1
|
Vellutini BC, Martín-Durán JM, Børve A, Hejnol A. Combinatorial Wnt signaling landscape during brachiopod anteroposterior patterning. BMC Biol 2024; 22:212. [PMID: 39300453 PMCID: PMC11414264 DOI: 10.1186/s12915-024-01988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Wnt signaling pathways play crucial roles in animal development. They establish embryonic axes, specify cell fates, and regulate tissue morphogenesis from the early embryo to organogenesis. It is becoming increasingly recognized that these distinct developmental outcomes depend upon dynamic interactions between multiple ligands, receptors, antagonists, and other pathway modulators, consolidating the view that a combinatorial "code" controls the output of Wnt signaling. However, due to the lack of comprehensive analyses of Wnt components in several animal groups, it remains unclear if specific combinations always give rise to specific outcomes, and if these combinatorial patterns are conserved throughout evolution. RESULTS In this work, we investigate the combinatorial expression of Wnt signaling components during the axial patterning of the brachiopod Terebratalia transversa. We find that T. transversa has a conserved repertoire of ligands, receptors, and antagonists. These genes are expressed throughout embryogenesis but undergo significant upregulation during axial elongation. At this stage, Frizzled domains occupy broad regions across the body while Wnt domains are narrower and distributed in partially overlapping patches; antagonists are mostly restricted to the anterior end. Based on their combinatorial expression, we identify a series of unique transcriptional subregions along the anteroposterior axis that coincide with the different morphological subdivisions of the brachiopod larval body. When comparing these data across the animal phylogeny, we find that the expression of Frizzled genes is relatively conserved, whereas the expression of Wnt genes is more variable. CONCLUSIONS Our results suggest that the differential activation of Wnt signaling pathways may play a role in regionalizing the anteroposterior axis of brachiopod larvae. More generally, our analyses suggest that changes in the receptor context of Wnt ligands may act as a mechanism for the evolution and diversification of the metazoan body axis.
Collapse
Affiliation(s)
- Bruno C Vellutini
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany.
| | - José M Martín-Durán
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, Fogg Building, London, E1 4NS, UK
| | - Aina Børve
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
- Department of Biological Sciences, Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
| | - Andreas Hejnol
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
- Department of Biological Sciences, Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstraße 1, 07743, Jena, Germany.
| |
Collapse
|
2
|
Holzem M, Boutros M, Holstein TW. The origin and evolution of Wnt signalling. Nat Rev Genet 2024; 25:500-512. [PMID: 38374446 DOI: 10.1038/s41576-024-00699-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
The Wnt signal transduction pathway has essential roles in the formation of the primary body axis during development, cellular differentiation and tissue homeostasis. This animal-specific pathway has been studied extensively in contexts ranging from developmental biology to medicine for more than 40 years. Despite its physiological importance, an understanding of the evolutionary origin and primary function of Wnt signalling has begun to emerge only recently. Recent studies on very basal metazoan species have shown high levels of conservation of components of both canonical and non-canonical Wnt signalling pathways. Furthermore, some pathway proteins have been described also in non-animal species, suggesting that recruitment and functional adaptation of these factors has occurred in metazoans. In this Review, we summarize the current state of research regarding the evolutionary origin of Wnt signalling, its ancestral function and the characteristics of the primal Wnt ligand, with emphasis on the importance of genomic studies in various pre-metazoan and basal metazoan species.
Collapse
Affiliation(s)
- Michaela Holzem
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany.
- Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany.
- Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany.
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Michael Boutros
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany
- Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Thomas W Holstein
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
3
|
Sierra NC, Olsman N, Yi L, Pachter L, Goentoro L, Gold DA. A Novel Approach to Comparative RNA-Seq Does Not Support a Conserved Set of Orthologs Underlying Animal Regeneration. Genome Biol Evol 2024; 16:evae120. [PMID: 38922665 PMCID: PMC11214158 DOI: 10.1093/gbe/evae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Molecular studies of animal regeneration typically focus on conserved genes and signaling pathways that underlie morphogenesis. To date, a holistic analysis of gene expression across animals has not been attempted, as it presents a suite of problems related to differences in experimental design and gene homology. By combining orthology analyses with a novel statistical method for testing gene enrichment across large data sets, we are able to test whether tissue regeneration across animals shares transcriptional regulation. We applied this method to a meta-analysis of six publicly available RNA-Seq data sets from diverse examples of animal regeneration. We recovered 160 conserved orthologous gene clusters, which are enriched in structural genes as opposed to those regulating morphogenesis. A breakdown of gene presence/absence provides limited support for the conservation of pathways typically implicated in regeneration, such as Wnt signaling and cell pluripotency pathways. Such pathways are only conserved if we permit large amounts of paralog switching through evolution. Overall, our analysis does not support the hypothesis that a shared set of ancestral genes underlie regeneration mechanisms in animals. After applying the same method to heat shock studies and getting similar results, we raise broader questions about the ability of comparative RNA-Seq to reveal conserved gene pathways across deep evolutionary relationships.
Collapse
Affiliation(s)
- Noémie C Sierra
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Noah Olsman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lynn Yi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lea Goentoro
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - David A Gold
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA 95616, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
4
|
Lavrov DV, Diaz MC, Maldonado M, Morrow CC, Perez T, Pomponi SA, Thacker RW. Phylomitogenomics bolsters the high-level classification of Demospongiae (phylum Porifera). PLoS One 2023; 18:e0287281. [PMID: 38048310 PMCID: PMC10695373 DOI: 10.1371/journal.pone.0287281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
Class Demospongiae is the largest in the phylum Porifera (Sponges) and encompasses nearly 8,000 accepted species in three subclasses: Keratosa, Verongimorpha, and Heteroscleromorpha. Subclass Heteroscleromorpha contains ∼90% of demosponge species and is subdivided into 17 orders. The higher level classification of demosponges underwent major revision as the result of nearly three decades of molecular studies. However, because most of the previous molecular work only utilized partial data from a small number of nuclear and mitochondrial (mt) genes, this classification scheme needs to be tested by larger datasets. Here we compiled a mt dataset for 136 demosponge species-including 64 complete or nearly complete and six partial mt-genome sequences determined or assembled for this study-and used it to test phylogenetic relationships among Demospongiae in general and Heteroscleromorpha in particular. We also investigated the phylogenetic position of Myceliospongia araneosa, a highly unusual demosponge without spicules and spongin fibers, currently classified as Demospongiae incertae sedis, for which molecular data were not available. Our results support the previously inferred sister-group relationship between Heteroscleromorpha and Keratosa + Verongimorpha and suggest five main clades within Heteroscleromorpha: Clade C0 composed of order Haplosclerida; Clade C1 composed of Scopalinida, Sphaerocladina, and Spongillida; Clade C2 composed of Axinellida, Biemnida, Bubarida; Clade C3 composed of Tetractinellida; and Clade C4 composed of Agelasida, Clionaida, Desmacellida, Merliida, Suberitida, Poecilosclerida, Polymastiida, and Tethyida. The inferred relationships among these clades were (C0(C1(C2(C3+C4)))). Analysis of molecular data from M. araneosa placed it in the C3 clade as a sister taxon to the highly skeletonized tetractinellids Microscleroderma sp. and Leiodermatium sp. Molecular clock analysis dated divergences among the major clades in Heteroscleromorpha from the Cambrian to the Early Silurian, the origins of most heteroscleromorph orders in the middle Paleozoic, and the most basal splits within these orders around the Paleozoic to Mesozoic transition. Overall, the results of this study are mostly congruent with the accepted classification of Heteroscleromorpha, but add temporal perspective and new resolution to phylogenetic relationships within this subclass.
