and fledging success. We found the effect of our experimental treatment was context dependent. Females with an enhanced capacity to dissipate heat fed their nestlings at higher rates than controls when conditions were hot, but the reverse was true under cool conditions. Control females and their mates both reduced foraging under hot conditions. In contrast, male partners of trimmed females maintained a constant feeding rate across temperatures, suggesting attempts to match the feeding rate of their partners. On average, nestlings of trimmed females were heavier than controls, but did not have a higher probability of fledging. We suggest that removal of a thermal constraint allowed females to increase provisioning rates, but additionally provided nestlings with a thermal advantage via increased heat transfer during maternal brooding. Our data provide support for the heat dissipation limitation hypothesis and suggest that depending on temperature, heat dissipation capacity can influence reproductive success in aerial insectivores.
Collapse
Affiliation(s)
- Simon Tapper
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, Canada, K9L 0G2
| | - Joseph J Nocera
- University of New Brunswick, Forestry and Environmental Management, Fredericton, NB, Canada, E3B 5A3
| | - Gary Burness
- Department of Biology, Trent University, Trent University, 1600 West Bank Drive, Peterborough, ON, Canada, K9L 0G2
| |
Collapse
|
7
|
Cox AR, Robertson RJ, Lendvai ÁZ, Everitt K, Bonier F. Rainy springs linked to poor nestling growth in a declining avian aerial insectivore ( Tachycineta bicolor). Proc Biol Sci 2020; 286:20190018. [PMID: 30862285 DOI: 10.1098/rspb.2019.0018] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As species shift their ranges and phenology to cope with climate change, many are left without a ready supply of their preferred food source during critical life stages. Food shortages are often assumed to be driven by reduced total food abundance, but here we propose that climate change may cause short-term food shortages for foraging specialists without affecting overall food availability. We frame this hypothesis around the special case of birds that forage on flying insects for whom effects mediated by their shared food resource have been proposed to cause avian aerial insectivores' decline worldwide. Flying insects are inactive during cold, wet or windy conditions, effectively reducing food availability to zero even if insect abundance remains otherwise unchanged. Using long-term monitoring data from a declining population of tree swallows ( Tachycineta bicolor), we show that nestlings' body mass declined substantially from 1977 to 2017. In 2017, nestlings had lower body mass if it rained during the preceding 3 days, though females increased provisioning rates, potentially in an attempt to compensate. Adult body mass, particularly that of the males, has also declined over the long-term study. Mean rainfall during the nestling period has increased by 9.3 ± 0.3 mm decade-1, potentially explaining declining nestling body mass and population declines. Therefore, we suggest that reduced food availability, distinct from food abundance, may be an important and previously overlooked consequence of climate change, which could be affecting populations of species that specialize on foraging on flying insects.
Collapse
Affiliation(s)
- Amelia R Cox
- 1 Department of Biology, Queen's University , Kingston, Ontario , Canada
| | | | - Ádám Z Lendvai
- 2 Department of Evolutionary Zoology and Human Biology, University of Debrecen , Debrecen , Hungary.,3 Department of Geology, Babeş-Bolyai University , Cluj-Napoca , Romania
| | - Kennedy Everitt
- 1 Department of Biology, Queen's University , Kingston, Ontario , Canada
| | - Frances Bonier
- 1 Department of Biology, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|
8
|
Vitousek MN, Taff CC, Ryan TA, Zimmer C. Stress Resilience and the Dynamic Regulation of Glucocorticoids. Integr Comp Biol 2019; 59:251-263. [PMID: 31168615 DOI: 10.1093/icb/icz087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vertebrates respond to a diversity of stressors by rapidly elevating glucocorticoid (GC) levels. The changes in physiology and behavior triggered by this response can be crucial for surviving a variety of challenges. Yet the same process that is invaluable in coping with immediate threats can also impose substantial damage over time. In addition to the pathological effects of long-term exposure to stress hormones, even relatively brief elevations can impair the expression of a variety of behaviors and physiological processes central to fitness, including