1
|
Wu Q, Radchenko AG, Engel MS, Li XQ, Yang HR, Li XR, Shih CK, Ren D, Gao TP. Cretaceous crown male ant reveals the rise of modern lineages. Zool Res 2024; 45:983-989. [PMID: 39085754 PMCID: PMC11491779 DOI: 10.24272/j.issn.2095-8137.2023.390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Most described Mesozoic ants belong to stem groups that existed only during the Cretaceous period. Previously, the earliest known crown ants were dated to the Turonian (Late Cretaceous, ca. 94-90 million years ago (Ma)) deposits found in the USA, Kazakhstan, and Botswana. However, the recent discovery of an alate male ant in Kachin amber from the earliest Cenomanian (ca. 99 Ma), representing a new genus and species, Antiquiformica alata, revises the narrative on ant diversification. Antiquiformica can be distinctly differentiated from all known male stem ants by its geniculate antennae with elongated scape, extending far beyond the occipital margin of the head and half the length of the funiculus, as well as its partly reduced forewing venation. Furthermore, the combination of a one-segmented waist with a well-developed node, elongated scape extending beyond the occipital margin, and reduced forewing venation, particularly the completely reduced m-cu and rs-m crossveins and absence of rm and mcu closed cells, firmly places the fossil within the extant subfamily Formicinae. Fourier transform infrared spectroscopy (FTIR) confirmed that the amber containing Antiquiformica alata originated from the Kachin mines in Myanmar. This discovery significantly revises our understanding of the early evolution of Formicinae. The presence of Antiquiformica in Cenomanian amber indicates that the subfamily Formicinae emerged at least by the start of the Late Cretaceous, with crown ants likely originating earlier during the earliest Cretaceous or possibly the Late Jurassic, although paleontological evidence is lacking to support the latter hypothesis.
Collapse
Affiliation(s)
- Qiong Wu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | | | - Michael S Engel
- Division of Invertebrate Zoology, American Museum of Natural History, New York 10024-5192, USA
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, 11-0058, Perú
- Departamento de Entomología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima 14, Perú Código postal Lima 15072, Perú
| | - Xiao-Qin Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hong-Ru Yang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xing-Ru Li
- Department of Chemistry, Analytical and Testing Center, Capital Normal University, Beijing 100048, China
| | - Chung-Kun Shih
- College of Life Sciences, Capital Normal University, Beijing 100048, China
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Dong Ren
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Tai-Ping Gao
- College of Life Sciences, Capital Normal University, Beijing 100048, China. E-mail:
| |
Collapse
|
2
|
Probst RS, Longino JT, Branstetter MG. Evolutionary déjà vu? A case of convergent evolution in an ant-plant association. Proc Biol Sci 2024; 291:20241214. [PMID: 38981524 PMCID: PMC11334994 DOI: 10.1098/rspb.2024.1214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
Obligatory ant-plant symbioses often appear to be single evolutionary shifts within particular ant lineages; however, convergence can be revealed once natural history observations are complemented with molecular phylogenetics. Here, we describe a remarkable example of convergent evolution in an ant-plant symbiotic system. Exclusively arboreal, Myrmelachista species can be generalized opportunists nesting in several plant species or obligately symbiotic, live-stem nesters of a narrow set of plant species. Instances of specialization within Myrmelachista are known from northern South America and throughout Middle America. In Middle America, a diverse radiation of specialists occupies understory treelets of lowland rainforests. The morphological and behavioural uniformity of specialists suggests that they form a monophyletic assemblage, diversifying after a single origin of specialization. Using ultraconserved element phylogenomics and ancestral state reconstructions, we show that shifts from opportunistic to obligately symbiotic evolved independently in South and Middle America. Furthermore, our analyses support a remarkable case of convergence within the Middle American radiation, with two independently evolved specialist clades, arising nearly simultaneously from putative opportunistic ancestors during the late Pliocene. This repeated evolution of a complex phenotype suggests similar mechanisms behind trait shifts from opportunists to specialists, generating further questions about the selective forces driving specialization.
Collapse
Affiliation(s)
- Rodolfo S. Probst
- Science Research Initiative (SRI), College of Science, University of Utah, Salt Lake City, UT84112, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT84112, USA
| | - John T. Longino
- School of Biological Sciences, University of Utah, Salt Lake City, UT84112, USA
| | - Michael G. Branstetter
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Pollinating Insects Research Unit, Utah State University, Logan, UT84322, USA
| |
Collapse
|
3
|
Lecocq de Pletincx N, Cerdà X, Kiran K, Karaman C, Taheri A, Aron S. Ecological diversification preceded geographical expansion during the evolutionary radiation of Cataglyphis desert ants. iScience 2024; 27:109852. [PMID: 38779477 PMCID: PMC11109030 DOI: 10.1016/j.isci.2024.109852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/20/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Biological diversity often arises as organisms adapt to new ecological conditions (i.e., ecological opportunities) or colonize suitable areas (i.e., spatial opportunities). Cases of geographical expansion followed by local ecological divergence are well described; they result in clades comprising ecologically heterogeneous subclades. Here, we show that the desert ant genus Cataglyphis likely originated in open grassland habitats in the Middle East ∼18 million years ago and became a taxon of diverse species specializing in prey of different masses. The genus then colonized the Mediterranean Basin around 9 million years ago. The result was the rapid accumulation of species, and the appearance of local assemblages containing species from different lineages that still displayed ancestral foraging specialties. These findings highlight that, in Cataglyphis, ecological diversification preceded geographical expansion, resulting in a clade composed of ecologically homogeneous subclades.
Collapse
Affiliation(s)
- Nathan Lecocq de Pletincx
- Evolutionary Biology and Ecology, Faculty of Sciences, Université Libre de Bruxelles, CP 160/12, av. FD Roosevelt, 1050 Brussels, Belgium
| | - Xim Cerdà
- Department of Ethology and Biodiversity Conservation, Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - Kadri Kiran
- Department of Biology, Faculty of Sciences, Trakya University, Edirne 22030, Türkiye
| | - Celal Karaman
- Department of Biology, Faculty of Sciences, Trakya University, Edirne 22030, Türkiye
| | - Ahmed Taheri
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, Faculty of Sciences of El Jadida, University Chouaïb Doukkali, El Jadida, Morocco
| | - Serge Aron
- Evolutionary Biology and Ecology, Faculty of Sciences, Université Libre de Bruxelles, CP 160/12, av. FD Roosevelt, 1050 Brussels, Belgium
| |
Collapse
|
4
|
Sahanashree R, Punnath A, Rajan Priyadarsanan D. A remarkable new species of Paraparatrechina Donisthorpe (1947) (Hymenoptera, Formicidae, Formicinae) from the Eastern Himalayas, India. Zookeys 2024; 1203:159-172. [PMID: 38855795 PMCID: PMC11161688 DOI: 10.3897/zookeys.1203.114168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/16/2024] [Indexed: 06/11/2024] Open
Abstract
A new ant species, Paraparatrechinaneela sp. nov., with a captivating metallic-blue color is described based on the worker caste from the East Siang district of Arunachal Pradesh, northeastern India. This discovery signifies the first new species of Paraparatrechina in 121 years, since the description of the sole previously known species, P.aseta (Forel, 1902), in the Indian subcontinent.
Collapse
Affiliation(s)
- Ramakrishnaiah Sahanashree
- Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur Post, Bengaluru – 560064, Karnataka, IndiaAshoka Trust for Research in Ecology and the EnvironmentBengaluruIndia
| | - Aswaj Punnath
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL, 32611, USAUniversity of FloridaGainesvilleUnited States of America
| | - Dharma Rajan Priyadarsanan
- Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur Post, Bengaluru – 560064, Karnataka, IndiaAshoka Trust for Research in Ecology and the EnvironmentBengaluruIndia
| |
Collapse
|
5
|
Griebenow Z. Systematic revision of the ant subfamily Leptanillinae (Hymenoptera, Formicidae). Zookeys 2024; 1189:83-184. [PMID: 38314112 PMCID: PMC10838183 DOI: 10.3897/zookeys.1189.107506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/06/2023] [Indexed: 02/06/2024] Open
Abstract
The genus-level taxonomy of the ant subfamily Leptanillinae (Hymenoptera: Formicidae) is here revised, with the aim of delimiting genus-level taxa that are reciprocally monophyletic and readily diagnosable based upon all adult forms. This new classification reflects molecular phylogenetics and is informed by joint consideration of both male and worker morphology. Three valid genera are recognized in the Leptanillinae: Opamyrma, Leptanilla (= Scyphodonsyn. nov., Phaulomyrma, Leptomesites, Noonillasyn. nov., Yavnellasyn. nov.), and Protanilla (= Anomalomyrmasyn. nov., Furcotanilla). Leptanilla and Protanilla are further divided into informal, monophyletic species groups. Synoptic diagnoses are provided for all genera and informal supraspecific groupings. In addition, worker-based keys to all described species within the Leptanillinae for which the worker caste is known are provided; and male-based keys to all species for which males are known, plus undescribed male morphospecies for which molecular data are published. The following species are described as new: Protanillawallaceisp. nov., Leptanillaacherontiasp. nov., Leptanillabelantansp. nov., Leptanillabethyloidessp. nov., and Leptanillanajaphallasp. nov.
Collapse
Affiliation(s)
- Zachary Griebenow
- Department of Entomology & Nematology, University of California, Davis, CA USAUniversity of CaliforniaDavisUnited States of America
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO USAColorado State UniversityFort CollinsUnited States of America
| |
Collapse
|
6
|
Morrissey D, Gordon JD, Saso E, Bilewitch JP, Taylor ML, Hayes V, McFadden CS, Quattrini AM, Allcock AL. Bamboozled! Resolving deep evolutionary nodes within the phylogeny of bamboo corals (Octocorallia: Scleralcyonacea: Keratoisididae). Mol Phylogenet Evol 2023; 188:107910. [PMID: 37640170 DOI: 10.1016/j.ympev.2023.107910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/22/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Keratoisididae is a globally distributed, and exclusively deep-sea, family of octocorals that contains species and genera that are polyphyletic. An alphanumeric system, based on a three-gene-region phylogeny, is widely used to describe the biodiversity within this family. That phylogeny identified 12 major groups although it did not have enough signal to explore the relationships among groups. Using increased phylogenomic resolution generated from Ultraconserved Elements and exons (i.e. conserved elements), we aim to resolve deeper nodes within the family and investigate the relationships among those predefined groups. In total, 109 libraries of conserved elements were generated from individuals representing both the genetic and morphological diversity of our keratoisidids. In addition, the conserved element data of 12 individuals from previous studies were included. Our taxon sampling included 11 of the 12 keratoisidid groups. We present two phylogenies, constructed from a 75% (231 loci) and 50% (1729 loci) taxon occupancy matrix respectively, using both Maximum Likelihood and Multiple Species Coalescence methods. These trees were congruent at deep nodes. As expected, S1 keratoisidids were recovered as a well-supported sister clade to the rest of the bamboo corals. S1 corals do not share the same mitochondrial gene arrangement found in other members of Keratoisididae. All other bamboo corals were recovered within two major clades. Clade I comprises individuals assigned to alphanumeric groups B1, C1, D1&D2, F1, H1, I4, and J3 while Clade II contains representatives from A1, I1, and M1. By combining genomics with already published morphological data, we provide evidence that group H1 is not monophyletic, and that the division between other groups - D1 and D2, and A1 and M1 - needs to be reconsidered. Overall, there is a lack of robust morphological markers within Keratoisididae, but subtle characters such as sclerite microstructure and ornamentation seem to be shared within groups and warrant further investigation as taxonomically diagnostic characters.
