1
|
González-Bernardo E, Moreno-Rueda G, Camacho C, Martínez-Padilla J, Potti J, Canal D. Environmental conditions influence host-parasite interactions and host fitness in a migratory passerine. Integr Zool 2024. [PMID: 38978458 DOI: 10.1111/1749-4877.12864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The study of host-parasite co-evolution is a central topic in evolutionary ecology. However, research is still fragmented and the extent to which parasites influence host life history is debated. One reason for this incomplete picture is the frequent omission of environmental conditions in studies analyzing host-parasite dynamics, which may influence the exposure to or effects of parasitism. To contribute to elucidating the largely unresolved question of how environmental conditions are related to the prevalence and intensity of infestation and their impact on hosts, we took advantage of 25 years of monitoring of a breeding population of pied flycatchers, Ficedula hypoleuca, in a Mediterranean area of central Spain. We investigated the influence of temperature and precipitation during the nestling stage at a local scale on the intensity of blowfly (Protocalliphora azurea) parasitism during the nestling stage. In addition, we explored the mediating effect of extrinsic and intrinsic factors and blowfly parasitism on breeding success (production of fledglings) and offspring quality (nestling mass on day 13). The prevalence and intensity of blowfly parasitism were associated with different intrinsic (host breeding date, brood size) and extrinsic (breeding habitat, mean temperature) factors. Specifically, higher average temperatures during the nestling phase were associated with lower intensities of parasitism, which may be explained by changes in blowflies' activity or larval developmental success. In contrast, no relationship was found between the prevalence of parasitism and any of the environmental variables evaluated. Hosts that experienced high parasitism intensities in their broods produced more fledglings as temperature increased, suggesting that physiological responses to severe parasitism during nestling development might be enhanced in warmer conditions. The weight of fledglings was, however, unrelated to the interactive effect of parasitism intensity and environmental conditions. Overall, our results highlight the temperature dependence of parasite-host interactions and the importance of considering multiple fitness indicators and climate-mediated effects to understand their complex implications for avian fitness and population dynamics.
Collapse
Affiliation(s)
- Enrique González-Bernardo
- Department of Zoology, Faculty of Sciences, University of Granada, Granada, Spain
- University of Oviedo, Oviedo, Asturias, Spain
| | | | - Carlos Camacho
- Department of Ecology and Evolution, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Jesús Martínez-Padilla
- Department of Biological Conservation and Ecosystem Restoration, Pyrenean Institute of Ecology (IPE-CSIC), Jaca, Spain
| | - Jaime Potti
- Department of Ecology and Evolution, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - David Canal
- Department of Evolutionary Ecology, National Museum of Natural Sciences (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
2
|
Garrido-Bautista J, Comas M, Jowers MJ, Smith S, Penn DJ, Bakkali M, Moreno-Rueda G. Fine-scale genetic structure and phenotypic divergence of a passerine bird population inhabiting a continuous Mediterranean woodland. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240601. [PMID: 39253402 PMCID: PMC11382889 DOI: 10.1098/rsos.240601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 09/11/2024]
Abstract
Genetic differentiation between populations inhabiting ecologically different habitats might appear because of limited dispersal and gene flow, which may lead to patterns of phenotypic divergence and local adaptation. In this study, we use dispersal, genotypic (24 microsatellite loci) and phenotypic (body size and clutch size) data to analyse patterns of genetic structuring and phenotypic divergence in a blue tit (Cyanistes caeruleus) population inhabiting a continuous and heterogeneous woodland along a valley. The two slopes of the valley differ in their forest formations and environmental conditions. Findings showed that most blue tits reproduced within their natal slope. Accordingly, microsatellite analyses revealed that populations of blue tits established in the two slopes show subtle genetic differentiation. The two genetic populations diverged in clutch size, exceeding the level of differentiation expected based on genetic drift, hence suggesting divergent selection (or other processes promoting divergence) on this life-history trait. Our findings reveal that restricted dispersal and spatial heterogeneity may lead to genetic differentiation among bird populations at a surprisingly small scale. In this respect, it is worth highlighting that such differentiation occurs for an organism with high dispersal capacity and within a continuous woodland. Moreover, we show that small-scale ecological differences, together with limited gene flow, can result in selection favouring different phenotypes even within the same continuum population.