sexual behavior, parental behavior, and immune function. Therefore, the ability to rapidly and effectively terminate the short-term response to stress may be fundamental to surviving and reproducing in dynamic environments. Here we review the evidence that variation in the ability to terminate the stress response through negative feedback is an important component of stress coping capacity. We suggest that coping capacity may also be influenced by variation in the dynamic regulation of GCs-specifically, the ability to rapidly turn on and off the stress response. Most tests of the fitness effects of these traits to date have focused on organisms experiencing severe or prolonged stressors. Here we use data collected from a long-term study of tree swallows (Tachycineta bicolor) to test whether variation in negative feedback, or other measures of GC regulation, predict components of fitness in non-chronically stressed populations. We find relatively consistent, but generally weak relationships between different fitness components and the strength of negative feedback. Reproductive success was highest in individuals that both mounted a robust stress response and had strong negative feedback. We did not see consistent evidence of a relationship between negative feedback and adult or nestling survival: negative feedback was retained in the best supported models of nestling and adult survival, but in two of three survival-related analyses the intercept-only model received only slightly less support. Both negative feedback and stress-induced GC levels-but not baseline GCs-were individually repeatable. These measures of GC activity did not consistently covary across ages and life history stages, indicating that they are independently regulated. Overall, the patterns seen here are consistent with the predictions that negative feedback-and the dynamic regulation of GCs-are important components of stress coping capacity, but that the fitness benefits of having strong negative feedback during the reproductive period are likely to manifest primarily in individuals exposed to chronic or repeated stressors.
Collapse
Affiliation(s)
- Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.,Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| | - Conor C Taff
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.,Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| | - Thomas A Ryan
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Cedric Zimmer
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Bentz AB, Rusch DB, Buechlein A, Rosvall KA. The neurogenomic transition from territory establishment to parenting in a territorial female songbird. BMC Genomics 2019; 20:819. [PMID: 31699031 PMCID: PMC6836416 DOI: 10.1186/s12864-019-6202-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
Background The brain plays a critical role in upstream regulation of processes central to mating effort, parental effort, and self-maintenance. For seasonally breeding animals, the brain is likely mediating trade-offs among these processes within a short breeding season, yet research thus far has only explored neurogenomic changes from non-breeding to breeding states or select pathways (e.g., steroids) in male and/or lab-reared animals. Here, we use RNA-seq to explore neural plasticity in three behaviorally relevant neural tissues (ventromedial telencephalon [VmT], hypothalamus [HYPO], and hindbrain [HB]), comparing free-living female tree swallows (Tachycineta bicolor) as they shift from territory establishment to incubation. We additionally highlight changes in aggression-related genes to explore the potential for a neurogenomic shift in the mechanisms regulating aggression, a critical behavior both in establishing and maintaining a territory and in defense of offspring. Results HB had few differentially expressed genes, but VmT and HYPO had hundreds. In particular, VmT had higher expression of genes related to neuroplasticity and processes beneficial for competition during territory establishment, but down-regulated immune processes. HYPO showed signs of high neuroplasticity during incubation, and a decreased potential for glucocorticoid signaling. Expression of aggression-related genes also shifted from steroidal to non-steroidal pathways across the breeding season. Conclusions These patterns suggest trade-offs between enhanced activity and immunity in the VmT and between stress responsiveness and parental care in the HYPO, along with a potential shift in the mechanisms regulating aggression. Collectively, these data highlight important gene regulatory pathways that may underlie behavioral plasticity in females.