Collapse
Affiliation(s)
- Declan Morrissey
- Ryan Institute & School of Natural Sciences, University of Galway, University Road, Galway, Ireland.
| | - Jessica D Gordon
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Emma Saso
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Jaret P Bilewitch
- National Institute of Water & Atmospheric Research Ltd (NIWA), 301 Evans Bay Parade, Wellington 6021, New Zealand
| | - Michelle L Taylor
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Vonda Hayes
- Department of Fisheries and Oceans, St. John's, Newfoundland and Labrador, Canada
| | - Catherine S McFadden
- Department of Biology, Harvey Mudd College, 1250 N. Dartmouth Ave., Claremont, CA 91711, USA
| | - Andrea M Quattrini
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - A Louise Allcock
- Ryan Institute & School of Natural Sciences, University of Galway, University Road, Galway, Ireland
| |
Collapse
|
7
|
Almeida EAB, Bossert S, Danforth BN, Porto DS, Freitas FV, Davis CC, Murray EA, Blaimer BB, Spasojevic T, Ströher PR, Orr MC, Packer L, Brady SG, Kuhlmann M, Branstetter MG, Pie MR. The evolutionary history of bees in time and space. Curr Biol 2023; 33:3409-3422.e6. [PMID: 37506702 DOI: 10.1016/j.cub.2023.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
Bees are the most significant pollinators of flowering plants. This partnership began ca. 120 million years ago, but the uncertainty of how and when bees spread across the planet has greatly obscured investigations of this key mutualism. We present a novel analysis of bee biogeography using extensive new genomic and fossil data to demonstrate that bees originated in Western Gondwana (Africa and South America). Bees likely originated in the Early Cretaceous, shortly before the breakup of Western Gondwana, and the early evolution of any major bee lineage is associated with either the South American or African land masses. Subsequently, bees colonized northern continents via a complex history of vicariance and dispersal. The notable early absences from large landmasses, particularly in Australia and India, have important implications for understanding the assembly of local floras and diverse modes of pollination. How bees spread around the world from their hypothesized Southern Hemisphere origin parallels the histories of numerous flowering plant clades, providing an essential step to studying the evolution of angiosperm pollination syndromes in space and time.
Collapse
Affiliation(s)
- Eduardo A B Almeida
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil.
| | - Silas Bossert
- Department of Entomology, Washington State University, Pullman, WA 99164, USA; Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA.
| | - Bryan N Danforth
- Department of Entomology, Cornell University, Comstock Hall, Ithaca, NY 14853, USA
| | - Diego S Porto
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil; Finnish Museum of Natural History - LUOMUS, University of Helsinki, Helsinki 00014, Finland
| | - Felipe V Freitas
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil; Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA 02138, USA
| | - Elizabeth A Murray
- Department of Entomology, Washington State University, Pullman, WA 99164, USA; Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Bonnie B Blaimer
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA; Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany
| | - Tamara Spasojevic
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA; Life Sciences, Natural History Museum Basel, 4051 Basel, Switzerland; Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Patrícia R Ströher
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná 81531-990, Brazil; Department of Anthropology and Archaeology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Michael C Orr
- Entomologie, Staatliches Museum für Naturkunde Stuttgart, 70191 Stuttgart, Germany; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Laurence Packer
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Seán G Brady
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Michael Kuhlmann
- Zoological Museum, University of Kiel, Hegewischstr. 3, 24105 Kiel, Germany
| | - Michael G Branstetter
- U.S. Department of Agriculture, Agricultural Research Service, Pollinating Insects Research Unit, Utah State University, Logan, UT 84322, USA
| | - Marcio R Pie
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná 81531-990, Brazil; Department of Biology, Edge Hill University, St Helens Rd, Ormskirk, Lancashire L39 4QP, UK
| |
Collapse
|
8
|
Silva TSR, Hamer MT, Guénard B. A checklist of Nylanderia (Hymenoptera: Formicidae: Formicinae) from Hong Kong and Macao SARs, with an illustrated identification key for species in Southeast China and Taiwan. Zootaxa 2023; 5301:501-539. [PMID: 37518547 DOI: 10.11646/zootaxa.5301.5.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 08/01/2023]
Abstract
Species of the ant genus Nylanderia constitute some of the most common ground dwelling Formicinae in tropical and subtropical areas. The genus includes numerous species introduced into new regions, especially within urban or disturbed environments. Here, we review the Nylanderia species found within Hong Kong and Macao, which are both highly urbanized regions and of critical importance to Southern China's policy-makers and non-governmental actors concerned with the regional spread of non-native species. A total of 11 species and 2 morphospecies are recorded in Hong Kong and 6 species and 2 morphospecies are recorded in Macao. We also provide a list of new records for the genus in Hong Kong and Macao, along with taxonomic accounts for all the species recorded. Additionally, the present work provides an illustrated identification key for the species of Nylanderia occurring in Southeast Mainland China and Taiwan. We briefly discuss the possible biogeographical implications of our findings, providing additional support to the exotic status of N. bourbonica in continental Southeast Asia. Lastly, we give our perspective on the ramifications of local inaccessibility to type specimens to current taxonomic practices.
Collapse
Affiliation(s)
- Thiago S R Silva
- School of Biological Sciences; The University of Hong Kong; Kadoorie Biological Sciences Building; Pok Fu Lam Road; Hong Kong SAR; China.
| | - Matthew T Hamer
- School of Biological Sciences; The University of Hong Kong; Kadoorie Biological Sciences Building; Pok Fu Lam Road; Hong Kong SAR; China.
| | - Benoit Guénard
- School of Biological Sciences; The University of Hong Kong; Kadoorie Biological Sciences Building; Pok Fu Lam Road; Hong Kong SAR; China.
| |
Collapse
|
9
|
Shimbori EM, Querino RB, Costa VA, Zucchi RA. Taxonomy and Biological Control: New Challenges in an Old Relationship. NEOTROPICAL ENTOMOLOGY 2023; 52:351-372. [PMID: 36656493 PMCID: PMC9851596 DOI: 10.1007/s13744-023-01025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/03/2023] [Indexed: 05/13/2023]
Abstract
Biological control and taxonomy are continuously developing fields with remarkable impacts on society. At least 80 years of literature have documented this relationship, which remains essentially the same in its mutualistic nature, as well as in its major challenges. From the perspective of Brazilian taxonomists, we discuss the impacts of important scientific and social developments that directly affect research in these areas, posing new challenges for this lasting relationship. The increasing restrictions and concerns regarding the international transit of organisms require improvements in research related to risk assessment for exotic biological control agents and also stimulate prospecting within the native biota. In our view, this is a positive situation that can foster a closer relationship between taxonomists and applied entomologists, as well as local surveys and taxonomic studies that are necessary before new programs and agents can be implemented. We discuss the essential role of molecular biology in this context, as an iconic example of the synergy between applied sciences and natural history. As our society comes to need safer and more sustainable solutions for food security and the biodiversity crisis, scientific progress will build upon this integration, where biological control and taxonomy play an essential role.
Collapse
Affiliation(s)
- Eduardo Mitio Shimbori
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), Universidade de São Paulo (USP), São Paulo Piracicaba, Brazil
| | - Ranyse Barbosa Querino
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Cerrados, Planaltina, Distrito Federal Brazil
| | - Valmir Antonio Costa
- Centro Avançado de Pesquisa e Desenvolvimento em Sanidade Agropecuária, Instituto Biológico, São Paulo Campinas, Brazil
| | - Roberto Antonio Zucchi
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), Universidade de São Paulo (USP), São Paulo Piracicaba, Brazil
| |
Collapse
|
10
|
Zhang J, Li Z, Lai J, Zhang Z, Zhang F. A novel probe set for the phylogenomics and evolution of RTA spiders. Cladistics 2023; 39:116-128. [PMID: 36719825 DOI: 10.1111/cla.12523] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/10/2022] [Accepted: 12/21/2022] [Indexed: 02/01/2023] Open
Abstract
Spiders are important models for evolutionary studies of web building, sexual selection and adaptive radiation. The recent development of probes for UCE (ultra-conserved element)-based phylogenomic studies has shed light on the phylogeny and evolution of spiders. However, the two available UCE probe sets for spider phylogenomics (Spider and Arachnida probe sets) have relatively low capture efficiency within spiders, and are not optimized for the retrolateral tibial apophysis (RTA) clade, a hyperdiverse lineage that is key to understanding the evolution and diversification of spiders. In this study, we sequenced 15 genomes of species in the RTA clade, and using eight reference genomes, we developed a new UCE probe set (41 845 probes targeting 3802 loci, labelled as the RTA probe set). The performance of the RTA probes in resolving the phylogeny of the RTA clade was compared with the Spider and Arachnida probes through an in-silico test on 19 genomes. We also tested the new probe set empirically on 28 spider species of major spider lineages. The results showed that the RTA probes recovered twice and four times as many loci as the other two probe sets, and the phylogeny from the RTA UCEs provided higher support for certain relationships. This newly developed UCE probe set shows higher capture efficiency empirically and is particularly advantageous for phylogenomic and evolutionary studies of RTA clade and jumping spiders.
Collapse
Affiliation(s)
- Junxia Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zhaoyi Li
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Jiaxing Lai
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zhisheng Zhang
- School of Life Sciences, Southwest University, Chongqing, 400700, China
| | - Feng Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| |
Collapse
|
11
|
Feitosa RM, Camacho GP, Silva TSR, Ulysséa MA, Ladino N, Oliveira AM, Albuquerque EZ, Schmidt FA, Ribas CR, Nogueira A, Baccaro FB, Queiroz ACM, Dáttilo W, Silva RR, Santos JC, Rabello AM, Morini MSDC, Quinet YP, Del-Claro K, Harada AY, Carvalho KS, Sobrinho TG, Moraes AB, Vargas AB, Torezan-Silingardi HM, Souza JLP, Marques T, Izzo T, Lange D, Santos IA, Nahas L, Paolucci L, Soares SA, Costa-Milanez CB, Diehl-Fleig E, Campos RBF, Solar R, Frizzo T, Darocha W. Ants of Brazil: an overview based on 50 years of diversity studies. SYST BIODIVERS 2022. [DOI: 10.1080/14772000.2022.2089268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Rodrigo M. Feitosa
- Laboratório de Sistemática e Biologia de Formigas, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Gabriela P. Camacho
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Berlin, Germany
- Laboratório de Hymenoptera, Museu de Zoologia da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Thiago S. R. Silva
- The Insect Biodiversity and Biogeography Laboratory, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Mônica A. Ulysséa
- Laboratório de Hymenoptera, Museu de Zoologia da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Natalia Ladino
- Laboratório de Sistemática e Biologia de Formigas, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Aline M. Oliveira
- The Insect Biodiversity and Biogeography Laboratory, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Emília Z. Albuquerque
- AntLab, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Rabeling Lab, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Fernando A. Schmidt
- Laboratório de Ecologia de Formigas, Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Acre, Brazil
| | - Carla R. Ribas
- Laboratório de Ecologia de Formigas, Departamento de Ecologia e Conservação, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Anselmo Nogueira
- Laboratório de Interações Planta-Animal, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil
| | - Fabrício B. Baccaro
- Departamento de Biologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Antônio C. M. Queiroz
- Laboratório de Ecologia de Formigas, Departamento de Ecologia e Conservação, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Wesley Dáttilo
- Red de Ecoetología, Instituto de Ecología AC, Xalapa, Veracruz, Mexico
| | - Rogério R. Silva
- Coordenação de Ciências da Terra e Ecologia, Museu Paraense Emílio Goeldi, Belém, Pará, Brazil
| | - Jean C. Santos
- Laboratório de Ecologia & Biodiversidade, Departamento de Ecologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Ananza M. Rabello
- Instituto de Estudos do Xingu, Universidade Federal do Sul e Sudeste do Pará, São Félix do Xingu, Pará, Brazil
| | - Maria Santina De C. Morini
- Laboratório de Mirmecologia do Alto Tietê, Núcleo de Ciências Ambientais, Universidade de Mogi das Cruzes, Mogi das Cruzes, São Paulo, Brazil
| | - Yves P. Quinet
- Laboratório de Entomologia, Departamento de Biologia, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Kleber Del-Claro
- Laboratório de Ecologia Comportamental e de Interações, Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Ana Y. Harada
- Coordenação em Zoologia, Museu Paraense Emilio Goeldi, Belém, Pará, Brazil
| | - Karine S. Carvalho
- Laboratório de Ecologia, Departamento de Ciências Naturais, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Bahia, Brazil
| | - Tathiana G. Sobrinho
- Laboratório de Sistemática e Ecologia de Insetos, Departamento de Ciências Agrárias e Biológicas, Universidade Federal do Espírito Santo, São Mateus, Espírito Santos, Brazil
| | - Aline B. Moraes
- Prefeitura Municipal de Novo Hamburgo, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - André B. Vargas
- Centro Universitário de Volta Redonda, UniFOA, Volta Redonda, Rio de Janeiro, Brazil
| | - Helena Maura Torezan-Silingardi
- Laboratório de Ecologia Comportamental e de Interações, Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Jorge Luiz P. Souza
- Instituto Nacional da Mata Atlântica, INMA, Santa Teresa, Espírito Santo, Brazil
| | - Tatianne Marques
- Laboratório de Ecologia Aplicada e Citogenética, Instituto Federal do Norte de Minas Gerais – IFNMG, Salinas, Minas Gerais, Brazil
| | - Thiago Izzo
- Laboratório de Ecologia de Comunidades, Departamento de Botânica e Ecologia, Universidade Federal do Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Denise Lange
- Universidade Tecnológica Federal do Paraná, Santa Helena, Paraná, Brazil
| | - Iracenir A. Santos
- Centro de Formação Interdisciplinar, Universidade Federal do Oeste do Pará, Santarém, Pará, Brazil
| | - Larissa Nahas
- Laboratório de Ecologia Comportamental e de Interações, Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Lucas Paolucci
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Stela A. Soares
- Secretaria Estadual de Educação de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Cinthia B. Costa-Milanez
- Departamento de Biologia, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | - Renata B. F. Campos
- Laboratório de Ecologia, Ambiente e Território, PPG Gestão Integrada do Território, Universidade Vale do Rio Doce, Governador Valadares, Minas Gerais, Brazil
| | - Ricardo Solar
- Centro de Síntese Ecológica e Conservação, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tiago Frizzo
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Wesley Darocha
- Laboratório de Mirmecologia (CPDC), Centro de Pesquisa do Cacau (CEPEC), Ilhéus, Bahia, Brazil
- Laboratório de Ecologia de Insetos, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
12
|
Penaud B, Laurent B, Milhes M, Noüs C, Ehrenmann F, Dutech C. SNP4OrphanSpecies: A bioinformatics pipeline to isolate molecular markers for studying genetic diversity of orphan species. Biodivers Data J 2022; 10:e85587. [PMID: 36761595 PMCID: PMC9848450 DOI: 10.3897/bdj.10.e85587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/23/2022] [Indexed: 11/12/2022] Open
Abstract
Background For several decades, an increase in disease or pest emergences due to anthropogenic introduction or environmental changes has been recorded. This increase leads to serious threats to the genetic and species diversity of numerous ecosystems. Many of these events involve species with poor or no genomic resources (called here "orphan species"). This lack of resources is a serious limitation to our understanding of the origin of emergent populations, their ability to adapt to new environments and to predict future consequences to biodiversity. Analyses of genetic diversity are an efficient method to obtain this information rapidly, but require available polymorphic genetic markers. New information We developed a generic bioinformatics pipeline to rapidly isolate such markers with the goal for the pipeline to be applied in studies of invasive taxa from different taxonomic groups, with a special focus on forest fungal pathogens and insect pests. This pipeline is based on: 1) an automated de novo genome assembly obtained from shotgun whole genome sequencing using paired-end Illumina technology; 2) the isolation of single-copy genes conserved in species related to the studied emergent organisms; 3) primer development for multiplexed short sequences obtained from these conserved genes. Previous studies have shown that intronic regions of these conserved genes generally contain several single nucleotide polymorphisms within species. The pipeline's functionality was evaluated with sequenced genomes of five invasive or expanding pathogen and pest species in Europe (Armillariaostoyae (Romagn.) Herink 1973, Bursaphelenchusxylophilus Steiner & Buhrer 1934, Sphaeropsissapinea (fr.) Dicko & B. Sutton 1980, Erysiphealphitoides (Griffon & Maubl.) U. Braun & S. Takam. 2000, Thaumetopoeapityocampa Denis & Schiffermüller, 1775). We successfully isolated several pools of one hundred short gene regions for each assembled genome, which can be amplified in multiplex. The bioinformatics pipeline is user-friendly and requires little computational resources. This easy-to-set-up and run method for genetic marker identification will be useful for numerous laboratories studying biological invasions, but with limited resources and expertise in bioinformatics.