Collapse
Affiliation(s)
- Dennis V. Lavrov
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, United States of America
| | - Maria C. Diaz
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, United States of America
- Museo Marino de Margarita, Boca de Río, Nueva Esparta, Venezuela
| | - Manuel Maldonado
- Department of Marine Ecology, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Girona, Spain
| | - Christine C. Morrow
- Zoology Department, School of Natural Sciences & Ryan Institute, NUI Galway, University Road, Galway, Ireland
- Ireland and Queen’s University Marine Laboratory, Portaferry, Northern Ireland
| | - Thierry Perez
- Institut Méditerranéen de la Biodiversité et d’Ecologie marine et continentale (IMBE), CNRS, Aix-Marseille Université, IRD, Avignon Université City, Provence, France
| | - Shirley A. Pomponi
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, United States of America
| | - Robert W. Thacker
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States of America
- Smithsonian Tropical Research Institute, Balboa, Panama City, Republic of Panama
| |
Collapse
|
5
|
Mundaca-Escobar M, Cepeda RE, Sarrazin AF. The organizing role of Wnt signaling pathway during arthropod posterior growth. Front Cell Dev Biol 2022; 10:944673. [PMID: 35990604 PMCID: PMC9389326 DOI: 10.3389/fcell.2022.944673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Wnt signaling pathways are recognized for having major roles in tissue patterning and cell proliferation. In the last years, remarkable progress has been made in elucidating the molecular and cellular mechanisms that underlie sequential segmentation and axial elongation in various arthropods, and the canonical Wnt pathway has emerged as an essential factor in these processes. Here we review, with a comparative perspective, the current evidence concerning the participation of this pathway during posterior growth, its degree of conservation among the different subphyla within Arthropoda and its relationship with the rest of the gene regulatory network involved. Furthermore, we discuss how this signaling pathway could regulate segmentation to establish this repetitive pattern and, at the same time, probably modulate different cellular processes precisely coupled to axial elongation. Based on the information collected, we suggest that this pathway plays an organizing role in the formation of the body segments through the regulation of the dynamic expression of segmentation genes, via controlling the caudal gene, at the posterior region of the embryo/larva, that is necessary for the correct sequential formation of body segments in most arthropods and possibly in their common segmented ancestor. On the other hand, there is insufficient evidence to link this pathway to axial elongation by controlling its main cellular processes, such as convergent extension and cell proliferation. However, conclusions are premature until more studies incorporating diverse arthropods are carried out.
Collapse
Affiliation(s)
| | | | - Andres F. Sarrazin
- CoDe-Lab, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
6
|
Holstein TW. The role of cnidarian developmental biology in unraveling axis formation and Wnt signaling. Dev Biol 2022; 487:74-98. [DOI: 10.1016/j.ydbio.2022.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
|
7
|
Borisenko I, Daugavet M, Ereskovsky A, Lavrov A, Podgornaya O. Novel protein from larval sponge cells, ilborin, is related to energy turnover and calcium binding and is conserved among marine invertebrates. Open Biol 2022; 12:210336. [PMID: 35193395 PMCID: PMC8864356 DOI: 10.1098/rsob.210336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sponges (phylum Porifera) are early-branching animals, whose outwardly simple body plan is underlain by a complex genetic repertoire. The transition from a mobile larva to an attached filter-feeding organism occurs by metamorphosis, a process accompanied by a radical change of the body plan and cell transdifferentiation. The continuity between larval cells and adult tissues is still obscure. In a previous study, we have produced polyclonal antibodies against the major protein of the flagellated cells covering the larva of the sponge Halisarca dujardini, used them to trace the fate of these cells and shown that the larval flagellated cells transdifferentiate into the choanocytes. In the present work, we identified the sequence of this novel protein, which we named ilborin. A search in the open databases showed that multiple orthologues of the newly identified protein are present in sponges, cnidarians, flatworms, ctenophores and echinoderms, but none of them has been described yet. Ilborin has two conserved domains: triosephosphate isomerase-barrel, which has enzymatic activity against macroergic compounds, and canonical EF-hand, which binds calcium. mRNA of ilborin is expressed in the larval flagellated cells. We suggest that the new protein is involved in the calcium-mediated regulation of energy metabolism, whose activation precedes metamorphosis.
Collapse
Affiliation(s)
- Ilya Borisenko
- Department of Embryology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Maria Daugavet
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Alexander Ereskovsky
- Department of Embryology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia,Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), Université d' Aix-Marseille, CNRS, IRD, Marseille, France,Evolution of Morphogenesis Laboratory, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Andrey Lavrov
- Pertsov White Sea Biological Station, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Podgornaya
- Department of Embryology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia,Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
8
|
Sandoval K, McCormack GP. Actinoporin-like Proteins Are Widely Distributed in the Phylum Porifera. Mar Drugs 2022; 20:md20010074. [PMID: 35049929 PMCID: PMC8778704 DOI: 10.3390/md20010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Actinoporins are proteinaceous toxins known for their ability to bind to and create pores in cellular membranes. This quality has generated interest in their potential use as new tools, such as therapeutic immunotoxins. Isolated historically from sea anemones, genes encoding for similar actinoporin-like proteins have since been found in a small number of other animal phyla. Sequencing and de novo assembly of Irish Haliclona transcriptomes indicated that sponges also possess similar genes. An exhaustive analysis of publicly available sequencing data from other sponges showed that this is a potentially widespread feature of the Porifera. While many sponge proteins possess a sequence similarity of 27.70–59.06% to actinoporins, they show consistency in predicted structure. One gene copy from H. indistincta has significant sequence similarity to sea anemone actinoporins and possesses conserved residues associated with the fundamental roles of sphingomyelin recognition, membrane attachment, oligomerization, and pore formation, indicating that it may be an actinoporin. Phylogenetic analyses indicate frequent gene duplication, no distinct clade for sponge-derived proteins, and a stronger signal towards actinoporins than similar proteins from other phyla. Overall, this study provides evidence that a diverse array of Porifera represents a novel source of actinoporin-like proteins which may have biotechnological and pharmaceutical applications.
