1
|
Schott RK, Fujita MK, Streicher JW, Gower DJ, Thomas KN, Loew ER, Bamba Kaya AG, Bittencourt-Silva GB, Guillherme Becker C, Cisneros-Heredia D, Clulow S, Davila M, Firneno TJ, Haddad CFB, Janssenswillen S, Labisko J, Maddock ST, Mahony M, Martins RA, Michaels CJ, Mitchell NJ, Portik DM, Prates I, Roelants K, Roelke C, Tobi E, Woolfolk M, Bell RC. Diversity and Evolution of Frog Visual Opsins: Spectral Tuning and Adaptation to Distinct Light Environments. Mol Biol Evol 2024; 41:msae049. [PMID: 38573520 PMCID: PMC10994157 DOI: 10.1093/molbev/msae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Visual systems adapt to different light environments through several avenues including optical changes to the eye and neurological changes in how light signals are processed and interpreted. Spectral sensitivity can evolve via changes to visual pigments housed in the retinal photoreceptors through gene duplication and loss, differential and coexpression, and sequence evolution. Frogs provide an excellent, yet understudied, system for visual evolution research due to their diversity of ecologies (including biphasic aquatic-terrestrial life cycles) that we hypothesize imposed different selective pressures leading to adaptive evolution of the visual system, notably the opsins that encode the protein component of the visual pigments responsible for the first step in visual perception. Here, we analyze the diversity and evolution of visual opsin genes from 93 new eye transcriptomes plus published data for a combined dataset spanning 122 frog species and 34 families. We find that most species express the four visual opsins previously identified in frogs but show evidence for gene loss in two lineages. Further, we present evidence of positive selection in three opsins and shifts in selective pressures associated with differences in habitat and life history, but not activity pattern. We identify substantial novel variation in the visual opsins and, using microspectrophotometry, find highly variable spectral sensitivities, expanding known ranges for all frog visual pigments. Mutations at spectral-tuning sites only partially account for this variation, suggesting that frogs have used tuning pathways that are unique among vertebrates. These results support the hypothesis of adaptive evolution in photoreceptor physiology across the frog tree of life in response to varying environmental and ecological factors and further our growing understanding of vertebrate visual evolution.
Collapse
Affiliation(s)
- Ryan K Schott
- Department of Biology and Centre for Vision Research, York University, Toronto, Ontario, Canada
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Matthew K Fujita
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | | | | | - Kate N Thomas
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
- Natural History Museum, London, UK
| | - Ellis R Loew
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | | | | | - C Guillherme Becker
- Department of Biology and One Health Microbiome Center, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Diego Cisneros-Heredia
- Laboratorio de Zoología Terrestre, Instituto de Biodiversidad Tropical IBIOTROP, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Simon Clulow
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | - Mateo Davila
- Laboratorio de Zoología Terrestre, Instituto de Biodiversidad Tropical IBIOTROP, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Thomas J Firneno
- Department of Biological Sciences, University of Denver, Denver, USA
| | - Célio F B Haddad
- Department of Biodiversity and Center of Aquaculture—CAUNESP, I.B., São Paulo State University, Rio Claro, São Paulo, Brazil
| | - Sunita Janssenswillen
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jim Labisko
- Natural History Museum, London, UK
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Mahé, Seychelles
| | - Simon T Maddock
- Natural History Museum, London, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Mahé, Seychelles
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Michael Mahony
- Department of Biological Sciences, The University of Newcastle, Newcastle 2308, Australia
| | - Renato A Martins
- Programa de Pós-graduação em Conservação da Fauna, Universidade Federal de São Carlos, São Carlos, Brazil
| | | | - Nicola J Mitchell
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Daniel M Portik
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - Ivan Prates
- Department of Biology, Lund University, Lund, Sweden
| | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Corey Roelke
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | - Elie Tobi
- Gabon Biodiversity Program, Center for Conservation and Sustainability, Smithsonian National Zoo and Conservation Biology Institute, Gamba, Gabon
| | - Maya Woolfolk
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| |
Collapse
|
2
|
Wan YC, Navarrete Méndez MJ, O'Connell LA, Uricchio LH, Roland AB, Maan ME, Ron SR, Betancourth-Cundar M, Pie MR, Howell KA, Richards-Zawacki CL, Cummings ME, Cannatella DC, Santos JC, Tarvin RD. Selection on Visual Opsin Genes in Diurnal Neotropical Frogs and Loss of the SWS2 Opsin in Poison Frogs. Mol Biol Evol 2023; 40:msad206. [PMID: 37791477 PMCID: PMC10548314 DOI: 10.1093/molbev/msad206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Amphibians are ideal for studying visual system evolution because their biphasic (aquatic and terrestrial) life history and ecological diversity expose them to a broad range of visual conditions. Here, we evaluate signatures of selection on visual opsin genes across Neotropical anurans and focus on three diurnal clades that are well-known for the concurrence of conspicuous colors and chemical defense (i.e., aposematism): poison frogs (Dendrobatidae), Harlequin toads (Bufonidae: Atelopus), and pumpkin toadlets (Brachycephalidae: Brachycephalus). We found evidence of positive selection on 44 amino acid sites in LWS, SWS1, SWS2, and RH1 opsin genes, of which one in LWS and two in RH1 have been previously identified as spectral tuning sites in other vertebrates. Given that anurans have mostly nocturnal habits, the patterns of selection revealed new sites that might be important in spectral tuning for frogs, potentially for adaptation to diurnal habits and for color-based intraspecific communication. Furthermore, we provide evidence that SWS2, normally expressed in rod cells in frogs and some salamanders, has likely been lost in the ancestor of Dendrobatidae, suggesting that under low-light levels, dendrobatids have inferior wavelength discrimination compared to other frogs. This loss might follow the origin of diurnal activity in dendrobatids and could have implications for their behavior. Our analyses show that assessments of opsin diversification in across taxa could expand our understanding of the role of sensory system evolution in ecological adaptation.