Collapse
Affiliation(s)
- Benjamin Penaud
- BIOGECO, INRAE, Univ. Bordeaux, 33610 Cestas, FranceBIOGECO, INRAE, Univ. Bordeaux33610 CestasFrance
| | - Benoit Laurent
- BIOGECO, INRAE, Univ. Bordeaux, 33610 Cestas, FranceBIOGECO, INRAE, Univ. Bordeaux33610 CestasFrance
| | - Marine Milhes
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, FranceINRAE, US 1426, GeT-PlaGe, GenotoulCastanet-TolosanFrance
| | - Camille Noüs
- Laboratoire Cogitamus, Bordeaux, FranceLaboratoire CogitamusBordeauxFrance
| | - François Ehrenmann
- BIOGECO, INRAE, Univ. Bordeaux, 33610 Cestas, FranceBIOGECO, INRAE, Univ. Bordeaux33610 CestasFrance
| | - Cyril Dutech
- BIOGECO, INRAE, Univ. Bordeaux, 33610 Cestas, FranceBIOGECO, INRAE, Univ. Bordeaux33610 CestasFrance
| |
Collapse
|
13
|
Tonione MA, Bi K, Dunn RR, Lucky A, Portik DM, Tsutsui ND. Phylogeography and population genetics of a widespread cold-adapted ant, Prenolepis imparis. Mol Ecol 2022; 31:4884-4899. [PMID: 35866574 DOI: 10.1111/mec.16624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
As species arise, evolve, and diverge, they are shaped by forces that unfold across short and long time scales and at both local and vast geographic scales. It is rare, however, to be able document this history across broad sweeps of time and space in a single species. Here, we report the results of a continental-scale phylogenomic analysis across the entire range of a widespread species. We analyzed sequences of 1,402 orthologous Ultraconserved Element (UCE) loci from 75 individuals to identify population genetic structure and historical demographic patterns across the continent-wide range of a cold-adapted ant, the winter ant, Prenolepis imparis. We recovered five well-supported, genetically isolated clades representing lineages that diverged from 8.2-2.2 million years ago. These include: 1) an early diverging lineage located in Florida, 2) a lineage that spans the southern United States, 3) populations that extend across the midwestern and northeastern United States, 4) populations from the western United States, and 5) populations in southwestern Arizona and Mexico. Population genetic analyses revealed little or no gene flow among these lineages, but patterns consistent with more recent gene flow among populations within lineages, and localized structure with migration in the western United States. High support for five major geographic lineages and lack of evidence of contemporary gene flow indicate in situ diversification across the species' range, producing relatively ancient lineages that persisted through subsequent climate change and glaciation during the Quaternary.
Collapse
Affiliation(s)
- Maria Adelena Tonione
- Department of Environmental Science, Policy, and Management, 130 Mulford Hall, #3114, University of California-, 94720-3114, Berkeley, CA, USA
| | - Ke Bi
- Museum of Vertebrate Zoology, University of California, Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA 94720, USA.,Computational Genomics Resource Laboratory (CGRL), California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, David Clark Labs, Box 7617, Raleigh, NC 27695, USA
| | - Andrea Lucky
- Entomology and Nematology Department, University of Florida, 32608, Gainesville, FL, USA
| | - Daniel M Portik
- California Academy of Sciences, 94118, San Francisco, CA, USA
| | - Neil Durie Tsutsui
- Department of Environmental Science, Policy, and Management, 130 Mulford Hall, #3114, University of California-, 94720-3114, Berkeley, CA, USA
| |
Collapse
|
14
|
Yi X, Latch EK. Systematics of the New World bats Eptesicus and Histiotus suggest trans-marine dispersal followed by Neotropical cryptic diversification. Mol Phylogenet Evol 2022; 175:107582. [PMID: 35810969 DOI: 10.1016/j.ympev.2022.107582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/23/2022] [Accepted: 06/15/2022] [Indexed: 01/13/2023]
Abstract
Biodiversity can be boosted by colonization of new habitats such as remote islands and separated continents. Molecular studies have suggested that recently evolved organisms probably colonized already separated continents by dispersal, either via land bridge connections or crossing the ocean. Here we test the on-land and trans-marine dispersal hypotheses by evaluating possibilities of colonization routes over the Bering land bridge and across the Atlantic Ocean in the cosmopolitan bat genus Eptesicus (Chiroptera, Vespertilionidae). Previous molecular studies have found New World Eptesicus more closely related to Histiotus, a Neotropical endemic lineage with enlarged ears, than to Old World Eptesicus. However, phylogenetic relationships within the New World group remained unresolved and their evolutionary history was unclear. Here we studied the systematics of New World Eptesicus and Histiotus using extensive taxonomic and geographic sampling, and genomic data from thousands of ultra-conserved elements (UCEs). We estimated phylogenetic trees using concatenation and multispecies coalescent. All analyses supported four major New World clades and a novel topology where E. fuscus and Histiotus are sister clades that together diverged from two sister clades of Neotropical Eptesicus. Intra-clade divergence suggested cryptic diversity that has been concealed by morphological features, especially in the Neotropics where taxonomic re-evaluations are warranted. Molecular dating estimated that Old World and New World clades diverged around 17 million years ago followed by radiation of major New World clades in the mid-Miocene, when climatic changes might have facilitated global dispersal and radiation events. Biogeographic ancestral reconstruction supported the Neotropical origin of the New World clades, suggesting a trans-Atlantic colonization route from North Africa to the northern Neotropics. We highlight that trans-marine dispersal may be more prevalent than currently acknowledged and may be an important first step to global biodiversification.
Collapse
Affiliation(s)
- Xueling Yi
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Emily K Latch
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
15
|
Ebbs ET, Loker ES, Bu L, Locke SA, Tkach VV, Devkota R, Flores VR, Pinto HA, Brant SV. Phylogenomics and Diversification of the Schistosomatidae Based on Targeted Sequence Capture of Ultra-Conserved Elements. Pathogens 2022; 11:769. [PMID: 35890014 PMCID: PMC9321907 DOI: 10.3390/pathogens11070769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Schistosomatidae Stiles and Hassall 1898 is a medically significant family of digenetic trematodes (Trematoda: Digenea), members of which infect mammals or birds as definitive hosts and aquatic or amphibious gastropods as intermediate hosts. Currently, there are 17 named genera, for many of which evolutionary interrelationships remain unresolved. The lack of a resolved phylogeny has encumbered our understanding of schistosomatid evolution, specifically patterns of host-use and the role of host-switching in diversification. Here, we used targeted sequence capture of ultra-conserved elements (UCEs) from representatives of 13 of the 17 named genera and 11 undescribed lineages that are presumed to represent either novel genera or species to generate a phylogenomic dataset for the estimation of schistosomatid interrelationships. This study represents the largest phylogenetic effort within the Schistosomatidae in both the number of loci and breadth of taxon sampling. We present a near-comprehensive family-level phylogeny providing resolution to several clades of long-standing uncertainty within Schistosomatidae, including resolution for the placement of the North American mammalian schistosomes, implying a second separate capture of mammalian hosts. Additionally, we present evidence for the placement of Macrobilharzia at the base of the Schistosoma + Bivitellobilharzia radiation. Patterns of definitive and intermediate host use and a strong role for intermediate host-switching are discussed relative to schistosomatid diversification.
Collapse
Affiliation(s)
- Erika T. Ebbs
- Department of Biology, Purchase College, The State University of New York, Purchase, NY 10577, USA
| | - Eric S. Loker
- Center for Evolutionary and Theoretical Immunology, Department of Biology, Museum of Southwestern Biology Parasite Division, University of New Mexico, Albuquerque, NM 87131, USA; (E.S.L.); (L.B.); (S.V.B.)
| | - Lijing Bu
- Center for Evolutionary and Theoretical Immunology, Department of Biology, Museum of Southwestern Biology Parasite Division, University of New Mexico, Albuquerque, NM 87131, USA; (E.S.L.); (L.B.); (S.V.B.)
| | - Sean A. Locke
- Department of Biology, University of Puerto Rico at Mayagüez, Box 9000, Mayagüez 00681-9000, Puerto Rico;
| | - Vasyl V. Tkach
- Grand Forks Department of Biology, University of North Dakota, Grand Forks, ND 58202, USA;
| | - Ramesh Devkota
- Vance Granville Community College, Henderson, NC 27536, USA;
| | - Veronica R. Flores
- Laboratorio de Parasitología, INIBIOMA (CONICET-Universidad Nacional del Comahue), Quintral 1250, San Carlos de Bariloche 8400, Argentina;
| | - Hudson A. Pinto
- Department of Parasitology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Sara V. Brant
- Center for Evolutionary and Theoretical Immunology, Department of Biology, Museum of Southwestern Biology Parasite Division, University of New Mexico, Albuquerque, NM 87131, USA; (E.S.L.); (L.B.); (S.V.B.)
| |
Collapse
|
16
|
Manthey JD, Girón JC, Hruska JP. Impact of host demography and evolutionary history on endosymbiont molecular evolution: A test in carpenter ants (genus Camponotus) and their Blochmannia endosymbionts. Ecol Evol 2022; 12:e9026. [PMID: 35795355 PMCID: PMC9251289 DOI: 10.1002/ece3.9026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022] Open
Abstract
Obligate endosymbioses are tight associations between symbionts and the hosts they live inside. Hosts and their associated obligate endosymbionts generally exhibit codiversification, which has been documented in taxonomically diverse insect lineages. Host demography (e.g., effective population sizes) may impact the demography of endosymbionts, which may lead to an association between host demography and the patterns and processes of endosymbiont molecular evolution. Here, we used whole-genome sequencing data for carpenter ants (Genus Camponotus; subgenera Camponotus and Tanaemyrmex) and their Blochmannia endosymbionts as our study system to address whether Camponotus demography shapes Blochmannia molecular evolution. Using whole-genome phylogenomics, we confirmed previous work identifying codiversification between carpenter ants and their Blochmannia endosymbionts. We found that Blochmannia genes have evolved at a pace ~30× faster than that of their hosts' molecular evolution and that these rates are positively associated with host rates of molecular evolution. Using multiple tests for selection in Blochmannia genes, we found signatures of positive selection and shifts in selection strength across the phylogeny. Host demography was associated with Blochmannia shifts toward increased selection strengths, but not associated with Blochmannia selection relaxation, positive selection, genetic drift rates, or genome size evolution. Mixed support for relationships between host effective population sizes and Blochmannia molecular evolution suggests weak or uncoupled relationships between host demography and Blochmannia population genomic processes. Finally, we found that Blochmannia genome size evolution was associated with genome-wide estimates of genetic drift and number of genes with relaxed selection pressures.