Collapse
|
9
|
Abstract
Sponges (Porifera), basal nonbilaterian metazoans, are well known for their high regenerative capacities ranging from reparation of a lost body wall to whole-body regeneration from a small piece of tissues or even from dissociated cells. Sponges from different clades utilize different cell sources and various morphological processes to complete the regeneration. This variety makes these animals promising models for studying the evolution of regeneration in Metazoa. However, there are few publications concerning the regenerative mechanisms in sponges. This could be partially explained by the delicacy of sponge tissues, which requires modifying and fine adjusting of common research protocols. The current chapter describes various methods for studying regeneration processes in the marine calcareous sponge, Leucosolenia. Provided protocols span all significant research steps: from sponge collection and surgical operations to various types of microscopy and immunohistochemical studies.
Collapse
Affiliation(s)
- Andrey I Lavrov
- Pertsov White Sea Biological Station, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia.
- Department of Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia.
| | - Alexander V Ereskovsky
- Department of Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia.
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille University, CNRS, IRD, Avignon University, Station Marine d'Endoume, Marseille, France.
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
10
|
Expression of Wnt and TGF-Beta Pathway Components during Whole-Body Regeneration from Cell Aggregates in Demosponge Halisarca dujardinii. Genes (Basel) 2021; 12:genes12060944. [PMID: 34203064 PMCID: PMC8235796 DOI: 10.3390/genes12060944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/30/2022] Open
Abstract
The phenomenon of whole-body regeneration means rebuilding of the whole body of an animal from a small fragment or even a group of cells. In this process, the old axial relationships are often lost, and new ones are established. An amazing model for studying this process is sponges, some of which are able to regenerate into a definitive organism after dissociation into cells. We hypothesized that during the development of cell aggregates, primmorphs, new axes are established due to the activation of the Wnt and TGF-beta signaling pathways. Using in silico analysis, RNA-seq, and whole-mount in situ hybridization, we identified the participants in these signaling pathways and determined the spatiotemporal changes in their expression in demosponge Halisarca dujardinii. It was shown that Wnt and TGF-beta ligands are differentially expressed during primmorph development, and transcripts of several genes are localized at the poles of primmorphs, in the form of a gradient. We suppose that the Wnt and TGF-beta signaling cascades are involved in the initial axial patterning of the sponge body, which develops from cells after dissociation.
Collapse
|
11
|
Hanly JJ, Robertson ECN, Corning OBWH, Martin A. Porcupine/Wntless-dependent trafficking of the conserved WntA ligand in butterflies. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:470-481. [PMID: 34010515 DOI: 10.1002/jez.b.23046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 11/11/2022]
Abstract
Wnt ligands are key signaling molecules in animals, but little is known about the evolutionary dynamics and mode of action of the WntA orthologs, which are not present in the vertebrates or in Drosophila. Here we show that the WntA subfamily evolved at the base of the Bilateria + Cnidaria clade, and conserved the thumb region and Ser209 acylation site present in most other Wnts, suggesting WntA requires the core Wnt secretory pathway. WntA proteins are distinguishable from other Wnts by a synapomorphic Iso/Val/Ala216 amino-acid residue that replaces the otherwise ubiquitous Thr216 position. WntA embryonic expression is conserved between beetles and butterflies, suggesting functionality, but the WntA gene was lost three times within arthropods, in podoplean copepods, in the cyclorrhaphan fly radiation, and in ensiferan crickets and katydids. Finally, CRISPR mosaic knockouts (KOs) of porcupine and wntless phenocopied the pattern-specific effects of WntA KOs in the wings of Vanessa cardui butterflies. These results highlight the molecular conservation of the WntA protein across invertebrates, and imply it functions as a typical Wnt ligand that is acylated and secreted through the Porcupine/Wntless secretory pathway.
Collapse
Affiliation(s)
- Joseph J Hanly
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Erica C N Robertson
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Olaf B W H Corning
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
12
|
Ereskovsky A, Borisenko IE, Bolshakov FV, Lavrov AI. Whole-Body Regeneration in Sponges: Diversity, Fine Mechanisms, and Future Prospects. Genes (Basel) 2021; 12:506. [PMID: 33805549 PMCID: PMC8066720 DOI: 10.3390/genes12040506] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/08/2023] Open
Abstract
While virtually all animals show certain abilities for regeneration after an injury, these abilities vary greatly among metazoans. Porifera (Sponges) is basal metazoans characterized by a wide variety of different regenerative processes, including whole-body regeneration (WBR). Considering phylogenetic position and unique body organization, sponges are highly promising models, as they can shed light on the origin and early evolution of regeneration in general and WBR in particular. The present review summarizes available data on the morphogenetic and cellular mechanisms accompanying different types of WBR in sponges. Sponges show a high diversity of WBR, which principally could be divided into (1) WBR from a body fragment and (2) WBR by aggregation of dissociated cells. Sponges belonging to different phylogenetic clades and even to different species and/or differing in the anatomical structure undergo different morphogeneses after similar operations. A common characteristic feature of WBR in sponges is the instability of the main body axis: a change of the organism polarity is described during all types of WBR. The cellular mechanisms of WBR are different across sponge classes, while cell dedifferentiations and transdifferentiations are involved in regeneration processes in all sponges. Data considering molecular regulation of WBR in sponges are extremely scarce. However, the possibility to achieve various types of WBR ensured by common morphogenetic and cellular basis in a single species makes sponges highly accessible for future comprehensive physiological, biochemical, and molecular studies of regeneration processes.
Collapse
Affiliation(s)
- Alexander Ereskovsky
- Institut Méditerranéen de Biodiversité et d’Ecologie Marine et Continentale (IMBE), Aix Marseille University, CNRS, IRD, Station Marine d’Endoume, Rue de la Batterie des Lions, Avignon University, 13007 Marseille, France
- Department of Embryology, Faculty of Biology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia;
- Evolution of Morphogenesis Laboratory, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ilya E. Borisenko
- Department of Embryology, Faculty of Biology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia;
| | - Fyodor V. Bolshakov
- Pertsov White Sea Biological Station, Biological Faculty, Lomonosov Moscow State University, 119192 Moscow, Russia; (F.V.B.); (A.I.L.)
| | - Andrey I. Lavrov
- Pertsov White Sea Biological Station, Biological Faculty, Lomonosov Moscow State University, 119192 Moscow, Russia; (F.V.B.); (A.I.L.)
| |
Collapse
|
13
|
Fierro-Constaín L, Rocher C, Marschal F, Schenkelaars Q, Séjourné N, Borchiellini C, Renard E. In Situ Hybridization Techniques in the Homoscleromorph Sponge Oscarella lobularis. Methods Mol Biol 2021; 2219:181-194. [PMID: 33074541 DOI: 10.1007/978-1-0716-0974-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The Porifera are one of the best candidates as the sister group to all other metazoans. Studies on this phylum are therefore expected to shed light on the origin and early evolution of key animal features. Transcriptomic or genomic data acquired during the last 10 years have highlighted the conservation of most of the main genes and pathways involved in the development of the other metazoans. The next step is to determine how similar genetic tool boxes can result in widely dissimilar body plan organization, dynamics, and life histories. To answer these questions, three main axes of research are necessary: (1) conducting more gene expression studies; (2) developing knockdown protocols; and (3) reinterpreting sponge cell biology using modern tools. In this chapter we focus on the in situ hybridization (ISH) technique, needed to establish the spatiotemporal expression of genes, both on whole mount individuals and paraffin sections, and at different stages of development (adults, embryos, larvae, buds) of the homoscleromorph sponge Oscarella lobularis.