Collapse
Affiliation(s)
- Alexandra B Bentz
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA. .,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA.
| | - Douglas B Rusch
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.,Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, USA
| | - Aaron Buechlein
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, USA
| | - Kimberly A Rosvall
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
10
|
Montreuil-Spencer C, Schoenemann K, Lendvai ÁZ, Bonier F. Winter corticosterone and body condition predict breeding investment in a nonmigratory bird. Behav Ecol 2019. [DOI: 10.1093/beheco/arz129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Abstract
Reproduction is an energetically demanding life history stage that requires costly physiological and behavioral changes, yet some individuals will invest more into reproduction and breed more successfully than others. To understand variation in reproductive investment, previous studies have evaluated factors during breeding, but conditions outside of this life history stage may also play a role. Using a free-ranging population of black-capped chickadees (Poecile atricapillus), we assessed the repeatability of plastic traits relating to energetic condition (circulating initial corticosterone concentrations and body condition) during the nonbreeding season and evaluated whether these traits predicted reproductive investment in the subsequent breeding season. We found that initial corticosterone concentrations and an index of body condition, but not fat score, were moderately repeatable over a 1-week period in winter. This trait repeatability supports the interpretation that among-individual variation in these phenotypic traits could reflect an intrinsic strategy to cope with challenging conditions across life history stages. We found that females with larger fat reserves during winter laid eggs sooner and tended to spend more time incubating their eggs and feeding their offspring. In contrast, we found that females with higher residual body mass delayed breeding, after controlling for the relationship between fat score and timing of breeding. Additionally, females with higher initial corticosterone in winter laid lighter eggs. Our findings suggest that conditions experienced outside of the breeding season may be important factors explaining variation in reproductive investment.
Collapse
Affiliation(s)
| | - Kelsey Schoenemann
- Biology Department, Queen’s University, Kingston, ON, Canada
- Virginia Working Landscapes, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egyetem tér 1. Debrecen, Hungary
- Department of Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Frances Bonier
- Biology Department, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
11
|
Taff CC, Zimmer C, Vitousek MN. Achromatic plumage brightness predicts stress resilience and social interactions in tree swallows (Tachycineta bicolor). Behav Ecol 2019. [DOI: 10.1093/beheco/arz010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Theory suggests that signal honesty may be maintained by differential costs for high and low quality individuals. For signals that mediate social interactions, costs can arise from the way that a signal changes the subsequent social environment via receiver responses. These receiver-dependent costs may be linked with individual quality through variation in resilience to environmental and social stress. Here, we imposed stressful conditions on female tree swallows (Tachycineta bicolor) by attaching groups of feathers during incubation to decrease flight efficiency and maneuverability. We simultaneously monitored social interactions using an RFID network that allowed us to track the identity of every individual that visited each nest for the entire season. Before treatments, plumage coloration was correlated with baseline and stress-induced corticosterone. Relative to controls, experimentally challenged females were more likely to abandon their nest during incubation. Overall, females with brighter white breasts were less likely to abandon, but this pattern was only significant under stressful conditions. In addition to being more resilient, brighter females received more unique visitors at their nest-box and tended to make more visits to other active nests. In contrast, dorsal coloration did not reliably predict abandonment or social interactions. Taken together, our results suggest that females differ in their resilience to stress and that these differences are signaled by plumage brightness, which is in turn correlated with the frequency of social interactions. While we do not document direct costs of social interaction, our results are consistent with models of signal honesty based on receiver-dependent costs.