Collapse
Affiliation(s)
- Joseph D. Manthey
- Department of Biological SciencesTexas Tech UniversityLubbockTexasUSA
| | - Jennifer C. Girón
- Department of EntomologyPurdue UniversityWest LafayetteIndianaUSA
- Natural Science Research LaboratoryMuseum of Texas Tech UniversityLubbockTexasUSA
| | - Jack P. Hruska
- Department of Biological SciencesTexas Tech UniversityLubbockTexasUSA
| |
Collapse
|
17
|
Pérez-Toledo GR, Villalobos F, Silva RR, Moreno CE, Pie MR, Valenzuela-González JE. Alpha and beta phylogenetic diversities jointly reveal ant community assembly mechanisms along a tropical elevational gradient. Sci Rep 2022; 12:7728. [PMID: 35546343 PMCID: PMC9095595 DOI: 10.1038/s41598-022-11739-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/25/2022] [Indexed: 11/08/2022] Open
Abstract
Despite the long-standing interest in the organization of ant communities across elevational gradients, few studies have incorporated the evolutionary information to understand the historical processes that underlay such patterns. Through the evaluation of phylogenetic α and β-diversity, we analyzed the structure of leaf-litter ant communities along the Cofre de Perote mountain in Mexico and evaluated whether deterministic- (i.e., habitat filtering, interspecific competition) or stochastic-driven processes (i.e., dispersal limitation) were driving the observed patterns. Lowland and some highland sites showed phylogenetic clustering, whereas intermediate elevations and the highest site presented phylogenetic overdispersion. We infer that strong environmental constraints found at the bottom and the top elevations are favoring closely-related species to prevail at those elevations. Conversely, less stressful climatic conditions at intermediate elevations suggest interspecific interactions are more important in these environments. Total phylogenetic dissimilarity was driven by the turnover component, indicating that the turnover of ant species along the mountain is actually shifts of lineages adapted to particular locations resembling their ancestral niche. The greater phylogenetic dissimilarity between communities was related to greater temperature differences probably due to narrow thermal tolerances inherent to several ant lineages that evolved in more stable conditions. Our results suggest that the interplay between environmental filtering, interspecific competition and habitat specialization plays an important role in the assembly of leaf-litter ant communities along elevational gradients.
Collapse
Affiliation(s)
| | - Fabricio Villalobos
- Instituto de Ecología, A.C. Red de Biología Evolutiva, Xalapa, Veracruz, Mexico
| | - Rogerio R Silva
- Museu Paraense Emílio Goeldi, Coordenação de Ciências da Terra e Ecologia, Belém, PA, Brazil
| | - Claudia E Moreno
- Centro de Investigaciones Biológicas, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
| | - Marcio R Pie
- Department of Biology, Edge Hill University, Ormskirk, Lancashire, UK
| | | |
Collapse
|
18
|
Van Dam AR, Covas Orizondo JO, Lam AW, McKenna DD, Van Dam MH. Metagenomic clustering reveals microbial contamination as an essential consideration in ultraconserved element design for phylogenomics with insect museum specimens. Ecol Evol 2022; 12:e8625. [PMID: 35342556 PMCID: PMC8932080 DOI: 10.1002/ece3.8625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Phylogenomics via ultraconserved elements (UCEs) has led to improved phylogenetic reconstructions across the tree of life. However, inadvertently incorporating non-targeted DNA into the UCE marker design will lead to misinformation being incorporated into subsequent analyses. To date, the effectiveness of basic metagenomic filtering strategies has not been assessed in arthropods. Designing markers from museum specimens requires careful consideration of methods due to the high levels of microbial contamination typically found in such specimens. We investigate if contaminant sequences are carried forward into a UCE marker set we developed from insect museum specimens using a standard bioinformatics pipeline. We find that the methods currently employed by most researchers do not exclude contamination from the final set of targets. Lastly, we highlight several paths forward for reducing contamination in UCE marker design.
Collapse
Affiliation(s)
- Alex R. Van Dam
- Department of BiologyUniversity of Puerto Rico MayagüezMayagüezPuerto Rico
| | | | - Athena W. Lam
- Department of EntomologyCalifornia Academy of SciencesSan FranciscoCaliforniaUSA
| | - Duane D. McKenna
- Department of Biological SciencesUniversity of MemphisMemphisTennesseeUSA
- Center for Biodiversity ResearchUniversity of MemphisMemphisTennesseeUSA
| | - Matthew H. Van Dam
- Department of EntomologyCalifornia Academy of SciencesSan FranciscoCaliforniaUSA
| |
Collapse
|
19
|
Souza JLP, Fernandes IO, Agosti D, Johnson NF, Baccaro FB. Assessing the efficacy of higher‐taxon approach for ant species surveys to improve biodiversity inventories. Anim Conserv 2021. [DOI: 10.1111/acv.12758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Jorge Luiz Pereira Souza
- Instituto Nacional da Mata Atlântica (INMA) Santa Teresa Espírito Santo Brazil
- Programa de Pós‐Graduação em Zoologia Universidade Federal do Amazonas (UFAM) Manaus Amazonas Brazil
| | | | | | - Norman F. Johnson
- Department of Evolution Ecology & Organismal Biology Director Ohio State University (OSU) Columbus Ohio USA
| | - Fabrício Beggiato Baccaro
- Programa de Pós‐Graduação em Zoologia Universidade Federal do Amazonas (UFAM) Manaus Amazonas Brazil
- Departamento de Biologia Universidade Federal do Amazonas (UFAM) Manaus Amazonas Brazil
| |
Collapse
|
20
|
Borowiec ML, Cover SP, Rabeling C. The evolution of social parasitism in Formica ants revealed by a global phylogeny. Proc Natl Acad Sci U S A 2021; 118:e2026029118. [PMID: 34535549 PMCID: PMC8463886 DOI: 10.1073/pnas.2026029118] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Studying the behavioral and life history transitions from a cooperative, eusocial life history to exploitative social parasitism allows for deciphering the conditions under which changes in behavior and social organization lead to diversification. The Holarctic ant genus Formica is ideally suited for studying the evolution of social parasitism because half of its 172 species are confirmed or suspected social parasites, which includes all three major classes of social parasitism known in ants. However, the life history transitions associated with the evolution of social parasitism in this genus are largely unexplored. To test competing hypotheses regarding the origins and evolution of social parasitism, we reconstructed a global phylogeny of Formica ants. The genus originated in the Old World ∼30 Ma ago and dispersed multiple times to the New World and back. Within Formica, obligate dependent colony-founding behavior arose once from a facultatively polygynous common ancestor practicing independent and facultative dependent colony foundation. Temporary social parasitism likely preceded or arose concurrently with obligate dependent colony founding, and dulotic social parasitism evolved once within the obligate dependent colony-founding clade. Permanent social parasitism evolved twice from temporary social parasitic ancestors that rarely practiced colony budding, demonstrating that obligate social parasitism can originate from a facultative parasitic background in socially polymorphic organisms. In contrast to permanently socially parasitic ants in other genera, the high parasite diversity in Formica likely originated via allopatric speciation, highlighting the diversity of convergent evolutionary trajectories resulting in nearly identical parasitic life history syndromes.
Collapse
Affiliation(s)
- Marek L Borowiec
- School of Life Sciences, Arizona State University, Tempe, AZ 85287;
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID 83844
- Institute of Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844
| | - Stefan P Cover
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | | |
Collapse
|
21
|
Miller CD, Forthman M, Miller CW, Kimball RT. Extracting ‘legacy loci’ from an invertebrate sequence capture data set. ZOOL SCR 2021. [DOI: 10.1111/zsc.12513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Caroline D. Miller
- Department of Entomology & Nematology University of Florida Gainesville FL USA
| | - Michael Forthman
- Department of Entomology & Nematology University of Florida Gainesville FL USA
- California State Collection of Arthropods Plant Pest Diagnostics Branch California Department of Food & Agriculture Sacramento CA USA
| | - Christine W. Miller
- Department of Entomology & Nematology University of Florida Gainesville FL USA
| | | |
Collapse
|
22
|
Cruaud A, Delvare G, Nidelet S, Sauné L, Ratnasingham S, Chartois M, Blaimer BB, Gates M, Brady SG, Faure S, van Noort S, Rossi JP, Rasplus JY. Ultra-Conserved Elements and morphology reciprocally illuminate conflicting phylogenetic hypotheses in Chalcididae (Hymenoptera, Chalcidoidea). Cladistics 2021; 37:1-35. [PMID: 34478176 DOI: 10.1111/cla.12416] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2020] [Indexed: 11/30/2022] Open
Abstract
Recent technical advances combined with novel computational approaches have promised the acceleration of our understanding of the tree of life. However, when it comes to hyperdiverse and poorly known groups of invertebrates, studies are still scarce. As published phylogenies will be rarely challenged by future taxonomists, careful attention must be paid to potential analytical bias. We present the first molecular phylogenetic hypothesis for the family Chalcididae, a group of parasitoid wasps, with a representative sampling (144 ingroups and seven outgroups) that covers all described subfamilies and tribes, and 82% of the known genera. Analyses of 538 Ultra-Conserved Elements (UCEs) with supermatrix (RAxML and IQTREE) and gene tree reconciliation approaches (ASTRAL, ASTRID) resulted in highly supported topologies in overall agreement with morphology but reveal conflicting topologies for some of the deepest nodes. To resolve these conflicts, we explored the phylogenetic tree space with clustering and gene genealogy interrogation methods, analyzed marker and taxon properties that could bias inferences and performed a thorough morphological analysis (130 characters encoded for 40 taxa representative of the diversity). This joint analysis reveals that UCEs enable attainment of resolution between ancestry and convergent/divergent evolution when morphology is not informative enough, but also shows that a systematic exploration of bias with different analytical methods and a careful analysis of morphological features is required to prevent publication of artifactual results. We highlight a GC content bias for maximum-likelihood approaches, an artifactual mid-point rooting of the ASTRAL tree and a deleterious effect of high percentage of missing data (>85% missing UCEs) on gene tree reconciliation methods. Based on the results we propose a new classification of the family into eight subfamilies and ten tribes that lay the foundation for future studies on the evolutionary history of Chalcididae.