Collapse
Affiliation(s)
| | - Caroline Rocher
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Florent Marschal
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Quentin Schenkelaars
- Department of Genetics and Evolution, Faculty of Sciences, Institute of Genetics and Genomics in Geneva (IGe3), University of Geneva, Geneva, Switzerland
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Nina Séjourné
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | | | - Emmanuelle Renard
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France.
| |
Collapse
|
14
|
Abstract
Five small protein domains, the CC-domains, at the N terminus of the RECK protein, play essential roles in signaling by WNT7A and WNT7B in the context of central nervous system angiogenesis and blood-brain barrier formation and maintenance. We have determined the structure of CC domain 4 (CC4) at 1.65-Å resolution and find that it folds into a compact four-helix bundle with three disulfide bonds. The CC4 structure, together with homology modeling of CC1, reveals the surface locations of critical residues that were shown in previous mutagenesis studies to mediate GPR124 binding and WNT7A/WNT7B recognition and signaling. Surprisingly, sequence and structural homology searches reveal no other cell-surface or secreted domains in vertebrates that resemble the CC domain, a pattern that is in striking contrast to other ancient and similarly sized domains, such as Epidermal Growth Factor, Fibronectin Type 3, Immunoglobulin, and Thrombospondin type 1 domains, which are collectively present in hundreds of proteins.
Collapse
|
15
|
Martynov A, Lundin K, Picton B, Fletcher K, Malmberg K, Korshunova T. Multiple paedomorphic lineages of soft-substrate burrowing invertebrates: parallels in the origin of Xenocratena and Xenoturbella. PLoS One 2020; 15:e0227173. [PMID: 31940379 PMCID: PMC6961895 DOI: 10.1371/journal.pone.0227173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/12/2019] [Indexed: 01/21/2023] Open
Abstract
Paedomorphosis is an important evolutionary force. It has previously been suggested that a soft-substrate sediment-dwelling (infaunal) environment facilitates paedomorphic evolution in marine invertebrates. However, until recently this proposal was never rigorously tested with robust phylogeny and broad taxon selection. Here, for the first time, we present a molecular phylogeny for a majority of the 21 families of one of the largest nudibranch subgroups (Aeolidacea) and show that the externally highly simplified vermiform nudibranch family, Pseudovermidae, with clearly defined paedomorphic traits and inhabiting a soft-substrata environment, is a sister group to the complex nudibranch family, Cumanotidae. We also report the rediscovery of one of the most enigmatic nudibranchs-Xenocratena suecica-on the Swedish and Norwegian coasts 70 years after it was first found. Xenocratena was described from the same location and environment in the Swedish Gullmar fjord as one of the most enigmatic vermiform organisms, Xenoturbella bocki, which represents either an original simple bilaterian body plan or secondary simplification of a more complex organisation. Our results show that Xenocratena suecica reveals an onset of parallel paedomorphic evolution so we have proposed the new family, Xenocratenidae fam. n., to accommodate the molecular and morphological disparities we discovered. The paedomorphic origin of another aeolidacean family, Embletoniidae, is also demonstrated for the first time. Thus, by presenting three independent lineages from non-closely related aeolidacean families, Xenocratenidae fam. n., Cumanotidae and Embletoniidae, we confirm with phylogenetic data that a soft-substrata burrowing-related environment strongly favours paedomorphic evolution. We suggest criteria to distinguish ancestral and derived characters in the context of modifications of ontogenetic cycles. Applying an evolutionary model of the soft substrate-driven multiple paedomorphic origin of several families of nudibranch molluscs we propose that it is plausible to extend this model to other marine invertebrates and suggest that the ancestral organisation of the enigmatic metazoan, Xenoturbella, might correspond to the larval part of a complex ancestral bilaterian ontogenetic cycle with sedentary/semi-sedentary adult stages and planula-like larval stages.
Collapse
Affiliation(s)
| | - Kennet Lundin
- Gothenburg Natural History Museum, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Bernard Picton
- National Museums Northern Ireland, Holywood, Northern Ireland, United Kingdom
- Queen’s University, Belfast, Northern Ireland, United Kingdom
| | - Karin Fletcher
- Milltech Marine, Port Orchard, Washington, United States of America
| | - Klas Malmberg
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Aquatilis, Gothenburg, Sweden
| | - Tatiana Korshunova
- Zoological Museum, Moscow State University, Moscow, Russia
- Koltzov Institute of Developmental Biology RAS, Moscow, Russia
| |
Collapse
|
16
|
Costa ML, de Andrade Rosa I, Andrade L, Mermelstein C, C Coutinho C. Distinct interactions between epithelial and mesenchymal cells control cell morphology and collective migration during sponge epithelial to mesenchymal transition. J Morphol 2019; 281:183-195. [PMID: 31854473 DOI: 10.1002/jmor.21090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 11/10/2022]
Abstract
Epithelial and mesenchymal cell types are basic for animal multicellularity and they have complementary functions coordinated by cellular interactions. Sponges are especially important model organisms to address the evolutionary basis of morphogenetic programs for epithelial and mesenchymal organization in animals. Evolutionary studies in sponges can contribute to the understanding of the mechanisms that control tissue maintenance and tumor progression in humans. In the present study, sponge mesenchymal and epithelial cells were isolated from the demosponge Hymeniacidon heliophila, and aggregate formation was observed by video microscopy. Epithelial-mesenchymal interaction, epithelial transition, and cell migration led to sponge cell aggregation after drastic stress. Based on their different morphologies, adhesion specificities, and motilities, we suggest a role for different sponge cell types as well as complementary functions in cell aggregation. Micromanipulation under the microscope and cell tracking were also used to promote specific grafting-host interaction, to further test the effects of cell type interaction. The loss of cell polarity and flattened shape during the epithelial to mesenchymal cell transition generated small immobile aggregates of round/amoeboid cells. The motility of these transited epithelial-cell aggregates was observed by cell tracking using fluorescent dye, but only after interaction with streams of migratory mesenchymal cells. Cell motility occurred independently of morphological changes, indicating a progressive step in the transition toward a migratory mesenchymal state. Our data suggest a two-step signaling process: (a) the lack of interaction between mesenchymal and epithelial cells triggers morphological changes; and (b) migratory mesenchymal cells instruct epithelial cells for directional cell motility. These results could have an impact on the understanding of evolutionary aspects of metastatic cancer cells. HIGHLIGHTS: Morphogenetic movements observed in modern sponges could have a common evolutionary origin with collective cell migration of human metastatic cells. A sponge regenerative model was used here to characterize epithelial and mesenchymal cells, and for the promotion of grafting/host interactions with subsequent cell tracking. The transition from epithelial to mesenchymal cell type can be observed in sponges in two steps: (a) withdrawal of epithelial/mesenchymal cell interactions to trigger morphological changes; (b) migratory mesenchymal cells to induce epithelial cells to a collective migratory state.