Collapse
Affiliation(s)
- Conor C Taff
- Corson Hall, Cornell University, Ithaca, NY
- Lab of Ornithology, Cornell University, Ithaca, NY, USA
| | | | - Maren N Vitousek
- Corson Hall, Cornell University, Ithaca, NY
- Lab of Ornithology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
12
|
Fletcher K, Xiong Y, Fletcher E, Gustafsson L. Glucocorticoid response to both predictable and unpredictable challenges detected as corticosterone metabolites in collared flycatcher droppings. PLoS One 2018; 13:e0209289. [PMID: 30571789 PMCID: PMC6301662 DOI: 10.1371/journal.pone.0209289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/03/2018] [Indexed: 11/18/2022] Open
Abstract
In most vertebrate animals, glucocorticoid hormones are the chief mediators of homeostasis in response to ecological conditions and as they progress through their lifecycle. In addition, glucocorticoids are a major part of the stress response and stress induced elevations of the hormone can make it difficult to assess glucocorticoid secretion in response to changes in life-stage and current environmental conditions in wild animals. Particularly when quantifying circulating levels of glucocorticoids in the blood which fluctuate rapidly in response to stress. An alternative method of quantifying glucocorticoids is as hormone metabolites in faeces or urine giving a historical sample related to the gut passage time and urinary tract that is less sensitive to stressful events which cause spikes in the circulating hormone level. Although the concentration of glucocorticoid metabolites are influenced by faecal mass thereby potentially affecting any differences in hormone metabolites detected amongst samples. In the present study, we aimed to detect changes in levels of corticosterone, the primary bird glucocorticoid, in relation to the phase of reproduction, in a breeding population of collared flycatchers by sampling corticosterone metabolites in droppings. We also tested how corticosterone metabolite concentrations were affected by ambient temperature and related to body condition in adult birds. Our results indicate that the upregulation of corticosterone between incubation and nestling feeding in female birds is crucial for successful reproduction in this species. Also, females appear to downregulate corticosterone during incubation in response to lower ambient temperature and poorer body condition. Our results did not indicate a relationship between dropping mass and corticosterone metabolite concentrations, which suggests that our findings were linked to the regulation of corticosterone in response to predictable and unpredictable challenges.
Collapse
Affiliation(s)
- Kevin Fletcher
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Ye Xiong
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Erika Fletcher
- Biomedicine Centre, Pharmacuetical Biosciences, Uppsala University, Uppsala, Sweden
| | - Lars Gustafsson
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Krause JS, Pérez JH, Chmura HE, Meddle SL, Hunt KE, Gough L, Boelman N, Wingfield JC. Weathering the storm: Do arctic blizzards cause repeatable changes in stress physiology and body condition in breeding songbirds? Gen Comp Endocrinol 2018; 267:183-192. [PMID: 30031732 PMCID: PMC6127033 DOI: 10.1016/j.ygcen.2018.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/09/2018] [Accepted: 07/07/2018] [Indexed: 11/24/2022]
Abstract
Severe weather events are increasing worldwide because of climate change. To cope with severe weather events, vertebrates rely on the stress response which is activated by the hypothalamic-pituitary adrenal (HPA) axis to adjust physiology and behavior. Previous studies have detailed changes in baseline concentrations of the stress hormone corticosterone during a single storm event, but little data exists on how stress physiology and body condition are adjusted as the storm progresses across multiple days. This represents a serious gap in our understanding of how birds respond physiologically over the duration of a storm. We documented arctic snowstorms that occurred over five consecutive years that were endured by Lapland longspurs (Calcarius lapponicus; 2012-2016) and in three consecutive years by white-crowned sparrows (Zonotrichia leucophrys gambelii; 2014-2016). Data were collected on storm-free days, during snowstorms ranging in length from 1 to 3 days, and the day immediately following a snowstorm. The specific aims were to understand how stress physiology, measured at baseline and in response to restraint handling, and body condition changed over multiple days of the storm, and if these responses were consistent across years. Snowstorms did not affect baseline corticosterone concentrations for either species except for female Lapland longspurs and male white-crowned sparrows in 2014. Lapland longspurs, regardless of sex, increased stress-induced (restraint handling) corticosterone in response to snowstorms in all years but 2013, which was characterized by unusually harsh conditions. Both sexes of White-crowned sparrows showed a significant increase in the stress-induced levels of corticosterone during snowstorms in one of the three years of the study. Stress-induced corticosterone concentrations were only different across each day of the storm in one year of the study for Lapland longspurs. Changes in fat and body mass were not uniform across years, but measurable increases in fat stores and body mass were detected in males of both species during the first day of a snowstorm with declines typically occurring by the second day. Our study showed that severe weather events often caused rapid increases in HPA axis activity and body condition, but these profiles are likely dependent upon ecological and environmental context within the breeding season.