Collapse
Affiliation(s)
- Yin Chen Wan
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - María José Navarrete Méndez
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Museo de Zoología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | - Lawrence H Uricchio
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Biology, Tufts University, Medford, MA, USA
| | - Alexandre-Benoit Roland
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), UMR5169 CNRS, Toulouse University, Toulouse, France
| | - Martine E Maan
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Santiago R Ron
- Museo de Zoología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | - Marcio R Pie
- Department of Zoology, Universidade Federal do Paraná, Curitiba, Brazil
- Biology Department, Edge Hill University, Ormskirk, United Kingdom
| | - Kimberly A Howell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Molly E Cummings
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - David C Cannatella
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Biodiversity Center, University of Texas at Austin, Austin, TX, USA
| | - Juan C Santos
- Department of Biological Sciences, St. John's University, New York City, NY, USA
| | - Rebecca D Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
3
|
Schweikert LE, Bagge LE, Naughton LF, Bolin JR, Wheeler BR, Grace MS, Bracken-Grissom HD, Johnsen S. Dynamic light filtering over dermal opsin as a sensory feedback system in fish color change. Nat Commun 2023; 14:4642. [PMID: 37607908 PMCID: PMC10444757 DOI: 10.1038/s41467-023-40166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/14/2023] [Indexed: 08/24/2023] Open
Abstract
Dynamic color change has evolved multiple times, with a physiological basis that has been repeatedly linked to dermal photoreception via the study of excised skin preparations. Despite the widespread prevalence of dermal photoreception, both its physiology and its function in regulating color change remain poorly understood. By examining the morphology, physiology, and optics of dermal photoreception in hogfish (Lachnolaimus maximus), we describe a cellular mechanism in which chromatophore pigment activity (i.e., dispersion and aggregation) alters the transmitted light striking SWS1 receptors in the skin. When dispersed, chromatophore pigment selectively absorbs the short-wavelength light required to activate the skin's SWS1 opsin, which we localized to a morphologically specialized population of putative dermal photoreceptors. As SWS1 is nested beneath chromatophores and thus subject to light changes from pigment activity, one possible function of dermal photoreception in hogfish is to monitor chromatophores to detect information about color change performance. This framework of sensory feedback provides insight into the significance of dermal photoreception among color-changing animals.
Collapse
Affiliation(s)
- Lorian E Schweikert
- Institute of the Environment, Department of Biological Sciences, Florida International University, North Miami, FL, 33181, USA.
- Biology Department, Duke University, Durham, NC, 27708, USA.
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, 28403, USA.