Collapse
Affiliation(s)
- Manoel L Costa
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| | - Ivone de Andrade Rosa
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| | - Leonardo Andrade
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| | - Claudia Mermelstein
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| | - Cristiano C Coutinho
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
17
|
Hogvall M, Vellutini BC, Martín-Durán JM, Hejnol A, Budd GE, Janssen R. Embryonic expression of priapulid Wnt genes. Dev Genes Evol 2019; 229:125-135. [PMID: 31273439 PMCID: PMC6647475 DOI: 10.1007/s00427-019-00636-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/02/2019] [Indexed: 01/12/2023]
Abstract
Posterior elongation of the developing embryo is a common feature of animal development. One group of genes that is involved in posterior elongation is represented by the Wnt genes, secreted glycoprotein ligands that signal to specific receptors on neighbouring cells and thereby establish cell-to-cell communication. In segmented animals such as annelids and arthropods, Wnt signalling is also likely involved in segment border formation and regionalisation of the segments. Priapulids represent unsegmented worms that are distantly related to arthropods. Despite their interesting phylogenetic position and their importance for the understanding of ecdysozoan evolution, priapulids still represent a highly underinvestigated group of animals. Here, we study the embryonic expression patterns of the complete sets of Wnt genes in the priapulids Priapulus caudatus and Halicryptus spinulosus. We find that both priapulids possess a complete set of 12 Wnt genes. At least in Priapulus, most of these genes are expressed in and around the posterior-located blastopore and thus likely play a role in posterior elongation. Together with previous work on the expression of other genetic factors such as caudal and even-skipped, this suggests that posterior elongation in priapulids is under control of the same (or very similar) conserved gene regulatory network as in arthropods.
Collapse
Affiliation(s)
- Mattias Hogvall
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Bruno C Vellutini
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.,Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany
| | - José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.,School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden.
| |
Collapse
|
18
|
Kozin VV, Borisenko IE, Kostyuchenko RP. Establishment of the Axial Polarity and Cell Fate in Metazoa via Canonical Wnt Signaling: New Insights from Sponges and Annelids. BIOL BULL+ 2019. [DOI: 10.1134/s1062359019010035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Hall C, Rodriguez M, Garcia J, Posfai D, DuMez R, Wictor E, Quintero OA, Hill MS, Rivera AS, Hill AL. Secreted frizzled related protein is a target of PaxB and plays a role in aquiferous system development in the freshwater sponge, Ephydatia muelleri. PLoS One 2019; 14:e0212005. [PMID: 30794564 PMCID: PMC6386478 DOI: 10.1371/journal.pone.0212005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
Canonical and non-canonical Wnt signaling, as well as the Pax/Six gene network, are involved in patterning the freshwater sponge aquiferous system. Using computational approaches to identify transcription factor binding motifs in a freshwater sponge genome, we located putative PaxB binding sites near a Secreted Frizzled Related Protein (SFRP) gene in Ephydatia muelleri. EmSFRP is expressed throughout development, but with highest levels in juvenile sponges. In situ hybridization and antibody staining show EmSFRP expression throughout the pinacoderm and choanoderm in a subpopulation of amoeboid cells that may be differentiating archeocytes. Knockdown of EmSFRP leads to ectopic oscula formation during development, suggesting that EmSFRP acts as an antagonist of Wnt signaling in E. muelleri. Our findings support a hypothesis that regulation of the Wnt pathway by the Pax/Six network as well as the role of Wnt signaling in body plan morphogenesis was established before sponges diverged from the rest of the metazoans.
Collapse
Affiliation(s)
- Chelsea Hall
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Melanie Rodriguez
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Josephine Garcia
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Dora Posfai
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Rachel DuMez
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Erik Wictor
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Omar A. Quintero
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Malcolm S. Hill
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
- Department of Biology, Bates College, Lewiston, Maine, United States of America
| | - Ajna S. Rivera
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - April L. Hill
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
- Department of Biology, Bates College, Lewiston, Maine, United States of America
| |
Collapse
|
20
|
Borisenko I, Podgornaya OI, Ereskovsky AV. From traveler to homebody: Which signaling mechanisms sponge larvae use to become adult sponges? ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:421-449. [DOI: 10.1016/bs.apcsb.2019.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Evolution of the main skeleton-forming genes in sponges (phylum Porifera) with special focus on the marine Haplosclerida (class Demospongiae). Mol Phylogenet Evol 2018; 131:245-253. [PMID: 30502904 DOI: 10.1016/j.ympev.2018.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/26/2018] [Accepted: 11/19/2018] [Indexed: 01/14/2023]
Abstract
The skeletons of sponges (Phylum Porifera) are comprised of collagen, often embedded with small siliceous structures (spicules) arranged in various forms to provide strength and flexibility. The main proteins responsible for the formation of the spicules in demosponges are the silicateins, which are related to the cathepsins L of other animals. While the silicatein active site, necessary for the formation of biosilica crystals, is characterized by the amino acids SHN, different variants of the silicatein genes have been found, some that retain SHN at the active site and some that don't. As part of an effort to further understand skeleton formation in marine sponges of the order Haplosclerida, a search for all silicatein variants were made in Irish species representing the main clades of this large sponge group. For this task, transcriptomes were sequenced and de novo assembled from Haliclona oculata, H. simulans and H. indistincta. Silicatein genes were identified from these and all available genomes and transcriptomes from Porifera. These were analysed along with all complete silicateins from GenBank. Silicateins were only found in species belonging to the class Demospongiae but excluding Keratosa and Verongimorpha and there was significant duplication and diversity of these genes. Silicateins showing SHN at the active site were polyphyletic. Indeed silicatein sequences were divided into six major clades (CHNI, CHNII, CHNIII, SHNI, SHNII and C/SQN). In those clades where haplosclerids were well represented the silicatein phylogeny reflected previous ribosomal and mitochondrial topologies. The most basal silicatein clade (CHNI) contained sequences only from marine haplosclerids and freshwater sponges while one silicatein from H. indistincta was more related to cathepsins L (outgroup) than to the overall silicatein clade indicating the presence of an old silicatein or an intermediary form. This data could suggest that marine haplosclerids were one of the first groups of extant demosponges to acquire silicatein genes. Furthermore, we suggest that the paucity of spicule types in this group may be due to their single copy of SHNI variants, and the lack of a silintaphin gene.