Collapse
Affiliation(s)
- Jesse S Krause
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Jonathan H Pérez
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Helen E Chmura
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Simone L Meddle
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK
| | - Kathleen E Hunt
- Northern Arizona University, Department of Biological Sciences, Flagstaff, AZ 86011, USA
| | - Laura Gough
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| | - Natalie Boelman
- Department of Earth and Environmental Sciences, and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA
| | - John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
14
|
Vitousek MN, Taff CC, Ardia DR, Stedman JM, Zimmer C, Salzman TC, Winkler DW. The lingering impact of stress: brief acute glucocorticoid exposure has sustained, dose-dependent effects on reproduction. Proc Biol Sci 2018; 285:20180722. [PMID: 30051820 PMCID: PMC6053934 DOI: 10.1098/rspb.2018.0722] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/14/2018] [Indexed: 01/01/2023] Open
Abstract
Acutely stressful experiences can have profound and persistent effects on phenotype. Across taxa, individuals differ remarkably in their susceptibility to stress. However, the mechanistic causes of enduring stress effects, and of individual differences in stress susceptibility, are poorly understood. Here, we tested whether brief, acute increases in glucocorticoid hormones have persistent effects on phenotype, and whether effects differ according to the magnitude or duration of elevation. We used a novel method to non-invasively manipulate hormone levels on short time scales: the application of corticosterone gel to a model egg secured in the nest. Free-living female tree swallows (Tachycineta bicolor) exposed to several brief corticosterone increases during incubation showed dose-dependent differences in behaviour throughout the reproductive period. Birds receiving treatments that simulated higher or longer acute stress responses later provisioned larger broods at lower rates; the resulting offspring were smaller in size. Treatment did not influence female body condition, oxidative stress, reproductive success or inter-annual survival, but exposed females maintained higher baseline corticosterone after treatments ceased. Overall, these results indicate that brief, acute elevations in glucocorticoids in adulthood can have long-term consequences. Furthermore, individuals that mount a greater or longer acute stress response may be more likely to experience lingering effects of stress.
Collapse
Affiliation(s)
- Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| | - Conor C Taff
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| | - Daniel R Ardia
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604, USA
| | - Jocelyn M Stedman
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Cedric Zimmer
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Timothy C Salzman
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - David W Winkler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| |
Collapse
|
15
|
English PA, Nocera JJ, Green DJ. Nightjars may adjust breeding phenology to compensate for mismatches between moths and moonlight. Ecol Evol 2018; 8:5515-5529. [PMID: 29938070 PMCID: PMC6010731 DOI: 10.1002/ece3.4077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 02/27/2018] [Accepted: 03/15/2018] [Indexed: 11/16/2022] Open
Abstract
Phenology match-mismatch usually refers to the extent of an organism's ability to match reproduction with peaks in food availability, but when mismatch occurs, it may indicate a response to another selective pressure. We assess the value of matching reproductive timing to multiple selective pressures for a migratory lunarphilic aerial insectivore bird, the whip-poor-will (Antrostomus vociferus). We hypothesize that a whip-poor-will's response to shifts in local phenology may be constrained by long annual migrations and a foraging mode that is dependent on both benign weather and the availability of moonlight. To test this, we monitored daily nest survival and overall reproductive success relative to food availability and moon phase in the northern part of whip-poor-will's breeding range. We found that moth abundance, and potentially temperature and moonlight, may all have a positive influence on daily chick survival rates and that the lowest chick survival rates for the period between hatching and fledging occurred when hatch was mismatched with both moths and moonlight. However, rather than breeding too late for peak moth abundance, the average first brood hatch date actually preceded the peak moth abundance and occurred during a period with slightly higher available moonlight than the period of peak food abundance. As a result, a low individual survival rate was partially compensated for by initiating more nesting attempts. This suggests that nightjars were able to adjust their breeding phenology in such a way that the costs of mismatch with food supply were at least partially balanced by a longer breeding season.