Collapse
Affiliation(s)
- Astrid Cruaud
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Gérard Delvare
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France.,UMR CBGP, CIRAD, F-34398, Montpellier, France
| | - Sabine Nidelet
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Laure Sauné
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Marguerite Chartois
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Michael Gates
- USDA, ARS, SEL, c/o Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Seán G Brady
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Sariana Faure
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| | - Simon van Noort
- Research and Exhibitions Department, South African Museum, Iziko Museums of South Africa, PO Box 61, Cape Town, 8000, South Africa.,Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch, 7701, Cape Town, South Africa
| | - Jean-Pierre Rossi
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Jean-Yves Rasplus
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| |
Collapse
|
23
|
McDonough MM, Ferguson AW, Dowler RC, Gompper ME, Maldonado JE. Phylogenomic systematics of the spotted skunks (Carnivora, Mephitidae, Spilogale): Additional species diversity and Pleistocene climate change as a major driver of diversification. Mol Phylogenet Evol 2021; 167:107266. [PMID: 34302947 DOI: 10.1016/j.ympev.2021.107266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/28/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Four species of spotted skunks (Carnivora, Mephitidae, Spilogale) are currently recognized: Spilogale angustifrons, S. gracilis, S. putorius, and S. pygmaea. Understanding species boundaries within this group is critical for effective conservation given that regional populations or subspecies (e.g., S. p. interrupta) have experienced significant population declines. Further, there may be currently unrecognized diversity within this genus as some taxa (e.g., S. angustifrons) and geographic regions (e.g., Central America) never have been assessed using DNA sequence data. We analyzed species limits and diversification patterns in spotted skunks using multilocus nuclear (ultraconserved elements) and mitochondrial (whole mitogenomes and single gene analysis) data sets from broad geographic sampling representing all currently recognized species and subspecies. We found a high degree of genetic divergence among Spilogale that reflects seven distinct species and eight unique mitochondrial lineages. Initial divergence between S. pygmaea and all other Spilogale occurred in the Early Pliocene (∼ 5.0 million years ago). Subsequent diversification of the remaining Spilogale into an "eastern" and a "western" lineage occurred during the Early Pleistocene (∼1.5 million years ago). These two lineages experienced temporally coincident patterns of diversification at ∼0.66 and ∼0.35 million years ago into two and ultimately three distinct evolutionary units, respectively. Diversification was confined almost entirely within the Pleistocene during a timeframe characterized by alternating glacial-interglacial cycles, with the origin of this diversity occurring in northeastern Mexico and the southwestern United States of America. Mitochondrial-nuclear discordance was recovered across three lineages in geographic regions consistent with secondary contact, including a distinct mitochondrial lineage confined to the Sonoran Desert. Our results have direct consequences for conservation of threatened populations, or species, as well as for our understanding of the evolution of delayed implantation in this enigmatic group of small carnivores.
Collapse
Affiliation(s)
- Molly M McDonough
- Chicago State University Department of Biological Sciences 9501 S. King Drive, WSC 290 Chicago, IL 60628-1598.
| | - Adam W Ferguson
- Gantz Family Collection Center Field Museum 1400 South Lake Shore Drive Chicago, IL 60605
| | - Robert C Dowler
- Department of Biology Angelo State University ASU Station 10890 San Angelo, TX 76909
| | - Matthew E Gompper
- Department of Fish, Wildlife, and Conservation Ecology New Mexico State University Las Cruces, NM 88003
| | - Jesús E Maldonado
- Center for Conservation Genomics Smithsonian Conservation Biology Institute National Zoological Park PO Box 37012 MRC 5503 Washington, DC 20013
| |
Collapse
|
24
|
Abstract
Ants are highly diverse in the Iberian Peninsula (IP), both in species richness (299 cited species) and in number of endemic species (72). The Iberian ant fauna is one of the richest in the broader Mediterranean region, it is similar to the Balkan Peninsula but lower than Greece or Israel, when species richness is controlled by the surface area. In this first general study on the biogeography of Iberian ants, we propose seven chorological categories for grouping thems. Moreover, we also propose eight biogeographic refugium areas, based on the criteria of “refugia-within-refugium” in the IP. We analysed species richness, occurrence and endemism in all these refugium areas, which we found to be significantly different as far as ant similarity was concerned. Finally, we collected published evidence of biological traits, molecular phylogenies, fossil deposits and geological processes to be able to infer the most probable centre of origin and dispersal routes followed for the most noteworthy ants in the IP. As a result, we have divided the Iberian myrmecofauna into four biogeographical groups: relict, Asian-IP disjunct, Baetic-Rifan and Alpine. To sum up, our results support biogeography as being a significant factor for determining the current structure of ant communities, especially in the very complex and heterogenous IP. Moreover, the taxonomic diversity and distribution patterns we describe in this study highlight the utility of Iberian ants for understanding the complex evolutionary history and biogeography of the Iberian Peninsula.
Collapse
|
25
|
Ibarra‐Isassi J, Handa IT, Arenas‐Clavijo A, Escobar‐Ramírez S, Armbrecht I, Lessard J. Shade‐growing practices lessen the impact of coffee plantations on multiple dimensions of ant diversity. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Javier Ibarra‐Isassi
- LalibertDepartment of Biology Concordia University Montréal QC Canada
- Québec Centre for Biodiversity SciencesStewart Biological Sciences Building Montréal QC Canada
| | - Ira Tanya Handa
- Québec Centre for Biodiversity SciencesStewart Biological Sciences Building Montréal QC Canada
- Département des Sciences Biologiques Université du Québec à Montréal Montréal QC Canada
| | | | - Selene Escobar‐Ramírez
- Universidad San Francisco de Quito USFQColegio de Ciencias Biológicas y AmbientalesHerbario de Botánica Económica del Ecuador Quito Ecuador
| | - Inge Armbrecht
- Departamento de Biología Universidad del Valle Cali Colombia
| | - Jean‐Philippe Lessard
- LalibertDepartment of Biology Concordia University Montréal QC Canada
- Québec Centre for Biodiversity SciencesStewart Biological Sciences Building Montréal QC Canada
| |
Collapse
|
26
|
Park J, Park J. Complete mitochondrial genome of the gate-keeper ant Colobopsis nipponica (Wheeler, W.M., 1928) (Formicidae: Hymenoptera). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:86-88. [PMID: 33521277 PMCID: PMC7808388 DOI: 10.1080/23802359.2020.1845581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Colobopsis ants are unique ants known for their phragmotic behavior. We have completed the mitochondrial genome of Colobopsis nipponica (Wheeler, W.M., 1928) as the first mitochondrial genome of the genus. The mitogenome is 17,431 bp long and 19.4% in GC ratio, which is the third longest mitochondrial genome in subfamily Formicinae. It contains 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a large 1534 bp long control region. Both gene order and phylogenetic analysis agree with the recent elevation of Colobopsis from subgenus to genus.
Collapse
Affiliation(s)
- Jonghyun Park
- InfoBoss Inc., Seoul, Republic of Korea.,InfoBoss Research Center, Seoul, Republic of Korea
| | - Jongsun Park
- InfoBoss Inc., Seoul, Republic of Korea.,InfoBoss Research Center, Seoul, Republic of Korea
| |
Collapse
|
27
|
|
28
|
Comprehensive phylogeny of Myrmecocystus honey ants highlights cryptic diversity and infers evolution during aridification of the American Southwest. Mol Phylogenet Evol 2020; 155:107036. [PMID: 33278587 DOI: 10.1016/j.ympev.2020.107036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 11/22/2022]
Abstract
The New World ant genus Myrmecocystus Wesmael, 1838 (Formicidae: Formicinae: Lasiini) is endemic to arid and semi-arid habitats of the western United States and Mexico. Several intriguing life history traits have been described for the genus, the best-known of which are replete workers, that store liquified food in their largely expanded crops and are colloquially referred to as "honeypots". Despite their interesting biology and ecological importance for arid ecosystems, the evolutionary history of Myrmecocystus ants is largely unknown and the current taxonomy presents an unsatisfactory systematic framework. We use ultraconserved elements to infer the evolutionary history of Myrmecocystus ants and provide a comprehensive, dated phylogenetic framework that clarifies the molecular systematics within the genus with high statistical support, reveals cryptic diversity, and reconstructs ancestral foraging activity. Using maximum likelihood, Bayesian and species tree approaches on a data set of 134 ingroup specimens (including samples from natural history collections and type material), we recover largely identical topologies that leave the position of only few clades uncertain and cover the intra- and interspecific variation of 28 of the 29 described and six undescribed species. In addition to traditional support values, such as bootstrap and posterior probability, we quantify genealogical concordance to estimate the effects of conflicting evolutionary histories on phylogenetic inference. Our analyses reveal that the current taxonomic classification of the genus is inconsistent with the molecular phylogenetic inference, and we identify cryptic diversity in seven species. Divergence dating suggests that the split between Myrmecocystus and its sister taxon Lasius occurred in the early Miocene. Crown group Myrmecocystus started diversifying about 14.08 Ma ago when the gradual aridification of the southwestern United States and northern Mexico led to formation of the American deserts and to adaptive radiations of many desert taxa.
Collapse
|
29
|
Blaimer BB, Gotzek D, Brady SG, Buffington ML. Comprehensive phylogenomic analyses re-write the evolution of parasitism within cynipoid wasps. BMC Evol Biol 2020; 20:155. [PMID: 33228574 PMCID: PMC7686688 DOI: 10.1186/s12862-020-01716-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/31/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Parasitoidism, a specialized life strategy in which a parasite eventually kills its host, is frequently found within the insect order Hymenoptera (wasps, ants and bees). A parasitoid lifestyle is one of two dominant life strategies within the hymenopteran superfamily Cynipoidea, with the other being an unusual plant-feeding behavior known as galling. Less commonly, cynipoid wasps exhibit inquilinism, a strategy where some species have adapted to usurp other species' galls instead of inducing their own. Using a phylogenomic data set of ultraconserved elements from nearly all lineages of Cynipoidea, we here generate a robust phylogenetic framework and timescale to understand cynipoid systematics and the evolution of these life histories. RESULTS Our reconstructed evolutionary history for Cynipoidea differs considerably from previous hypotheses. Rooting our analyses with non-cynipoid outgroups, the Paraulacini, a group of inquilines, emerged as sister-group to the rest of Cynipoidea, rendering the gall wasp family Cynipidae paraphyletic. The families Ibaliidae and Liopteridae, long considered archaic and early-branching parasitoid lineages, were found nested well within the Cynipoidea as sister-group to the parasitoid Figitidae. Cynipoidea originated in the early Jurassic around 190 Ma. Either inquilinism or parasitoidism is suggested as the ancestral and dominant strategy throughout the early evolution of cynipoids, depending on whether a simple (three states: parasitoidism, inquilinism and galling) or more complex (seven states: parasitoidism, inquilinism and galling split by host use) model is employed. CONCLUSIONS Our study has significant impact on understanding cynipoid evolution and highlights the importance of adequate outgroup sampling. We discuss the evolutionary timescale of the superfamily in relation to their insect hosts and host plants, and outline how phytophagous galling behavior may have evolved from entomophagous, parasitoid cynipoids. Our study has established the framework for further physiological and comparative genomic work between gall-making, inquiline and parasitoid lineages, which could also have significant implications for the evolution of diverse life histories in other Hymenoptera.
Collapse
Affiliation(s)
- Bonnie B Blaimer
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Berlin, Germany.
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
- North Carolina State University, Raleigh, NC, USA.
| | - Dietrich Gotzek
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Seán G Brady
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Matthew L Buffington
- Systematic Entomology Laboratory, ARS-USDA, C/O NMNH, Smithsonian Institution, Washington, DC, USA.
| |
Collapse
|
30
|
Fuentes-López A, Rebelo MT, Romera E, López-López A, Galián J. Genetic diversity of Calliphora vicina (Diptera: Calliphoridae) in the Iberian Peninsula based on cox1, 16S and ITS2 sequences. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The study of Diptera at the scene of a crime can provide essential information for the interpretation of evidence. Phylogeographic reconstruction could help differentiate haplotypes of a dipteran species in a geographical area, clarifying, for example, the details of a possible relocation of a corpse. In addition, inferring the ancestral areas of distribution helps to understand the current status of the species and its biogeographic history. One of the most important species in forensic entomology is Calliphora vicina Rovineau-Desvoidy, 1830 (Diptera: Calliphoridae). The aim of this work is to increase our knowledge of this species in the Iberian Peninsula using 464 specimens from Spain and Portugal. These samples were identified using morphological keys and by molecular methods using fragments of the cox1, 16S and ITS2 genes. The phylogeographic history of these populations was inferred from haplotype networks and the reconstruction of ancestral areas of distribution. The molecular results corroborated the morphological identifications of the samples. Phylogeographic networks showed no geographical structure, as haplotypes are shared among almost all populations. reconstruct ancestral state in phylogenies analyses showed a high rate of movement among populations, possibly related to human activity. These results suggest that this species had a very rapid and recent spatial and demographic expansion throughout the Iberian Peninsula.