Collapse
|
22
|
Muthye V, Lavrov DV. Characterization of mitochondrial proteomes of nonbilaterian animals. IUBMB Life 2018; 70:1289-1301. [PMID: 30419142 DOI: 10.1002/iub.1961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/08/2018] [Accepted: 09/29/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria require ~1,500 proteins for their maintenance and proper functionality, which constitute the mitochondrial proteome (mt-proteome). Although a few of these proteins, mostly subunits of the electron transport chain complexes, are encoded in mitochondrial DNA (mtDNA), the vast majority are encoded in the nuclear genome and imported to the organelle. Previous studies have shown a continuous and complex evolution of mt-proteome among eukaryotes. However, there was less attention paid to mt-proteome evolution within Metazoa, presumably because animal mtDNA and, by extension, animal mitochondria are often considered to be uniform. In this analysis, two bioinformatic approaches (Orthologue-detection and Mitochondrial Targeting Sequence prediction) were used to identify mt-proteins in 23 species from four nonbilaterian phyla: Cnidaria, Ctenophora, Placozoa, and Porifera, as well as two choanoflagellates, the closest animal relatives. Our results revealed a large variation in mt-proteome in nonbilaterian animals in size and composition. Myxozoans, highly reduced cnidarian parasites, possessed the smallest inferred mitochondrial proteomes, while calcareous sponges possessed the largest. About 513 mitochondrial orthologous groups were present in all nonbilaterian phyla and human. Interestingly, 42 human mitochondrial proteins were not identified in any nonbilaterian species studied and represent putative innovations along the bilaterian branch. Several of these proteins were involved in apoptosis and innate immunity, two processes known to evolve within Metazoa. Conversely, several proteins identified as mitochondrial in nonbilaterian phyla and animal outgroups were absent in human, representing cases of possible loss. Finally, a few human cytosolic proteins, such as histones and cytosolic ribosomal proteins, were predicted to be targeted to mitochondria in nonbilaterian animals. Overall, our analysis provides the first step in characterization of mt-proteomes in nonbilaterian animals and understanding evolution of animal mt-proteome. © 2018 IUBMB Life, 70(12):1289-1301, 2018.
Collapse
Affiliation(s)
- Viraj Muthye
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Dennis V Lavrov
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
23
|
Lavrov AI, Bolshakov FV, Tokina DB, Ereskovsky AV. Sewing up the wounds : The epithelial morphogenesis as a central mechanism of calcaronean sponge regeneration. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:351-371. [PMID: 30421540 DOI: 10.1002/jez.b.22830] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/03/2018] [Accepted: 08/10/2018] [Indexed: 01/14/2023]
Abstract
Sponges (Porifera) demonstrate prominent regeneration abilities and possess a wide variety of mechanisms, used during this process. In the current study, we combined in vivo observations with histological, immunohistochemical, and ultrastructural technics to elucidate the fine cellular mechanisms of the regeneration in the calcareous sponge Leucosolenia cf. variabilis. The regeneration of Leucosolenia cf. variabilis ends within 4-6 days. The crucial step of the process is the formation of the transient regenerative membrane, formed by the epithelial morphogenesis-spreading of the intact exopinacoderm and choanoderm. The spreading of the choanoderm is accompanied by the transdifferentiation of the choanocytes. The regenerative membrane develops without any contribution of the mesohyl cells. Subsequently, the membrane gradually transforms into the body wall. The cell proliferation is neither affected nor contributes to the regeneration at any stage. Thus, Leucosolenia cf. variabilis regeneration relies on the remodeling of the intact tissues through the epithelial morphogenesis, accompanied by the transdifferentiation of some differentiated cell types, which makes it similar to the regeneration in homoscleromorphs and eumetazoans.
Collapse
Affiliation(s)
- Andrey I Lavrov
- Pertsov White Sea Biological Station, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia.,Department Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Fyodor V Bolshakov
- Pertsov White Sea Biological Station, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia.,Department Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Daria B Tokina
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille University, CNRS, IRD, Avignon University, Station Marine d'Endoume, Marseille, France
| | - Alexander V Ereskovsky
- Department Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia.,Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille University, CNRS, IRD, Avignon University, Station Marine d'Endoume, Marseille, France
| |
Collapse
|
24
|
Renard E, Leys SP, Wörheide G, Borchiellini C. Understanding Animal Evolution: The Added Value of Sponge Transcriptomics and Genomics: The disconnect between gene content and body plan evolution. Bioessays 2018; 40:e1700237. [PMID: 30070368 DOI: 10.1002/bies.201700237] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/22/2018] [Indexed: 02/06/2023]
Abstract
Sponges are important but often-neglected organisms. The absence of classical animal traits (nerves, digestive tract, and muscles) makes sponges challenging for non-specialists to work with and has delayed getting high quality genomic data compared to other invertebrates. Yet analyses of sponge genomes and transcriptomes currently available have radically changed our understanding of animal evolution. Sponges are of prime evolutionary importance as one of the best candidates to form the sister group of all other animals, and genomic data are essential to understand the mechanisms that control animal evolution and diversity. Here we review the most significant outcomes of current genomic and transcriptomic analyses of sponges, and discuss limitations and future directions of sponge transcriptomic and genomic studies.
Collapse
Affiliation(s)
- Emmanuelle Renard
- Aix Marseille Univ., Univ Avignon, CNRS, IRD, UMR 7263, Mediterranean Institute of Marine and Continental Biodiversity and Ecology (IMBE), Station Marine d'Endoume, Marseille, France.,Aix Marseille Univ., CNRS, UMR 7288, IBDM, Marseille, France
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner Straße 10, 80333 Munich, Germany.,GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Bavarian State Collection for Paleontology and Geology, Munich, Germany
| | - Carole Borchiellini
- Aix Marseille Univ., Univ Avignon, CNRS, IRD, UMR 7263, Mediterranean Institute of Marine and Continental Biodiversity and Ecology (IMBE), Station Marine d'Endoume, Marseille, France
| |
Collapse
|
25
|
Somorjai IML, Martí-Solans J, Diaz-Gracia M, Nishida H, Imai KS, Escrivà H, Cañestro C, Albalat R. Wnt evolution and function shuffling in liberal and conservative chordate genomes. Genome Biol 2018; 19:98. [PMID: 30045756 PMCID: PMC6060547 DOI: 10.1186/s13059-018-1468-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/22/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND What impact gene loss has on the evolution of developmental processes, and how function shuffling has affected retained genes driving essential biological processes, remain open questions in the fields of genome evolution and EvoDevo. To investigate these problems, we have analyzed the evolution of the Wnt ligand repertoire in the chordate phylum as a case study. RESULTS We conduct an exhaustive survey of Wnt genes in genomic databases, identifying 156 Wnt genes in 13 non-vertebrate chordates. This represents the most complete Wnt gene catalog of the chordate subphyla and has allowed us to resolve previous ambiguities about the orthology of many Wnt genes, including the identification of WntA for the first time in chordates. Moreover, we create the first complete expression atlas for the Wnt family during amphioxus development, providing a useful resource to investigate the evolution of Wnt expression throughout the radiation of chordates. CONCLUSIONS Our data underscore extraordinary genomic stasis in cephalochordates, which contrasts with the liberal and dynamic evolutionary patterns of gene loss and duplication in urochordate genomes. Our analysis has allowed us to infer ancestral Wnt functions shared among all chordates, several cases of function shuffling among Wnt paralogs, as well as unique expression domains for Wnt genes that likely reflect functional innovations in each chordate lineage. Finally, we propose a potential relationship between the evolution of WntA and the evolution of the mouth in chordates.