Collapse
Affiliation(s)
| | - Joseph J. Nocera
- Faculty of Forestry and Environmental ManagementUniversity of New BrunswickFrederictonNBCanada
| | - David J. Green
- Department of Biological SciencesSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|
16
|
Vitousek MN, Taff CC, Hallinger KK, Zimmer C, Winkler DW. Hormones and Fitness: Evidence for Trade-Offs in Glucocorticoid Regulation Across Contexts. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00042] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Bonier F, Martin PR. How can we estimate natural selection on endocrine traits? Lessons from evolutionary biology. Proc Biol Sci 2017; 283:rspb.2016.1887. [PMID: 27881753 DOI: 10.1098/rspb.2016.1887] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/17/2016] [Indexed: 12/25/2022] Open
Abstract
An evolutionary perspective can enrich almost any endeavour in biology, providing a deeper understanding of the variation we see in nature. To this end, evolutionary endocrinologists seek to describe the fitness consequences of variation in endocrine traits. Much of the recent work in our field, however, follows a flawed approach to the study of how selection shapes endocrine traits. Briefly, this approach relies on among-individual correlations between endocrine phenotypes (often circulating hormone levels) and fitness metrics to estimate selection on those endocrine traits. Adaptive plasticity in both endocrine and fitness-related traits can drive these correlations, generating patterns that do not accurately reflect natural selection. We illustrate why this approach to studying selection on endocrine traits is problematic, referring to work from evolutionary biologists who, decades ago, described this problem as it relates to a variety of other plastic traits. We extend these arguments to evolutionary endocrinology, where the likelihood that this flaw generates bias in estimates of selection is unusually high due to the exceptional responsiveness of hormones to environmental conditions, and their function to induce adaptive life-history responses to environmental variation. We end with a review of productive approaches for investigating the fitness consequences of variation in endocrine traits that we expect will generate exciting advances in our understanding of endocrine system evolution.
Collapse
Affiliation(s)
- Frances Bonier
- Biology Department, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Paul R Martin
- Biology Department, Queen's University, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
18
|
Krause JS, Pérez JH, Meddle SL, Wingfield JC. Effects of short-term fasting on stress physiology, body condition, and locomotor activity in wintering male white-crowned sparrows. Physiol Behav 2017; 177:282-290. [DOI: 10.1016/j.physbeh.2017.04.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 02/03/2023]
|
19
|
Madliger CL, Love OP. Conservation implications of a lack of relationship between baseline glucocorticoids and fitness in a wild passerine. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:2730-2743. [PMID: 27763712 DOI: 10.1002/eap.1401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 06/09/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
The application of physiological measures to conservation monitoring has been gaining momentum and, while a suite of physiological traits are available to ascertain disturbance and condition in wildlife populations, glucocorticoids (i.e., GCs; cortisol and corticosterone) are the most heavily employed. The interpretation of GC levels as sensitive indicators of population change necessitates that GCs and metrics of population persistence are linked. However, the relationship between GCs and fitness may be highly context-dependent, changing direction, or significance, depending on the GC measure, fitness metric, life history stage, or other intrinsic and extrinsic contexts considered. We examined the relationship between baseline plasma corticosterone (CORT) levels measured at two periods of the breeding season and three metrics of fitness (offspring quality, reproductive output, and adult survival) in female Tree Swallows (Tachycineta bicolor). Specifically, we investigated whether (1) a relationship between baseline CORT metrics and fitness exists in our population, (2) whether the inclusion of energetic contexts, such as food availability, reproductive investment, or body mass, could alter or improve the strength of the relationship between CORT and fitness, and (3) whether energetic contexts could better predict fitness compared to CORT metrics. Importantly, we investigated these relationships in both natural conditions and under an experimental manipulation of foraging profitability (feather clipping) to determine the influence of an environmental constraint on GC-fitness relationships. We found a lack of relationship between baseline CORT and both short- and long-term metrics of fitness in control and clipped birds. In contrast, loss in body mass over reproduction positively predicted reproductive output (number of chicks leaving the nest) in control birds; however, the relationship was characterized by a low R2 (5%), limiting the predictive capacity, and therefore the application potential, of such a measure in a conservation setting. Our results stress the importance of ground-truthing GC-fitness relationships and indicate that baseline GCs will likely not be easily employed as conservation biomarkers across some species and life history stages. Given the accumulating evidence of temporally dynamic, inconsistent, and context-dependent GC-fitness relationships, placing effort towards directly measuring fitness traits, rather than plasma GC levels, will likely be more worthwhile for many conservation endeavours.