Collapse
Affiliation(s)
- Alberto Fuentes-López
- Departamento de Zoología y Antropología Física (Área de Biología Animal), Universidad de Murcia, Campus Mare Nostrum, Murcia, Spain
| | - María Teresa Rebelo
- Departamento de Biología Animal/Centro de Estudos do Ambiente e do Mar, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Elena Romera
- Departamento de Zoología y Antropología Física (Área de Biología Animal), Universidad de Murcia, Campus Mare Nostrum, Murcia, Spain
| | - Alejandro López-López
- Departamento de Zoología y Antropología Física (Área de Biología Animal), Universidad de Murcia, Campus Mare Nostrum, Murcia, Spain
- Área de Zoología, Departamento de Agroquímica y Medio Ambiente, Universidad Miguel Hernández de Elche, Elche, Spain
| | - José Galián
- Departamento de Zoología y Antropología Física (Área de Biología Animal), Universidad de Murcia, Campus Mare Nostrum, Murcia, Spain
| |
Collapse
|
31
|
Bell KC, Allen JM, Johnson KP, Demboski JR, Cook JA. Disentangling lousy relationships: Comparative phylogenomics of two sucking louse lineages parasitizing chipmunks. Mol Phylogenet Evol 2020; 155:106998. [PMID: 33130299 DOI: 10.1016/j.ympev.2020.106998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/29/2022]
Abstract
The evolution of obligate parasites is often interpreted in light of their hosts' evolutionary history. An expanded approach is to examine the histories of multiple lineages of parasites that inhabit similar environments on a particular host lineage. Western North American chipmunks (genus Tamias) have a broad distribution, a history of divergence with gene flow, and host two species of sucking lice (Anoplura), Hoplopleura arboricola and Neohaematopinus pacificus. From total genomic sequencing, we obtained sequences of over 1100 loci sampled across the genomes of these lice to compare their evolutionary histories and examine the roles of host association in structuring louse relationships. Within each louse species, clades are largely associated with closely related chipmunk host species. Exceptions to this pattern appear to have a biogeographic component, but differ between the two louse species. Phylogenetic relationships among these major louse clades, in both species, are not congruent with chipmunk relationships. In the context of host associations, each louse lineage has a different evolutionary history, supporting the hypothesis that host-parasite assemblages vary both across the landscape and with the taxa under investigation. In addition, the louse Hoplopleura erratica (parasitizing the eastern Tamias striatus) is embedded within H. arboricola, rendering it paraphyletic. This phylogenetic result, together with comparable divergences within H. arboricola, indicate a need for taxonomic revision. Both host divergence and biogeographic components shape parasite diversification as demonstrated by the distinctive diversification patterns of these two independently evolving lineages that parasitize the same hosts.
Collapse
Affiliation(s)
- Kayce C Bell
- Mammalogy Department, Natural History Museum of Los Angeles County, Los Angeles, CA, USA; Department of Biology, Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA; Zoology Department, Denver Museum of Nature & Science, Denver, CO, USA.
| | - Julie M Allen
- Department of Biology, University of Nevada Reno, Reno, NV, USA
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - John R Demboski
- Zoology Department, Denver Museum of Nature & Science, Denver, CO, USA
| | - Joseph A Cook
- Department of Biology, Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
32
|
Origin and elaboration of a major evolutionary transition in individuality. Nature 2020; 585:239-244. [DOI: 10.1038/s41586-020-2653-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 06/03/2020] [Indexed: 11/09/2022]
|
33
|
Barden P, Perrichot V, Wang B. Specialized Predation Drives Aberrant Morphological Integration and Diversity in the Earliest Ants. Curr Biol 2020; 30:3818-3824.e4. [PMID: 32763171 DOI: 10.1016/j.cub.2020.06.106] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/25/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023]
Abstract
Extinct haidomyrmecine "hell ants" are among the earliest ants known [1, 2]. These eusocial Cretaceous taxa diverged from extant lineages prior to the most recent common ancestor of all living ants [3] and possessed bizarre scythe-like mouthparts along with a striking array of horn-like cephalic projections [4-6]. Despite the morphological breadth of the fifteen thousand known extant ant species, phenotypic syndromes found in the Cretaceous are without parallel and the evolutionary drivers of extinct diversity are unknown. Here, we provide a mechanistic explanation for aberrant hell ant morphology through phylogenetic reconstruction and comparative methods, as well as a newly reported specimen. We report a remarkable instance of fossilized predation that provides direct evidence for the function of dorsoventrally expanded mandibles and elaborate horns. Our findings confirm the hypothesis that hell ants captured other arthropods between mandible and horn in a manner that could only be achieved by articulating their mouthparts in an axial plane perpendicular to that of modern ants. We demonstrate that the head capsule and mandibles of haidomyrmecines are uniquely integrated as a consequence of this predatory mode and covary across species while finding no evidence of such modular integration in extant ant groups. We suggest that hell ant cephalic integration-analogous to the vertebrate skull-triggered a pathway for an ancient adaptive radiation and expansion into morphospace unoccupied by any living taxon.
Collapse
Affiliation(s)
- Phillip Barden
- Department of Biological Sciences, New Jersey Institute of Technology, Dr Martin Luther King Jr Boulevard, Newark, NJ 07102, USA; Division of Invertebrate Zoology, American Museum of Natural History, Central Park West, New York, NY 10024, USA.
| | - Vincent Perrichot
- Univ Rennes, CNRS, Géosciences Rennes - UMR 6118, 35000 Rennes, France.
| | - Bo Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China.
| |
Collapse
|
34
|
Sánchez-Restrepo AF, Chifflet L, Confalonieri VA, Tsutsui ND, Pesquero MA, Calcaterra LA. A Species delimitation approach to uncover cryptic species in the South American fire ant decapitating flies (Diptera: Phoridae: Pseudacteon). PLoS One 2020; 15:e0236086. [PMID: 32678835 PMCID: PMC7367480 DOI: 10.1371/journal.pone.0236086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/29/2020] [Indexed: 11/18/2022] Open
Abstract
South American fire ant decapitating flies in the genus Pseudacteon (Diptera: Phoridae) are potential biocontrol agents of the invasive fire ants Solenopsis invicta and S. richteri in the United States and other regions of the world due to their high host specificity and the direct and indirect damage to their host ants. Despite their importance and the fact that several flies have already been released in the US, little is known about the genetic variability and phylogenetic relationships of Pseudacteon flies parasitizing South American fire ants in the Solenopsis saevissima species-group. A species delimitation analysis was conducted using a distance-based method (ABGD) and two tree-based methods (GMYC and mPTP) using COI sequences of 103 specimens belonging to 20 of the 22 Pseudacteon species known from southern South America. Additionally, phylogenetic relationships between the already described and new candidate species were inferred using mitochondrial (COI) and nuclear (wingless) sequences. The species delimitation analysis suggests that species richness in these flies has been previously underestimated, due to the existence of putative cryptic species within nominal Pseudacteon obtusus, P. pradei, P. tricuspis, P. cultellatus, and P. nudicornis. Geographic distribution and host fire ant species seem to support cryptic lineages, though additional morphological data are needed to corroborate these results. All phylogenetic analyses reveal that South American fire ant decapitating flies are grouped into two main clades, with Pseudacteon convexicauda sister and well differentiated relative to these clades. Neither host nor geographic association appeared to be related to the differentiation of these two main clades within South American fire ant decapitating flies. This work provides information that will allow testing whether the putative cryptic phorid fly species show differences in their effectiveness as biocontrol agents against the highly invasive imported fire ants.
Collapse
Affiliation(s)
- Andrés F. Sánchez-Restrepo
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, Argentina
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Instituto de Ecología Genética y Evolución de Buenos Aires (IEGEBA; UBA-CONICET), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail:
| | - Lucila Chifflet
- Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires, Argentina
| | - Viviana Andrea Confalonieri
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Instituto de Ecología Genética y Evolución de Buenos Aires (IEGEBA; UBA-CONICET), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Neil D. Tsutsui
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, United States of America
| | - Marcos Antônio Pesquero
- Programa de Pós-Graduação em Ambiente e Sociedade (PPGAS), Universidade Estadual de Goiás, Morrinhos, Brasil
| | - Luis Antonio Calcaterra
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
35
|
Chan KO, Hutter CR, Wood PL, Grismer LL, Brown RM. Larger, unfiltered datasets are more effective at resolving phylogenetic conflict: Introns, exons, and UCEs resolve ambiguities in Golden-backed frogs (Anura: Ranidae; genus Hylarana). Mol Phylogenet Evol 2020; 151:106899. [PMID: 32590046 DOI: 10.1016/j.ympev.2020.106899] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/18/2020] [Accepted: 06/17/2020] [Indexed: 01/01/2023]
Abstract
Using FrogCap, a recently-developed sequence-capture protocol, we obtained >12,000 highly informative exons, introns, and ultraconserved elements (UCEs), which we used to illustrate variation in evolutionary histories of these classes of markers, and to resolve long-standing systematic problems in Southeast Asian Golden-backed frogs of the genus-complex Hylarana. We also performed a comprehensive suite of analyses to assess the relative performance of different genetic markers, data filtering strategies, tree inference methods, and different measures of branch support. To reduce gene tree estimation error, we filtered the data using different thresholds of taxon completeness (missing data) and parsimony informative sites (PIS). We then estimated species trees using concatenated datasets and Maximum Likelihood (IQ-TREE) in addition to summary (ASTRAL-III), distance-based (ASTRID), and site-based (SVDQuartets) multispecies coalescent methods. Topological congruence and branch support were examined using traditional bootstrap, local posterior probabilities, gene concordance factors, quartet frequencies, and quartet scores. Our results did not yield a single concordant topology. Instead, introns, exons, and UCEs clearly possessed different phylogenetic signals, resulting in conflicting, yet strongly-supported phylogenetic estimates. However, a combined analysis comprising the most informative introns, exons, and UCEs converged on a similar topology across all analyses, with the exception of SVDQuartets. Bootstrap values were consistently high despite high levels of incongruence and high proportions of gene trees supporting conflicting topologies. Although low bootstrap values did indicate low heuristic support, high bootstrap support did not necessarily reflect congruence or support for the correct topology. This study reiterates findings of some previous studies, which demonstrated that traditional bootstrap values can produce positively misleading measures of support in large phylogenomic datasets. We also showed a remarkably strong positive relationship between branch length and topological congruence across all datasets, implying that very short internodes remain a challenge to resolve, even with orders of magnitude more data than ever before. Overall, our results demonstrate that more data from unfiltered or combined datasets produced superior results. Although data filtering reduced gene tree incongruence, decreased amounts of data also biased phylogenetic estimation. A point of diminishing returns was evident, at which higher congruence (from more stringent filtering) at the expense of amount of data led to topological error as assessed by comparison to more complete datasets across different genomic markers. Additionally, we showed that applying a parameter-rich model to a partitioned analysis of concatenated data produces better results compared to unpartitioned, or even partitioned analysis using model selection. Despite some lingering uncertainties, a combined analysis of our genomic data and sequences supplemented from GenBank (on the basis of a few gene regions) revealed highly supported novel systematic arrangements. Based on these new findings, we transfer Amnirana nicobariensis into the genus Indosylvirana; and I. milleti and Hylarana celebensis to the genus Papurana. We also provisionally place H. attigua in the genus Papurana pending verification from positively identified (voucher substantiated) samples.
Collapse
Affiliation(s)
- Kin Onn Chan
- Lee Kong Chian National History Museum, Faculty of Science, National University of Singapore, 2 Conservatory Drive, 117377, Singapore.
| | - Carl R Hutter
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA; Museum of Natural Sciences and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Perry L Wood
- Museum of Natural Sciences and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; Department of Biological Sciences & Museum of Natural History, Auburn University, Auburn, AL 36849, USA
| | - L Lee Grismer
- Herpetology Laboratory, Department of Biology, La Sierra University, 4500 Riverwalk Parkway, Riverside, CA 92505, USA
| | - Rafe M Brown
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
36
|
Menezes RST, Lloyd MW, Brady SG. Phylogenomics indicates Amazonia as the major source of Neotropical swarm-founding social wasp diversity. Proc Biol Sci 2020; 287:20200480. [PMID: 32486978 DOI: 10.1098/rspb.2020.0480] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Neotropical realm harbours unparalleled species richness and hence has challenged biologists to explain the cause of its high biotic diversity. Empirical studies to shed light on the processes underlying biological diversification in the Neotropics are focused mainly on vertebrates and plants, with little attention to the hyperdiverse insect fauna. Here, we use phylogenomic data from ultraconserved element (UCE) loci to reconstruct for the first time the evolutionary history of Neotropical swarm-founding social wasps (Hymenoptera, Vespidae, Epiponini). Using maximum likelihood, Bayesian, and species tree approaches we recovered a highly resolved phylogeny for epiponine wasps. Additionally, we estimated divergence dates, diversification rates, and the biogeographic history for these insects in order to test whether the group followed a 'museum' (speciation events occurred gradually over many millions of years) or 'cradle' (lineages evolved rapidly over a short time period) model of diversification. The origin of many genera and all sampled extant Epiponini species occurred during the Miocene and Plio-Pleistocene. Moreover, we detected no major shifts in the estimated diversification rate during the evolutionary history of Epiponini, suggesting a relatively gradual accumulation of lineages with low extinction rates. Several lines of evidence suggest that the Amazonian region played a major role in the evolution of Epiponini wasps. This spatio-temporal diversification pattern, most likely concurrent with climatic and landscape changes in the Neotropics during the Miocene and Pliocene, establishes the Amazonian region as the major source of Neotropical swarm-founding social wasp diversity.