Collapse
Affiliation(s)
| | - Mar Comas
- Department of Zoology, University of Granada, Granada 18071, Spain
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Michael J Jowers
- Department of Zoology, University of Granada, Granada 18071, Spain
| | - Steve Smith
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna 1160, Austria
| | - Dustin J Penn
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna 1160, Austria
| | - Mohammed Bakkali
- Department of Genetics, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Gregorio Moreno-Rueda
- Department of Zoology, University of Granada, Granada 18071, Spain
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| |
Collapse
|
3
|
Cheek RG, Forester BR, Salerno PE, Trumbo DR, Chen N, Sillett TS, Morrison SA, Ghalambor CK, Funk WC. Habitat-linked genetic variation supports microgeographic adaptive divergence in an island-endemic bird species. Mol Ecol 2022; 31:2830-2846. [PMID: 35315161 PMCID: PMC9325526 DOI: 10.1111/mec.16438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022]
Abstract
We investigated the potential mechanisms driving habitat-linked genetic divergence within a bird species endemic to a single 250 km2 island. The island scrub-jay (Aphelocoma insularis) exhibits microgeographic divergence in bill morphology across pine-oak ecotones on Santa Cruz Island, California (USA) similar to adaptive differences described in mainland congeners over much larger geographic scales. To test whether individuals exhibit genetic differentiation related to habitat type and divergence in bill length, we genotyped over 3,000 single nucleotide polymorphisms (SNPs) in 123 adult island scrub-jay males from across Santa Cruz Island using restriction site-associated DNA sequencing (RADseq). Neutral landscape genomic analyses revealed that genome-wide genetic differentiation was primarily related to geographic distance and differences in habitat composition. We also found 168 putatively adaptive loci associated with habitat type using multivariate redundancy analysis (RDA) while controlling for spatial effects. Finally, two genome-wide association analyses revealed a polygenic basis to variation in bill length with multiple loci detected in or near genes known to affect bill morphology in other birds. Our findings support the hypothesis that divergent selection at microgeographic scales can cause adaptive divergence in the presence of ongoing gene flow.
Collapse
Affiliation(s)
- Rebecca G Cheek
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Brenna R Forester
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Patricia E Salerno
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA.,Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb), Facultad de Ciencias de Medio Ambiente, Universidad Tecnológica Indoamérica, Quito, Ecuador
| | - Daryl R Trumbo
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Nancy Chen
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - T Scott Sillett
- Migratory Bird Center, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, 20013, USA
| | | | - Cameron K Ghalambor
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, 80523, USA.,Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway
| | - W Chris Funk
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, 80523, USA
| |
Collapse
|
4
|
Morales-Mata JI, Potti J, Camacho C, Martínez-Padilla J, Canal D. Phenotypic selection on an ornamental trait is not modulated by breeding density in a pied flycatcher population. J Evol Biol 2022; 35:610-620. [PMID: 35293060 PMCID: PMC9311403 DOI: 10.1111/jeb.13993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022]
Abstract
Most studies of phenotypic selection in the wild have focussed on morphological and life‐history traits and looked at abiotic (climatic) variation as the main driver of selection. Consequently, our knowledge of the effects of biotic environmental variation on phenotypic selection on sexual traits is scarce. Population density can be considered a proxy for the intensity of intrasexual and intersexual competition and could therefore be a key factor influencing the covariation between individual fitness and the expression of sexual traits. Here, we used an individual‐based data set from a population of pied flycatchers (Ficedula hypoleuca) monitored over 24 years to analyze the effect of breeding density on phenotypic selection on dorsal plumage colouration, a heritable and sexually selected ornament in males of this species. Using the number of recruits as a fitness proxy, our results showed overall stabilizing selection on male dorsal colouration, with intermediate phenotypes being favoured over extremely dark and dull individuals. However, our results did not support the hypothesis that breeding density mediates phenotypic selection on this sexual trait. We discuss the possible role of other biotic factors influencing selection on ornamental plumage.