| | - Laura E Bagge
- Torch Technologies, Shalimar, FL, 32579, USA
- Air Force Research Laboratory/RWTCA, Eglin Air Force Base, FL, 32542, USA
| | - Lydia F Naughton
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, 28403, USA
| | - Jacob R Bolin
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, 28403, USA
| | | | - Michael S Grace
- College of Engineering and Science, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Heather D Bracken-Grissom
- Institute of the Environment, Department of Biological Sciences, Florida International University, North Miami, FL, 33181, USA
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Sönke Johnsen
- Biology Department, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
4
|
Hagen JFD, Roberts NS, Johnston RJ. The evolutionary history and spectral tuning of vertebrate visual opsins. Dev Biol 2023; 493:40-66. [PMID: 36370769 PMCID: PMC9729497 DOI: 10.1016/j.ydbio.2022.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Many animals depend on the sense of vision for survival. In eumetazoans, vision requires specialized, light-sensitive cells called photoreceptors. Light reaches the photoreceptors and triggers the excitation of light-detecting proteins called opsins. Here, we describe the story of visual opsin evolution from the ancestral bilaterian to the extant vertebrate lineages. We explain the mechanisms determining color vision of extant vertebrates, focusing on opsin gene losses, duplications, and the expression regulation of vertebrate opsins. We describe the sequence variation both within and between species that has tweaked the sensitivities of opsin proteins towards different wavelengths of light. We provide an extensive resource of wavelength sensitivities and mutations that have diverged light sensitivity in many vertebrate species and predict how these mutations were accumulated in each lineage based on parsimony. We suggest possible natural and sexual selection mechanisms underlying these spectral differences. Understanding how molecular changes allow for functional adaptation of animals to different environments is a major goal in the field, and therefore identifying mutations affecting vision and their relationship to photic selection pressures is imperative. The goal of this review is to provide a comprehensive overview of our current understanding of opsin evolution in vertebrates.
Collapse
Affiliation(s)
- Joanna F D Hagen
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Natalie S Roberts
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
5
|
Nagloo N, Mountford JK, Gundry BJ, Hart NS, Davies WIL, Collin SP, Hemmi JM. Enhanced short-wavelength sensitivity in the blue-tongued skink, Tiliqua rugosa. J Exp Biol 2022; 225:275680. [PMID: 35582824 PMCID: PMC9234500 DOI: 10.1242/jeb.244317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/11/2022] [Indexed: 11/20/2022]
Abstract
Despite lizards using a wide range of color signals, the limited variation in photoreceptor spectral sensitivities across lizards suggests only weak selection for species-specific, spectral tuning of photoreceptors. Some species, however, have enhanced short wavelength sensitivity, which likely helps with the detection of signals rich in ultraviolet and short wavelengths. In this study, we examined the visual system of Tiliqua rugosa, which has a UV/blue tongue, to gain insight into this species' visual ecology. We used electroretinograms, opsin sequencing and immunohistochemical labelling to characterize whole eye spectral sensitivity and the elements that shape it. Our findings reveal that T. rugosa expresses all five opsins typically found in lizards (SWS1, SWS2, RH1, RH2 and LWS) but possesses greatly enhanced short wavelength sensitivity compared to other diurnal lizards. This enhanced short wavelength sensitivity is characterized by a broadening of the spectral sensitivity curve of the eye towards shorter wavelengths while the peak sensitivity of the eye at longer wavelengths (560 nm) remains similar to other diurnal lizards. While an increased abundance of SWS1 photoreceptors is thought to mediate elevated ultraviolet sensitivity in a couple of other lizard species, SWS1 photoreceptor abundance remains low in our species. Instead, our findings suggest that short-wavelength sensitivity is driven by multiple factors which include a potentially red-shifted SWS1 photoreceptor and the absence of short-wavelength absorbing oil droplets. Examining the coincidence of enhanced short-wavelength sensitivity with blue tongues among lizards of this genus will provide further insight into the co-evolution of conspecific signals and whole-eye spectral sensitivity.