Collapse
Affiliation(s)
- Rodolpho S T Menezes
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0188, USA.,Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras - Universidade de São Paulo (FFCLRP/USP), Av. Bandeirantes, 3900, 14040-901 Ribeirão Preto, SP, Brazil
| | - Michael W Lloyd
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0188, USA.,Computational Sciences, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Seán G Brady
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0188, USA
| |
Collapse
|
37
|
Allio R, Schomaker-Bastos A, Romiguier J, Prosdocimi F, Nabholz B, Delsuc F. MitoFinder: Efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics. Mol Ecol Resour 2020; 20:892-905. [PMID: 32243090 PMCID: PMC7497042 DOI: 10.1111/1755-0998.13160] [Citation(s) in RCA: 712] [Impact Index Per Article: 178.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/21/2020] [Accepted: 03/12/2020] [Indexed: 11/27/2022]
Abstract
Thanks to the development of high-throughput sequencing technologies, target enrichment sequencing of nuclear ultraconserved DNA elements (UCEs) now allows routine inference of phylogenetic relationships from thousands of genomic markers. Recently, it has been shown that mitochondrial DNA (mtDNA) is frequently sequenced alongside the targeted loci in such capture experiments. Despite its broad evolutionary interest, mtDNA is rarely assembled and used in conjunction with nuclear markers in capture-based studies. Here, we developed MitoFinder, a user-friendly bioinformatic pipeline, to efficiently assemble and annotate mitogenomic data from hundreds of UCE libraries. As a case study, we used ants (Formicidae) for which 501 UCE libraries have been sequenced whereas only 29 mitogenomes are available. We compared the efficiency of four different assemblers (IDBA-UD, MEGAHIT, MetaSPAdes, and Trinity) for assembling both UCE and mtDNA loci. Using MitoFinder, we show that metagenomic assemblers, in particular MetaSPAdes, are well suited to assemble both UCEs and mtDNA. Mitogenomic signal was successfully extracted from all 501 UCE libraries, allowing us to confirm species identification using CO1 barcoding. Moreover, our automated procedure retrieved 296 cases in which the mitochondrial genome was assembled in a single contig, thus increasing the number of available ant mitogenomes by an order of magnitude. By utilizing the power of metagenomic assemblers, MitoFinder provides an efficient tool to extract complementary mitogenomic data from UCE libraries, allowing testing for potential mitonuclear discordance. Our approach is potentially applicable to other sequence capture methods, transcriptomic data and whole genome shotgun sequencing in diverse taxa. The MitoFinder software is available from GitHub (https://github.com/RemiAllio/MitoFinder).
Collapse
Affiliation(s)
- Rémi Allio
- Institut des Sciences de l'Évolution de Montpellier (ISEM), CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| | - Alex Schomaker-Bastos
- Laboratório Multidisciplinar para Análise de Dados (LAMPADA), Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jonathan Romiguier
- Institut des Sciences de l'Évolution de Montpellier (ISEM), CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| | - Francisco Prosdocimi
- Laboratório Multidisciplinar para Análise de Dados (LAMPADA), Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Benoit Nabholz
- Institut des Sciences de l'Évolution de Montpellier (ISEM), CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| | - Frédéric Delsuc
- Institut des Sciences de l'Évolution de Montpellier (ISEM), CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| |
Collapse
|
38
|
Messer SJ, Cover SP, Rabeling C. Two new species of socially parasitic Nylanderia ants from the southeastern United States. Zookeys 2020; 921:23-48. [PMID: 32256149 PMCID: PMC7109158 DOI: 10.3897/zookeys.921.46921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/30/2020] [Indexed: 11/28/2022] Open
Abstract
In ants, social parasitism is an umbrella term describing a variety of life-history strategies, where a parasitic species depends entirely on a free-living species, for part of or its entire life-cycle, for either colony founding, survival, and/or reproduction. The highly specialized inquiline social parasites are fully dependent on their hosts for their entire lifecycles. Most inquiline species are tolerant of the host queen in the parasitized colony, forgo producing a worker caste, and invest solely in the production of sexual offspring. In general, inquilines are rare, and their geographic distribution is limited, making it difficult to study them. Inquiline populations appear to be small, cryptic, and they are perhaps ephemeral. Thus, information about their natural history is often fragmentary or non-existent but is necessary for understanding the socially parasitic life history syndrome in more detail. Here, we describe two new species of inquiline social parasites, Nylanderiadeyrupisp. nov. and Nylanderiaparasiticasp. nov., from the southeastern United States, parasitizing Nylanderiawojciki and Nylanderiafaisonensis, respectively. The formicine genus Nylanderia is large and globally distributed, but until the recent description of Nylanderiadeceptrix, social parasites were unknown from this genus. In addition to describing the new social parasite species, we summarize the fragmentary information known about their biology, present a key to both the queens and the males of the Nylanderia social parasites, and discuss the morphology of the social parasites in the context of the inquiline syndrome.
Collapse
Affiliation(s)
- Steven J Messer
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA Arizona State University Tempe United States of America
| | - Stefan P Cover
- Department of Entomology, Museum of Comparative Zoology, Harvard University, Cambridge MA 02138, USA Harvard University Cambridge United States of America
| | - Christian Rabeling
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA Arizona State University Tempe United States of America
| |
Collapse
|
39
|
Rasplus JY, Blaimer BB, Brady SG, Burks RA, Delvare G, Fisher N, Gates M, Gauthier N, Gumovsky AV, Hansson C, Heraty JM, Fusu L, Nidelet S, Pereira RA, Sauné L, Ubaidillah R, Cruaud A. A first phylogenomic hypothesis for Eulophidae (Hymenoptera, Chalcidoidea). J NAT HIST 2020. [DOI: 10.1080/00222933.2020.1762941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jean-Yves Rasplus
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Bonnie B. Blaimer
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Seán G. Brady
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Roger A. Burks
- Department of Entomology, University of California, Riverside, CA, USA
| | | | - Nicole Fisher
- Digital Collections and Informatics, National Research Collections Australia (NRCA), CSIRO, Canberra, Australia
| | - Michael Gates
- USDA, ARS, SEL, C/o Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Nathalie Gauthier
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Alex V. Gumovsky
- Schmalhausen Institute of Zoology, NAS of Ukraine, Kiev, Ukraine
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Christer Hansson
- Museum of Biology (Entomology), Lund University, Lund, Sweden
- Faculty of Biology and CERNESIM, Al. I. Cuza University, Iasi, Romania
| | - John M. Heraty
- Department of Entomology, University of California, Riverside, CA, USA
| | - Lucian Fusu
- Departamento de Biologia, FFCLRP – USP, Ribeirão Preto, Brazil
| | - Sabine Nidelet
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | | | - Laure Sauné
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | | | - Astrid Cruaud
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| |
Collapse
|
40
|
An Ancient and Eroded Social Supergene Is Widespread across Formica Ants. Curr Biol 2020; 30:304-311.e4. [PMID: 31902719 DOI: 10.1016/j.cub.2019.11.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/10/2019] [Accepted: 11/11/2019] [Indexed: 12/25/2022]
Abstract
Supergenes, clusters of tightly linked genes, play a key role in the evolution of complex adaptive variation [1, 2]. Although supergenes have been identified in many species, we lack an understanding of their origin, evolution, and persistence [3]. Here, we uncover 20-40 Ma of evolutionary history of a supergene associated with polymorphic social organization in Formica ants [4]. We show that five Formica species exhibit homologous divergent haplotypes spanning 11 Mbp on chromosome 3. Despite the supergene's size, only 142 single nucleotide polymorphisms (SNPs) consistently distinguish alternative supergene haplotypes across all five species. These conserved trans-species SNPs are localized in a small number of disjunct clusters distributed across the supergene. This unexpected pattern of divergence indicates that the Formica supergene does not follow standard models of sex chromosome evolution, in which distinct evolutionary strata reflect an expanding region of suppressed recombination [5]. We propose an alternative "eroded strata model" in which clusters of conserved trans-species SNPs represent functionally important areas maintained by selection in the face of rare recombination between ancestral haplotypes. The comparison of whole-genome sequences across 10 additional Formica species reveals that the most conserved region of the supergene contains a transcription factor essential for motor neuron development in Drosophila [6]. The discovery that a very small portion of this large and ancient supergene harbors conserved trans-species SNPs linked to colony social organization suggests that the ancestral haplotypes have been eroded by recombination, with selection preserving differentiation at one or a few genes generating alternative social organization.
Collapse
|
41
|
Caste-specific morphological modularity in the ant tribe Camponotini (Hymenoptera, Formicidae). BMC ZOOL 2019. [DOI: 10.1186/s40850-019-0048-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The morphological structures of organisms form tightly integrated but mutually independent character complexes (modules) linked through common development and function. Even though their abundance, diversity, and complex caste systems make camponotine ants ideal subjects to research developmental modularity and phenotypic integration, no studies investigating these phenomena have been conducted in this taxonomic group. This study attempts to identify and visualize integrated character complexes in 14 taxa from the genera Camponotus and Colobopsis using statistical analyses of morphometry.
Results
The identified modules differ between castes: Minor workers have small heads and long extremities, while major workers have enlarged heads modified for defence, and short, thick appendages; extremities (legs and antennae) are strongly correlated in both worker castes. Gynes show weaker integration of extremities, but a strong correlation of mesosoma and eyes, and highly variable median ocellus size. Gynes infested by mermithid nematodes exhibit reduction of gyne-specific characters and altered patterns of phenotypic integration.
Conclusion
The integrated character complexes described herein can largely be interpreted as functional, caste-specific modules related to behavioural ecology and task allocation within ant colonies. This modular nature of the body plan is hypothesized to facilitate the evolution of novel phenotypes and thus contributes to the tremendous evolutionary success of ants. The study of these modules can help to further elucidate the evolution and ontogeny of castes in camponotine ants, as well as the effects of parasite infestation on the phenotype.
Collapse
|
42
|
Johnson KP. Putting the genome in insect phylogenomics. CURRENT OPINION IN INSECT SCIENCE 2019; 36:111-117. [PMID: 31546095 DOI: 10.1016/j.cois.2019.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/02/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Next-generation sequencing technologies provide a substantial increase in the size of molecular phylogenetic datasets that can be obtained for studies of insect systematics. Several new genome reduction approaches are leveraging these technologies to generate large phylogenomic datasets: targeted amplicon sequencing, target capture, and transcriptome sequencing. Although cost effective, these approaches provide limited data for questions outside of phylogenetics. For many groups of insects, sequencing the entire genome at modest coverage is feasible. Using these genomic reads, an automated Target Restricted Assembly Method (aTRAM) can use the results of blast searches to assemble thousands of single copy ortholog genes across a group of interest. These locally assembled genes can then be compiled into very large phylogenomic datasets. These genomic libraries have the advantage in that they also contain reads from the mitochondrial genome and symbiont genomes, as well the entire insect genome, and can be leveraged for additional studies beyond phylogenetics.
Collapse
Affiliation(s)
- Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, 1816 South Oak Street, Champaign, IL 61820 USA.
| |
Collapse
|
43
|
Kulkarni S, Wood H, Lloyd M, Hormiga G. Spider-specific probe set for ultraconserved elements offers new perspectives on the evolutionary history of spiders (Arachnida, Araneae). Mol Ecol Resour 2019; 20:185-203. [PMID: 31599100 DOI: 10.1111/1755-0998.13099] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/11/2019] [Accepted: 09/24/2019] [Indexed: 11/29/2022]
Abstract
Phylogenomic methods have proven useful for resolving deep nodes and recalcitrant groups in the spider tree of life. Across arachnids, transcriptomic approaches may generate thousands of loci, and target-capture methods, using the previously designed arachnid-specific probe set, can target a maximum of about 1,000 loci. Here, we develop a specialized target-capture probe set for spiders that contains over 2,000 ultraconserved elements (UCEs) and then demonstrate the utility of this probe set through sequencing and phylogenetic analysis. We designed the 'spider-specific' probe set using three spider genomes (Loxosceles, Parasteatoda and Stegodyphus) and ensured that the newly designed probe set includes UCEs from the previously designed Arachnida probe set. The new 'spider-specific' probes were used to sequence UCE loci in 51 specimens. The remaining samples included five spider genomes and taxa that were enriched using Arachnida probe set. The 'spider-specific' probes were also used to gather loci from a total of 84 representative taxa across Araneae. On mapping these 84 taxa to the Arachnida probe set, we captured at most 710 UCE loci, while the spider-specific probe set captured up to 1,547 UCE loci from the same taxon sample. Phylogenetic analyses using maximum likelihood and coalescent methods corroborate most nodes resolved by recent transcriptomic analyses, but not all (e.g. UCE data suggest monophyly of 'symphytognathoids'). Our preferred hypothesis based on topology tests, suggests monophyly of the 'symphytognathoids' (the miniature orb weavers), which in previous studies has only been supported by a combination of morphological and behavioural characters.