Collapse
Affiliation(s)
| | - Jaime Potti
- Department of Evolutionary Ecology, Estación Biológica de Doñana (CSIC), Seville, Spain
| | - Carlos Camacho
- Department of Biological Conservation and Ecosystem Restoration, Pyrenean Institute of Ecology (IPE-CSIC), Jaca, Spain
| | - Jesús Martínez-Padilla
- Department of Biological Conservation and Ecosystem Restoration, Pyrenean Institute of Ecology (IPE-CSIC), Jaca, Spain
| | - David Canal
- Centre for Ecological Research, Institute of Ecology and Botany, Vácrátót, Hungary
| |
Collapse
|
5
|
Kashetsky T, Avgar T, Dukas R. The Cognitive Ecology of Animal Movement: Evidence From Birds and Mammals. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.724887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cognition, defined as the processes concerned with the acquisition, retention and use of information, underlies animals’ abilities to navigate their local surroundings, embark on long-distance seasonal migrations, and socially learn information relevant to movement. Hence, in order to fully understand and predict animal movement, researchers must know the cognitive mechanisms that generate such movement. Work on a few model systems indicates that most animals possess excellent spatial learning and memory abilities, meaning that they can acquire and later recall information about distances and directions among relevant objects. Similarly, field work on several species has revealed some of the mechanisms that enable them to navigate over distances of up to several thousand kilometers. Key behaviors related to movement such as the choice of nest location, home range location and migration route are often affected by parents and other conspecifics. In some species, such social influence leads to the formation of aggregations, which in turn may lead to further social learning about food locations or other resources. Throughout the review, we note a variety of topics at the interface of cognition and movement that invite further investigation. These include the use of social information embedded in trails, the likely important roles of soundscapes and smellscapes, the mechanisms that large mammals rely on for long-distance migration, and the effects of expertise acquired over extended periods.
Collapse
|
6
|
Abstract
Material culture—that is, group-shared and socially learned object-related behaviour(s)—is a widespread and diverse phenomenon in humans. For decades, researchers have sought to confirm the existence of material culture in non-human animals; however, the main study systems of interest—namely, tool making and/or using non-human primates and corvids—cannot provide such confirmatory evidence: because long-standing ethical and logistical constraints handicap the collection of necessary experimental data. Synthesizing evidence across decades and disciplines, here, I present a novel framework for (mechanistic, developmental, behavioural, and comparative) study on animal material culture: avian nest construction.
Collapse
Affiliation(s)
- Alexis J Breen
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| |
Collapse
|
7
|
Zepeda E, Payne E, Wurth A, Sih A, Gehrt S. Early life experience influences dispersal in coyotes ( Canis latrans). Behav Ecol 2021; 32:728-737. [PMID: 34421364 PMCID: PMC8374878 DOI: 10.1093/beheco/arab027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/21/2021] [Accepted: 03/09/2021] [Indexed: 11/15/2022] Open
Abstract
Natal dispersal plays an important role in connecting individual animal behavior with ecological processes at all levels of biological organization. As urban environments are rapidly increasing in extent and intensity, understanding how urbanization influences these long distance movements is critical for predicting the persistence of species and communities. There is considerable variation in the movement responses of individuals within a species, some of which is attributed to behavioral plasticity which interacts with experience to produce interindividual differences in behavior. For natal dispersers, much of this experience occurs in the natal home range. Using data collected from VHF collared coyotes (Canis latrans) in the Chicago Metropolitan Area we explored the relationship between early life experience with urbanization and departure, transience, and settlement behavior. Additionally, we looked at how early life experience with urbanization influenced survival to adulthood and the likelihood of experiencing a vehicle related mortality. We found that coyotes with more developed habitat in their natal home range were more likely to disperse and tended to disperse farther than individuals with more natural habitat in their natal home range. Interestingly, our analysis produced mixed results for the relationship between natal habitat and habitat selection during settlement. Finally, we found no evidence that early life experience with urbanization influenced survival to adulthood or the likelihood of experiencing vehicular mortality. Our study provides evidence that early life exposure influences dispersal behavior; however, it remains unclear how these differences ultimately affect fitness.