Collapse
Affiliation(s)
- Ildikó M L Somorjai
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9ST, Scotland, UK.
- Scottish Oceans Institute, School of Biology, University of St Andrews, East Sands, St Andrews, KY16 8LB, Scotland, UK.
| | - Josep Martí-Solans
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Miriam Diaz-Gracia
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Kaoru S Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Hector Escrivà
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Cristian Cañestro
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain.
| | - Ricard Albalat
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
26
|
Du J, Zhang X, Yuan J, Zhang X, Li F, Xiang J. Wnt gene family members and their expression profiling in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2018; 77:233-243. [PMID: 29567137 DOI: 10.1016/j.fsi.2018.03.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/13/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
The Wnt gene family encodes secreted glycoproteins involved in a wide variety of biological processes, including embryo development, cell proliferation and differentiation, and tissue regeneration. The Wnt pathway exists in all metazoan animals, however, the relevant research is rare in crustaceans. Here we described 12 Wnt genes representing 12 Wnt gene subfamilies in the Pacific white shrimp, Litopenaeus vannamei. Based on homolog annotations and phylogenetic analyses, we named these 12 Wnt genes as LvWnt1, LvWnt2, LvWnt4-11, LvWnt16, and LvWntA. All the corresponding LvWnt proteins shared a conserved Wnt1 domain and 22 conserved cysteine residues. LvWnt1 and LvWnt6 were adjacent in a scaffold in the shrimp genome. Furthermore, we performed expression analyses of LvWnt genes at different developmental stages, during the molting process, in different tissues and after different pathogenic infection. We showed that each LvWnt gene had a unique expression pattern at different developmental stages but only a few of them expressed in adult shrimp. All the investigated LvWnt genes were initially expressed at the gastrula or limb bud embryo stages. Among them, LvWnt8 was specifically high expressed only in early embryos. LvWntA and LvWnt5 displayed high and similar expression profiles during the molting process, and LvWnt6 and LvWnt16 were specifically expressed in the thoracic ganglion, ventral nerve, intestines and gill tissues, respectively. We also found the expression of LvWntA, LvWnt5, LvWnt6, LvWnt9, and LvWnt16 were varied in the different tissues after infected with Staphylococcus aureus, Vibrio parahaemolyticus and white spot syndrome virus (WSSV), which indicated that they might participate in immune response in L. vannamei. This study provided an insight into the repertoire of the Wnt gene structure and expression in shrimps, and furthermore, might promote the understanding of development, growth and immune response of shrimps and crustaceans.
Collapse
Affiliation(s)
- Jiangli Du
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Jianbo Yuan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiaoxi Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
27
|
Lanna E, Cajado B, Santos D, Cruz F, Oliveira F, Vasconcellos V. Outlook on sponge reproduction science in the last ten years: are we far from where we should be? INVERTEBR REPROD DEV 2018. [DOI: 10.1080/07924259.2018.1453877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Emilio Lanna
- Instituto de Biologia, Universidade Federal da Bahia, Campus de Ondina, Salvador, Brazil
| | - Bruno Cajado
- Instituto de Biologia, Universidade Federal da Bahia, Campus de Ondina, Salvador, Brazil
| | - Danyele Santos
- Instituto de Biologia, Universidade Federal da Bahia, Campus de Ondina, Salvador, Brazil
| | - Fabiana Cruz
- Instituto de Biologia, Universidade Federal da Bahia, Campus de Ondina, Salvador, Brazil
| | - Franciele Oliveira
- Instituto de Biologia, Universidade Federal da Bahia, Campus de Ondina, Salvador, Brazil
| | - Vivian Vasconcellos
- Instituto de Biologia, Universidade Federal da Bahia, Campus de Ondina, Salvador, Brazil
| |
Collapse
|
28
|
Abstract
Background The Wnt signaling pathway is uniquely metazoan and used in many processes during development, including the formation of polarity and body axes. In sponges, one of the earliest diverging animal groups, Wnt pathway genes have diverse expression patterns in different groups including along the anterior-posterior axis of two sponge larvae, and in the osculum and ostia of others. We studied the function of Wnt signaling and body polarity formation through expression, knockdown, and larval manipulation in several freshwater sponge species. Results Sponge Wnts fall into sponge-specific and sponge-class specific subfamilies of Wnt proteins. Notably Wnt genes were not found in transcriptomes of the glass sponge Aphrocallistes vastus. Wnt and its signaling genes were expressed in archaeocytes of the mesohyl throughout developing freshwater sponges. Osculum formation was enhanced by GSK3 knockdown, and Wnt antagonists inhibited both osculum development and regeneration. Using dye tracking we found that the posterior poles of freshwater sponge larvae give rise to tissue that will form the osculum following metamorphosis. Conclusions Together the data indicate that while components of canonical Wnt signaling may be used in development and maintenance of osculum tissue, it is likely that Wnt signaling itself occurs between individual cells rather than whole tissues or structures in freshwater sponges. Electronic supplementary material The online version of this article (10.1186/s12862-018-1118-0) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Kenny NJ, de Goeij JM, de Bakker DM, Whalen CG, Berezikov E, Riesgo A. Towards the identification of ancestrally shared regenerative mechanisms across the Metazoa: A Transcriptomic case study in the Demosponge Halisarca caerulea. Mar Genomics 2018; 37:135-147. [DOI: 10.1016/j.margen.2017.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
|
30
|
Abstract
Over 100 years of sponge biology research has demonstrated spectacular diversity of cell behaviors during embryonic development, metamorphosis and regeneration. The past two decades have allowed the first glimpses into molecular and cellular mechanisms of these processes. We have learned that while embryonic development of sponges utilizes a conserved set of developmental regulatory genes known from other animals, sponge cell differentiation appears unusually labile. During normal development, and especially as a response to injury, sponge cells appear to have an uncanny ability to transdifferentiate. Here, I argue that sponge cell differentiation plasticity does not preclude homology of cell types and processes between sponges and other animals. Instead, it does provide a wonderful opportunity to better understand transdifferentiation processes in all animals.