Collapse
Affiliation(s)
- Siddharth Kulkarni
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Hannah Wood
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Michael Lloyd
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA.,The Jackson Laboratory, Bar Harbor, ME, USA
| | - Gustavo Hormiga
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
44
|
Treanor D, Hughes WOH. Limited female dispersal predicts the incidence of Wolbachia across ants (Hymenoptera: Formicidae). J Evol Biol 2019; 32:1163-1170. [PMID: 31334893 DOI: 10.1111/jeb.13510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/14/2019] [Accepted: 07/01/2019] [Indexed: 01/13/2023]
Abstract
The endosymbiotic bacterium Wolbachia is perhaps the greatest panzootic in the history of life on Earth, yet remarkably little is known regarding the factors that determine its incidence across species. One possibility is that Wolbachia more easily invades species with structured populations, due to the increased strength of genetic drift and higher initial frequency of infection. This should enable strains that induce mating incompatibilities to more easily cross the threshold prevalence above which they spread to either fixation or a stable equilibrium infection prevalence. Here, we provide empirical support for this hypothesis by analysing the relationship between female dispersal (as a proxy for population structure) and the incidence of Wolbachia across 250 species of ants. We show that species in which the dispersal of reproductive females is limited are significantly more likely to be infected with Wolbachia than species whose reproductive ecology is consistent with significant dispersal of females, and that this relationship remains after controlling for host phylogeny. We suggest that structured host populations, in this case resulting from limited female dispersal, may be an important feature determining how easily Wolbachia becomes successfully established in a novel host, and thus its occurrence across a wide diversity of invertebrate hosts.
Collapse
Affiliation(s)
- David Treanor
- School of Life Sciences, University of Sussex, Brighton, UK
| | | |
Collapse
|
45
|
Ortiz-Sepulveda CM, Van Bocxlaer B, Meneses AD, Fernández F. Molecular and morphological recognition of species boundaries in the neglected ant genus Brachymyrmex (Hymenoptera: Formicidae): toward a taxonomic revision. ORG DIVERS EVOL 2019. [DOI: 10.1007/s13127-019-00406-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Ströher PR, Meyer ALS, Zarza E, Tsai WLE, McCormack JE, Pie MR. Phylogeography of ants from the Brazilian Atlantic Forest. ORG DIVERS EVOL 2019. [DOI: 10.1007/s13127-019-00409-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Wehner R. The Cataglyphis Mahrèsienne: 50 years of Cataglyphis research at Mahrès. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:641-659. [DOI: 10.1007/s00359-019-01333-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 11/28/2022]
|
48
|
Parker C, Bernaola L, Lee BW, Elmquist D, Cohen A, Marshall A, Hepler J, Pekarcik A, Justus E, King K, Lee TY, Esquivel C, Hauri K, McCullough C, Hadden W, Ragozzino M, Roth M, Villegas J, Kraus E, Becker M, Mulcahy M, Chen R, Mittapelly P, Clem CS, Skinner R, Josek T, Pearlstein D, Tetlie J, Tran A, Auletta A, Benkert E, Tussey D. Entomology in the 21st Century: Tackling Insect Invasions, Promoting Advancements in Technology, and Using Effective Science Communication-2018 Student Debates. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:4. [PMID: 31268545 PMCID: PMC6608551 DOI: 10.1093/jisesa/iez069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Indexed: 06/09/2023]
Abstract
The 2018 student debates of the Entomological Society of America were held at the Joint Annual Meeting for the Entomological Societies of America, Canada, and British Columbia in Vancouver, BC. Three unbiased introductory speakers and six debate teams discussed and debated topics under the theme 'Entomology in the 21st Century: Tackling Insect Invasions, Promoting Advancements in Technology, and Using Effective Science Communication'. This year's debate topics included: 1) What is the most harmful invasive insect species in the world? 2) How can scientists diffuse the stigma or scare factor surrounding issues that become controversial such as genetically modified organisms, agricultural biotechnological developments, or pesticide chemicals? 3) What new/emerging technologies have the potential to revolutionize entomology (other than Clustered Regularly Interspaced Short Palindromic Repeats)? Introductory speakers and debate teams spent approximately 9 mo preparing their statements and arguments and had the opportunity to share this at the Joint Annual Meeting with an engaged audience.
Collapse
Affiliation(s)
- Casey Parker
- University of Florida, Florida Medical Entomology Laboratory, Vero Beach, FL
| | - Lina Bernaola
- Louisiana State University, Department of Entomology, Baton Rouge, LA
| | - Benjamin W Lee
- Washington State University, Department of Entomology, Pullman, WA
| | - Dane Elmquist
- Washington State University, Department of Entomology, Pullman, WA
| | - Abigail Cohen
- Washington State University, Department of Entomology, Pullman, WA
| | - Adrian Marshall
- Washington State University, Department of Entomology, Tree Fruit Research and Extension Center, Wenatchee, WA
| | - James Hepler
- Washington State University, Department of Entomology, Tree Fruit Research and Extension Center, Wenatchee, WA
| | - Adrian Pekarcik
- The Ohio State University, Department of Entomology, Wooster, OH
| | - Emily Justus
- The Ohio State University, Department of Entomology, Wooster, OH
| | - Kendall King
- The Ohio State University, Department of Entomology, Columbus, OH
| | - Tae-Young Lee
- The Ohio State University, Department of Entomology, Columbus, OH
| | - Carlos Esquivel
- The Ohio State University, Department of Entomology, Wooster, OH
| | - Kayleigh Hauri
- Michigan State University, Department of Entomology, East Lansing, MI
| | - Christopher McCullough
- Virginia Polytechnic Institute and State University, Plant and Environmental Science, Blacksburg, VA
| | - Whitney Hadden
- Virginia Polytechnic Institute and State University, Department of Entomology, Also H Smith Jr AREC, Winchester, VA
| | - Max Ragozzino
- Virginia Polytechnic Institute and State University, Department of Entomology, Blacksburg, VA
| | - Morgan Roth
- Virginia Polytechnic Institute and State University, Department of Entomology, Blacksburg, VA
| | - James Villegas
- Louisiana State University, Department of Entomology, Baton Rouge, LA
| | - Emily Kraus
- Louisiana State University, Department of Entomology, Baton Rouge, LA
| | - Michael Becker
- Louisiana State University, Department of Entomology, Baton Rouge, LA
| | - Megan Mulcahy
- Louisiana State University, Department of Entomology, Baton Rouge, LA
| | - Rui Chen
- Louisiana State University, Department of Entomology, Baton Rouge, LA
| | | | - C Scott Clem
- University of Illinois at Urbana-Champaign, Department of Entomology, Urbana, IL
| | - Rachel Skinner
- University of Illinois at Urbana-Champaign, Department of Entomology, Urbana, IL
| | - Tanya Josek
- University of Illinois at Urbana-Champaign, Department of Entomology, Urbana, IL
| | - Daniel Pearlstein
- University of Illinois at Urbana-Champaign, Department of Entomology, Urbana, IL
| | - Jonathan Tetlie
- University of Illinois at Urbana-Champaign, Department of Entomology, Urbana, IL
| | - Anh Tran
- University of Minnesota, Department of Entomology, St Paul, MN
| | - Anthony Auletta
- University of Minnesota, Department of Entomology, St Paul, MN
| | - Edwin Benkert
- University of Minnesota, Department of Entomology, St Paul, MN
| | - Dylan Tussey
- University of Florida, Entomology and Nematology Department, Gainesville, FL
| |
Collapse
|
49
|
Cruaud A, Nidelet S, Arnal P, Weber A, Fusu L, Gumovsky A, Huber J, Polaszek A, Rasplus JY. Optimized DNA extraction and library preparation for minute arthropods: Application to target enrichment in chalcid wasps used for biocontrol. Mol Ecol Resour 2019; 19:702-710. [PMID: 30758892 DOI: 10.1111/1755-0998.13006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/18/2019] [Accepted: 02/01/2019] [Indexed: 01/04/2023]
Abstract
Target enrichment is increasingly used for genotyping of plant and animal species or to better understand the evolutionary history of important lineages through the inference of statistically robust phylogenies. Limitations to routine target enrichment are both the complexity of current protocols and low input DNA quantity. Thus, working with tiny organisms such as microarthropods can be challenging. Here, we propose easy to set up optimizations for DNA extraction and library preparation prior to target enrichment. Prepared libraries were used to capture 1,432 ultraconserved elements (UCEs) from microhymenoptera (Chalcidoidea), which are among the tiniest insects on Earth and the most commercialized worldwide for biological control purposes. Results show no correlation between input DNA quantities (1.8-250 ng, 0.4 ng with an extra whole genome amplification step) and the number of sequenced UCEs on an Illumina MiSeq. Phylogenetic inferences highlight the potential of UCEs to solve relationships within the families of chalcid wasps, which has not been achieved so far. The protocol (library preparation + target enrichment) allows processing 96 specimens in five working days, by a single person, without requiring the use of expensive robotic molecular biology platforms, which could help to generalize the use of target enrichment for minute specimens.
Collapse
Affiliation(s)
- Astrid Cruaud
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Sabine Nidelet
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Pierre Arnal
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, Montpellier, France.,ISYEB-UMR 7205 MNHN, CNRS, UPMC, EPHE, Sorbonne Universités, Paris, France
| | - Audrey Weber
- AGAP, INRA, CIRAD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Lucian Fusu
- Faculty of Biology, Alexandru Ioan Cuza University, Iasi, Romania
| | - Alex Gumovsky
- Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - John Huber
- Natural Resources Canada, c/o Canadian National Collection of Insects, Ottawa, Canada
| | - Andrew Polaszek
- Department of Life Sciences, Natural History Museum, London, UK
| | - Jean-Yves Rasplus
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| |
Collapse
|
50
|
Gustafson GT, Alexander A, Sproul JS, Pflug JM, Maddison DR, Short AEZ. Ultraconserved element (UCE) probe set design: Base genome and initial design parameters critical for optimization. Ecol Evol 2019; 9:6933-6948. [PMID: 31312430 PMCID: PMC6617817 DOI: 10.1002/ece3.5260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 01/10/2023] Open
Abstract
Targeted capture and enrichment approaches have proven effective for phylogenetic study. Ultraconserved elements (UCEs) in particular have exhibited great utility for phylogenomic analyses, with the software package phyluce being among the most utilized pipelines for UCE phylogenomics, including probe design. Despite the success of UCEs, it is becoming increasing apparent that diverse lineages require probe sets tailored to focal taxa in order to improve locus recovery. However, factors affecting probe design and methods for optimizing probe sets to focal taxa remain underexplored. Here, we use newly available beetle (Coleoptera) genomic resources to investigate factors affecting UCE probe set design using phyluce. In particular, we explore the effects of stringency during initial design steps, as well as base genome choice on resulting probe sets and locus recovery. We found that both base genome choice and initial bait design stringency parameters greatly alter the number of resultant probes included in final probe sets and strongly affect the number of loci detected and recovered during in silico testing of these probe sets. In addition, we identify attributes of base genomes that correlated with high performance in probe design. Ultimately, we provide a recommended workflow for using phyluce to design an optimized UCE probe set that will work across a targeted lineage, and use our findings to develop a new, open-source UCE probe set for beetles of the suborder Adephaga.
Collapse
Affiliation(s)
- Grey T. Gustafson
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansas
- Biodiversity InstituteUniversity of KansasLawrenceKansas
| | - Alana Alexander
- Biodiversity InstituteUniversity of KansasLawrenceKansas
- Department of Anatomy, School of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
| | - John S. Sproul
- Department of Integrative BiologyOregon State UniversityCorvallisOregon
- Department of BiologyUniversity of RochesterRochesterNew York
| | - James M. Pflug
- Department of Integrative BiologyOregon State UniversityCorvallisOregon
| | - David R. Maddison
- Department of Integrative BiologyOregon State UniversityCorvallisOregon
| | - Andrew E. Z. Short
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansas
- Biodiversity InstituteUniversity of KansasLawrenceKansas
| |
Collapse
|