Collapse
Affiliation(s)
- Emily Zepeda
- Department of Environmental Science and Policy, University of California at Davis, 1 Shields Ave., Davis, CA 95616, USA
| | - Eric Payne
- Department of Environmental Science and Policy, University of California at Davis, 1 Shields Ave., Davis, CA 95616, USA
| | - Ashley Wurth
- School of Environment and Natural Resources, Ohio State University, Columbus, OH, USA
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California at Davis, 1 Shields Ave., Davis, CA 95616, USA
| | - Stanley Gehrt
- School of Environment and Natural Resources, Ohio State University, Columbus, OH, USA
| |
Collapse
|
8
|
Canal D, Schlicht L, Santoro S, Camacho C, Martínez-Padilla J, Potti J. Phenology-mediated effects of phenotype on the probability of social polygyny and its fitness consequences in a migratory passerine. BMC Ecol Evol 2021; 21:55. [PMID: 33849454 PMCID: PMC8042933 DOI: 10.1186/s12862-021-01786-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/25/2021] [Indexed: 11/24/2022] Open
Abstract
Why females engage in social polygyny remains an unresolved question in species where the resources provided by males maximize female fitness. In these systems, the ability of males to access several females, as well as the willingness of females to mate with an already mated male, and the benefits of this choice, may be constrained by the socio-ecological factors experienced at the local scale. Here, we used a 19-year dataset from an individual-monitored population of pied flycatchers (Ficedula hypoleuca) to establish local networks of breeding pairs. Then, we examined whether the probability of becoming socially polygynous and of mating with an already mated male (thus becoming a secondary female) is influenced by morphological and sexual traits as proxies of individual quality relative to the neighbours. We also evaluated whether social polygyny is adaptive for females by examining the effect of females’ mating status (polygamously-mated vs monogamously-mated) on direct (number of recruits in a given season) and indirect (lifetime number of fledglings produced by these recruits) fitness benefits. The phenotypic quality of individuals, by influencing their breeding asynchrony relative to their neighbours, mediated the probability of being involved in a polygynous event. Individuals in middle-age (2–3 years), with large wings and, in the case of males, with conspicuous sexual traits, started to breed earlier than their neighbours. By breeding locally early, males increased their chances of becoming polygynous, while females reduced their chances of mating with an already mated male. Our results suggest that secondary females may compensate the fitness costs, if any, of sharing a mate, since their number of descendants did not differ from monogamous females. We emphasize the need of accounting for local breeding settings (ecological, social, spatial, and temporal) and the phenotypic composition of neighbours to understand individual mating decisions.
Collapse
Affiliation(s)
- David Canal
- Institute of Ecology and Botany, Centre for Ecological Research, Alkotmány u. 2-4, 2163, Vácrátót, Hungary.