Collapse
Affiliation(s)
- Christine L Madliger
- Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
| | - Oliver P Love
- Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
| |
Collapse
|
20
|
Rivers JW, Newberry GN, Schwarz CJ, Ardia DR. Success despite the stress: violet‐green swallows increase glucocorticoids and maintain reproductive output despite experimental increases in flight costs. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12719] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- James W. Rivers
- Department of Forest Ecosystems and Society Oregon State University Corvallis OR97331 USA
| | - Gretchen N. Newberry
- Department of Fisheries and Wildlife Oregon State University Corvallis OR97331 USA
| | - Carl J. Schwarz
- Department of Statistics and Actuarial Science Simon Fraser University Burnaby BC V5A 1S6 Canada
| | - Daniel R. Ardia
- Department of Biology Franklin and Marshall College Lancaster PA17604 USA
| |
Collapse
|
21
|
|
22
|
Hau M, Casagrande S, Ouyang J, Baugh A. Glucocorticoid-Mediated Phenotypes in Vertebrates. ADVANCES IN THE STUDY OF BEHAVIOR 2016. [DOI: 10.1016/bs.asb.2016.01.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Berzins LL, Dawson RD. Experimentally altered plumage brightness of female tree swallows: a test of the differential allocation hypothesis. BEHAVIOUR 2016. [DOI: 10.1163/1568539x-00003354] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The differential allocation hypothesis posits that individuals should invest in the current reproductive attempt according to the attractiveness of their mate, but studies of allocation by males when female traits are manipulated to be more attractive are lacking. In the current study, we experimentally enhanced and reduced the plumage brightness of female tree swallows (Tachycineta bicolor) relative to controls to examine whether males adjust investment in parental care according to female attractiveness, while simultaneously performing a brood size manipulation. Contrary to our predictions, we found no evidence that males provisioned nestlings according to the plumage brightness of females. However, we found that nestling quality and fledging success were lowest when female plumage brightness was reduced and brood size was enlarged. This may be due to the plumage brightness treatment influencing agonistic interactions with other females, and may suggest that plumage brightness is a signal assessed by females.
Collapse
Affiliation(s)
- Lisha L. Berzins
- Ecosystem Science and Management, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada V2N 4Z9
| | - Russell D. Dawson
- Ecosystem Science and Management, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada V2N 4Z9
| |
Collapse
|
24
|
Dakin R, Ouyang JQ, Lendvai ÁZ, Haussmann M, Moore IT, Bonier F. Weather matters: begging calls are temperature- and size-dependent signals of offspring state. BEHAVIOUR 2016. [DOI: 10.1163/1568539x-00003370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Begging calls provide a way for parents to gauge offspring state. Although temperature is known to affect call production, previous studies have not examined the influence of ambient temperature at the nest. We recorded ambient temperature and begging calls of 3 day-old tree swallows (Tachycineta bicolor). Our results indicate that typical daily temperature flux can dramatically alter a brood’s begging calls, depending on body size. Broods with small (low body mass) nestlings decreased the rate and length of their calls at colder temperatures, consistent with a biophysical constraint. In contrast, broods with large (high body mass) nestlings increased the rate of their calls at colder temperatures. Parents responded in a context-dependent manner, returning more rapidly after smaller nestlings gave longer begging calls. Our results suggest that the function of offspring begging calls is highly dynamic, with environmental conditions altering the relationship between begging calls and offspring state.
Collapse
Affiliation(s)
- Roslyn Dakin
- Department of Zoology, University of British Columbia, 4200-6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| | - Jenny Q. Ouyang
- Department of Biology, University of Nevada, Reno, NV, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Ádám Z. Lendvai
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Ignacio T. Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Frances Bonier
- Department of Biology, Queen’s University, Kingston, ON, Canada
| |
Collapse
|