Collapse
Affiliation(s)
- Maja Adamska
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australia.
| |
Collapse
|
31
|
Girich AS, Isaeva MP, Dolmatov IY. Wnt and frizzled expression during regeneration of internal organs in the holothurian Eupentacta fraudatrix. Wound Repair Regen 2017; 25:828-835. [PMID: 28960616 DOI: 10.1111/wrr.12591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/15/2017] [Indexed: 01/27/2023]
Abstract
Several genes of the Wnt and Frizzled families in the holothurian Eupentacta fraudatrix are characterized, and the complete coding sequences of wntA, wnt4, wnt6, wnt16, frizzled1/2/7, frizzled4, and frizzled5/8 are obtained. The dynamics of expression of these genes during regeneration of internal organs after evisceration are studied. Evisceration and the associated damages supposedly induce the expression of wnt16 on third day after evisceration. Genes wntA, wnt4, wnt6, and frizzled1/2/7 up-regulate during the period of active morphogenesis (5-7 days after evisceration) and might participate in regulation of tissue and organ formation. The signaling induced via Frizzled5/8 is could be necessary for formation of the anterior (ectodermal) part of the digestive system and development of the calcareous ring on 10th day after evisceration. Our data suggest that the Wnt signaling pathway plays a significant role in the regulation of regeneration of internal organs in holothurians.
Collapse
Affiliation(s)
- Alexander S Girich
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia.,School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russia
| | - Marina P Isaeva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Yu Dolmatov
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia.,School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
32
|
Schenkelaars Q, Pratlong M, Kodjabachian L, Fierro-Constain L, Vacelet J, Le Bivic A, Renard E, Borchiellini C. Animal multicellularity and polarity without Wnt signaling. Sci Rep 2017; 7:15383. [PMID: 29133828 PMCID: PMC5684314 DOI: 10.1038/s41598-017-15557-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/30/2017] [Indexed: 12/24/2022] Open
Abstract
Acquisition of multicellularity is a central event in the evolution of Eukaryota. Strikingly, animal multicellularity coincides with the emergence of three intercellular communication pathways - Notch, TGF-β and Wnt - all considered as hallmarks of metazoan development. By investigating Oopsacas minuta and Aphrocallistes vastus, we show here that the emergence of a syncytium and plugged junctions in glass sponges coincides with the loss of essential components of the Wnt signaling (i.e. Wntless, Wnt ligands and Disheveled), whereas core components of the TGF-β and Notch modules appear unaffected. This suggests that Wnt signaling is not essential for cell differentiation, polarity and morphogenesis in glass sponges. Beyond providing a comparative study of key developmental toolkits, we define here the first case of a metazoan phylum that maintained a level of complexity similar to its relatives despite molecular degeneration of Wnt pathways.
Collapse
Affiliation(s)
- Quentin Schenkelaars
- Aix Marseille Université, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station Marine d'Endoume, Marseille, France.
- Department of Genetics and Evolution, University of Geneva, Sciences III, 30 Quai Ernest Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Marine Pratlong
- Aix Marseille Université, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station Marine d'Endoume, Marseille, France
- Aix Marseille Université, CNRS, Centrale Marseille, I2M, Equipe Evolution Biologique et Modélisation, Marseille, France
| | - Laurent Kodjabachian
- Aix Marseille Université, CNRS, Institute of Developmental Biology of Marseille (IBDM), case 907, 13288, Marseille cedex 09, France
| | - Laura Fierro-Constain
- Aix Marseille Université, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station Marine d'Endoume, Marseille, France
| | - Jean Vacelet
- Aix Marseille Université, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station Marine d'Endoume, Marseille, France
| | - André Le Bivic
- Aix Marseille Université, CNRS, Institute of Developmental Biology of Marseille (IBDM), case 907, 13288, Marseille cedex 09, France.
| | - Emmanuelle Renard
- Aix Marseille Université, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station Marine d'Endoume, Marseille, France
| | - Carole Borchiellini
- Aix Marseille Université, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station Marine d'Endoume, Marseille, France.
| |
Collapse
|
33
|
Abstract
Bilaterality – the possession of two orthogonal body axes – is the name-giving trait of all bilaterian animals. These body axes are established during early embryogenesis and serve as a three-dimensional coordinate system that provides crucial spatial cues for developing cells, tissues, organs and appendages. The emergence of bilaterality was a major evolutionary transition, as it allowed animals to evolve more complex body plans. Therefore, how bilaterality evolved and whether it evolved once or several times independently is a fundamental issue in evolutionary developmental biology. Recent findings from non-bilaterian animals, in particular from Cnidaria, the sister group to Bilateria, have shed new light into the evolutionary origin of bilaterality. Here, we compare the molecular control of body axes in radially and bilaterally symmetric cnidarians and bilaterians, identify the minimal set of traits common for Bilateria, and evaluate whether bilaterality arose once or more than once during evolution.
Collapse
Affiliation(s)
- Grigory Genikhovich
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Ulrich Technau
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| |
Collapse
|
34
|
Abstract
A complex genetic repertoire underlies the apparently simple body plan of sponges. Among the genes present in poriferans are those fundamental to the sensory and nervous systems of other animals. Sponges are dynamic and sensitive animals and it is intuitive to link these genes to behaviour. The proposal that ctenophores are the earliest diverging metazoan has led to the question of whether sponges possess a 'pre-nervous' system or have undergone nervous system loss. Both lines of thought generally assume that the last common ancestor of sponges and eumetazoans possessed the genetic modules that underlie sensory abilities. By corollary extant sponges may possess a sensory cell homologous to one present in the last common ancestor, a hypothesis that has been studied by gene expression. We have performed a meta-analysis of all gene expression studies published to date to explore whether gene expression is indicative of a feature's sensory function. In sponges we find that eumetazoan sensory-neural markers are not particularly expressed in structures with known sensory functions. Instead it is common for these genes to be expressed in cells with no known or uncharacterized sensory function. Indeed, many sensory-neural markers so far studied are expressed during development, perhaps because many are transcription factors. This suggests that the genetic signal of a sponge sensory cell is dissimilar enough to be unrecognizable when compared to a bilaterian sensory or neural cell. It is possible that sensory-neural markers have as yet unknown functions in sponge cells, such as assembling an immunological synapse in the larval globular cell. Furthermore, the expression of sensory-neural markers in non-sensory cells, such as adult and larval epithelial cells, suggest that these cells may have uncharacterized sensory functions. While this does not rule out the co-option of ancestral sensory modules in later evolving groups, a distinct genetic foundation may underlie the sponge sensory system.
Collapse
Affiliation(s)
- Jasmine L Mah
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|