| | - Lotte Schlicht
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard- Gwinner-Str. 7, 82319, Seewiesen, Germany
| | - Simone Santoro
- Department of Integrated Sciences, Faculty of Experimental Sciences, University of Huelva, Avda de las Fuerzas Armadas s/n, 21007, Huelva, Spain
| | - Carlos Camacho
- Department of Biological Conservation and Ecosystem Restoration, Pyrenean Institute of Ecology (IPE-CSIC), Nuestra Señora de la Victoria, 16. 22700, Jaca, Spain
| | - Jesús Martínez-Padilla
- Department of Biological Conservation and Ecosystem Restoration, Pyrenean Institute of Ecology (IPE-CSIC), Nuestra Señora de la Victoria, 16. 22700, Jaca, Spain
| | - Jaime Potti
- Department of Evolutionary Ecology, Estación Biológica de Doñana (CSIC), Américo Vespucio 26, 41092, Seville, Spain
| |
Collapse
|
9
|
Mortier F, Bonte D. Trapped by habitat choice: Ecological trap emerging from adaptation in an evolutionary experiment. Evol Appl 2020; 13:1877-1887. [PMID: 32908592 PMCID: PMC7463321 DOI: 10.1111/eva.12937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 01/23/2023] Open
Abstract
Individuals moving in heterogeneous environments can improve their fitness considerably by habitat choice. Induction by past exposure, genetic preference alleles and comparison of local performances can all drive this decision-making process. Despite the importance of habitat choice mechanisms for eco-evolutionary dynamics in metapopulations, we lack insights on the connection of their cue with its effect on fitness optimization. We selected a laboratory population of Tetranychus urticae Koch (two-spotted spider mite) according to three distinct host-choice selection treatments for ten generations. Additionally, we tested the presence of induced habitat choice mechanisms and quantified the adaptive value of a choice before and after ten generations of artificial selection in order to gather insight on the habitat choice mechanisms at play. Unexpectedly, we observed no evolution of habitat choice in our experimental system: the initial choice of cucumber over tomato remained. However, this choice became maladaptive as tomato ensured a higher fitness at the end of the experiment. Furthermore, a noteworthy proportion of induced habitat choice can modify this ecological trap depending on past environments. Despite abundant theory and applied relevance, we provide the first experimental evidence of an emerging trap. The maladaptive choice also illustrates the constraints habitat choice has in rescuing populations endangered by environmental challenges or in pest control.
Collapse
Affiliation(s)
- Frederik Mortier
- Terrestrial Ecology Unit Department of Biology Ghent University Ghent Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit Department of Biology Ghent University Ghent Belgium
| |
Collapse
|
10
|
Camacho C, Sanabria-Fernández A, Baños-Villalba A, Edelaar P. Experimental evidence that matching habitat choice drives local adaptation in a wild population. Proc Biol Sci 2020; 287:20200721. [PMID: 32429813 PMCID: PMC7287376 DOI: 10.1098/rspb.2020.0721] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022] Open
Abstract
Matching habitat choice is a unique, flexible form of habitat choice based on self-assessment of local performance. This mechanism is thought to play an important role in adaptation and population persistence in variable environments. Nevertheless, the operation of matching habitat choice in natural populations remains to be unequivocally demonstrated. We investigated the association between body colour and substrate use by ground-perching grasshoppers (Sphingonotus azurescens) in an urban mosaic of dark and pale pavements, and then performed a colour manipulation experiment to test for matching habitat choice based on camouflage through background matching. Naturally, dark and pale grasshoppers occurred mostly on pavements that provided matching backgrounds. Colour-manipulated individuals recapitulated this pattern, such that black-painted and white-painted grasshoppers recaptured after the treatment aggregated together on the dark asphalt and pale pavement, respectively. Our study demonstrates that grasshoppers adjust their movement patterns to choose the substrate that confers an apparent improvement in camouflage given their individual-specific colour. More generally, our study provides unique experimental evidence of matching habitat choice as a driver of phenotype-environment correlations in natural populations and, furthermore, suggests that performance-based habitat choice might act as a mechanism of adaptation to changing environments, including human-modified (urban) landscapes.
Collapse
Affiliation(s)
| | | | | | - Pim Edelaar
- Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Carretera Utrera km. 1, 41013 Seville, Spain
| |
Collapse
|
11
|
Fattebert J, Perrig M, Naef-Daenzer B, Grüebler MU. Experimentally disentangling intrinsic and extrinsic drivers of natal dispersal in a nocturnal raptor. Proc Biol Sci 2019; 286:20191537. [PMID: 31480971 DOI: 10.1098/rspb.2019.1537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Equivocal knowledge of the phase-specific drivers of natal dispersal remains a major deficit in understanding causes and consequences of dispersal and thus, spatial dynamics within and between populations. We performed a field experiment combining partial cross-fostering of nestlings and nestling food supplementation in little owls (Athene noctua). This approach disentangled the effect of nestling origin from the effect of the rearing environment on dispersal behaviour, while simultaneously investigating the effect of food availability in the rearing environment. We radio-tracked fledglings to quantify the timing of pre-emigration forays and emigration, foray and transfer duration, and the dispersal distances. Dispersal characteristics of the pre-emigration phase were affected by the rearing environment rather than by the origin of nestlings. In food-poor habitats, supplemented individuals emigrated later than unsupplemented individuals. By contrast, transfer duration and distance were influenced by the birds' origin rather than by their rearing environment. We found no correlation between timing of emigration and transfer duration or distance. We conclude that food supply to the nestlings and other characteristics of the rearing environment modulate the timing of emigration, while innate traits associated with the nestling origin affect the transfer phases after emigration. The dispersal behaviours of juveniles prior and after emigration, therefore, were related to different determinants, and are suggested to form different life-history traits.
Collapse
Affiliation(s)
- Julien Fattebert
- Swiss Ornithological Institute, CH-6204 Sempach, Switzerland.,Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Marco Perrig
- Swiss Ornithological Institute, CH-6204 Sempach, Switzerland
| | | | | |
Collapse
|
12
|
Camacho C, Martínez-Padilla J, Canal D, Potti J. Long-term dynamics of phenotype-dependent dispersal within a wild bird population. Behav Ecol 2019. [DOI: 10.1093/beheco/ary195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Carlos Camacho
- Department of Evolutionary Ecology, Estación Biológica de Doñana (CSIC), Américo Vespucio, Seville, Spain
| | - Jesús Martínez-Padilla
- Research Unit of Biodiversity, UMIB (CSIC, PA), University of Oviedo, Mieres, Spain
- Pyrenean Institute of Ecology, IPE (CSIC), Avda. Nuestra Señora de la Victoria, Jaca, Spain
| | - David Canal
- Department of Evolutionary Ecology, Estación Biológica de Doñana (CSIC), Américo Vespucio, Seville, Spain
- Centre for the Study and Conservation of Birds of Prey of Argentina (CECARA-UNLPam) & Institute of Earth and Environmental Sciences of La Pampa (INCITAP), National Scientific and Technical Research Council (CONICET), Santa Rosa, La Pampa, Argentina
| | - Jaime Potti
- Department of Evolutionary Ecology, Estación Biológica de Doñana (CSIC), Américo Vespucio, Seville, Spain
| |
Collapse
|
13
|
Pellerin F, Cote J, Bestion E, Aguilée R. Matching habitat choice promotes species persistence under climate change. OIKOS 2018. [DOI: 10.1111/oik.05309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Félix Pellerin
- UMR5174 (Laboratoire Evolution et Diversité Biologique), CNRS, Univ; Toulouse III Paul Sabatier, 118 route de Narbonne FR-31062 Toulouse France
| | - Julien Cote
- UMR5174 (Laboratoire Evolution et Diversité Biologique), CNRS, Univ; Toulouse III Paul Sabatier, 118 route de Narbonne FR-31062 Toulouse France
| | - Elvire Bestion
- UMR5174 (Laboratoire Evolution et Diversité Biologique), CNRS, Univ; Toulouse III Paul Sabatier, 118 route de Narbonne FR-31062 Toulouse France
- Environment and Sustainability Inst., College of Life and Environmental Sciences, Univ. of Exeter; Penryn Cornwall UK
| | - Robin Aguilée
- UMR5174 (Laboratoire Evolution et Diversité Biologique), CNRS, Univ; Toulouse III Paul Sabatier, 118 route de Narbonne FR-31062 Toulouse France
| |
Collapse
|
14
|
Camacho C, Pérez-Rodríguez L, Abril-Colón I, Canal D, Potti J. Plumage colour predicts dispersal propensity in male pied flycatchers. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2417-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Lifelong effects of trapping experience lead to age-biased sampling: lessons from a wild bird population. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.06.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|