Collapse
Affiliation(s)
- Nicolas Nagloo
- School of Biological Sciences, The University of Western Australia, 6009 WA, Australia.,Department of Biology, Lund University, Lund, S-212263, Sweden.,The UWA Oceans Institute, The University of Western Australia, 6009 WA, Australia
| | - Jessica K Mountford
- School of Biological Sciences, The University of Western Australia, 6009 WA, Australia.,The UWA Oceans Institute, The University of Western Australia, 6009 WA, Australia.,Oceans Graduate School, The University of Western Australia, 6009 WA, Australia.,Clinical Genetics and Epidemiology, and Centre for Ophthalmology and Visual Science incorporating the Lions Eye Institute, The University of Western Australia, 6009 WA, Australia
| | - Ben J Gundry
- School of Biological Sciences, The University of Western Australia, 6009 WA, Australia
| | - Nathan S Hart
- School of Biological Sciences, The University of Western Australia, 6009 WA, Australia.,School of Natural Sciences, Macquarie University, 2109 NSW, Australia
| | - Wayne I L Davies
- School of Biological Sciences, The University of Western Australia, 6009 WA, Australia.,The UWA Oceans Institute, The University of Western Australia, 6009 WA, Australia.,Oceans Graduate School, The University of Western Australia, 6009 WA, Australia.,Clinical Genetics and Epidemiology, and Centre for Ophthalmology and Visual Science incorporating the Lions Eye Institute, The University of Western Australia, 6009 WA, Australia.,Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, S-90187, Sweden.,School of Agriculture, Biomedicine and Environment, La Trobe University Bundoora, Victoria 3086, Australia
| | - Shaun P Collin
- School of Biological Sciences, The University of Western Australia, 6009 WA, Australia.,The UWA Oceans Institute, The University of Western Australia, 6009 WA, Australia.,Oceans Graduate School, The University of Western Australia, 6009 WA, Australia.,Clinical Genetics and Epidemiology, and Centre for Ophthalmology and Visual Science incorporating the Lions Eye Institute, The University of Western Australia, 6009 WA, Australia.,School of Agriculture, Biomedicine and Environment, La Trobe University Bundoora, Victoria 3086, Australia
| | - Jan M Hemmi
- School of Biological Sciences, The University of Western Australia, 6009 WA, Australia.,The UWA Oceans Institute, The University of Western Australia, 6009 WA, Australia
| |
Collapse
|
6
|
Ricci V, Ronco F, Musilova Z, Salzburger W. Molecular evolution and depth-related adaptations of rhodopsin in the adaptive radiation of cichlid fishes in Lake Tanganyika. Mol Ecol 2022; 31:2882-2897. [PMID: 35302684 PMCID: PMC9314932 DOI: 10.1111/mec.16429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 11/29/2022]
Abstract
The visual sensory system is essential for animals to perceive their environment and is thus under strong selection. In aquatic environments, light intensity and spectrum differ primarily along a depth gradient. Rhodopsin (RH1) is the only opsin responsible for dim‐light vision in vertebrates and has been shown to evolve in response to the respective light conditions, including along a water depth gradient in fishes. In this study, we examined the diversity and sequence evolution of RH1 in virtually the entire adaptive radiation of cichlid fishes in Lake Tanganyika, focusing on adaptations to the environmental light with respect to depth. We show that Tanganyikan cichlid genomes contain a single copy of RH1. The 76 variable amino acid sites detected in RH1 across the radiation were not uniformly distributed along the protein sequence, and 31 of these variable sites show signals of positive selection. Moreover, the amino acid substitutions at 15 positively selected sites appeared to be depth‐related, including three key tuning sites that directly mediate shifts in the peak spectral sensitivity, one site involved in protein stability and 11 sites that may be functionally important on the basis of their physicochemical properties. Among the strongest candidate sites for deep‐water adaptations are two known key tuning sites (positions 292 and 299) and three newly identified variable sites (37, 104 and 290). Our study, which is the first comprehensive analysis of RH1 evolution in a massive adaptive radiation of cichlid fishes, provides novel insights into the evolution of RH1 in a freshwater environment.
Collapse
Affiliation(s)
- Virginie Ricci
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Fabrizia Ronco
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Zuzana Musilova
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Tashiro JH, Ventura DF, Hauzman E. Morphological Plasticity of the Retina of Viperidae Snakes Is Associated With Ontogenetic Changes in Ecology and Behavior. Front Neuroanat 2022; 15:770804. [PMID: 35153683 PMCID: PMC8825375 DOI: 10.3389/fnana.2021.770804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Snakes of the Viperidae family have retinas adapted to low light conditions, with high packaging of rod-photoreceptors containing the rhodopsin photopigment (RH1), and three types of cone-photoreceptors, large single and double cones with long-wavelength sensitive opsins (LWS), and small single cones with short-wavelength sensitive opsins (SWS1). In this study, we compared the density and distribution of photoreceptors and ganglion cell layer (GCL) cells in whole-mounted retinas of two viperid snakes, the lancehead Bothrops jararaca and the rattlesnake Crotalus durissus, and we estimated the upper limits of spatial resolving power based on anatomical data. The ground-dwelling C. durissus inhabits savannah-like habitats and actively searches for places to hide before using the sit-and-wait hunting strategy to ambush rodents. B. jararaca inhabits forested areas and has ontogenetic changes in ecology and behavior. Adults are terrestrial and use similar hunting strategies to those used by rattlesnakes to prey on rodents. Juveniles are semi-arboreal and use the sit-and-wait strategy and caudal luring to attract ectothermic prey. Our analyses showed that neuronal densities were similar for the two species, but their patterns of distribution were different between and within species. In adults and juveniles of C. durissus, cones were distributed in poorly defined visual streaks and rods were concentrated in the dorsal retina, indicating higher sensitivity in the lower visual field. In adults of B. jararaca, both cones and rods were distributed in poorly defined visual streaks, while in juveniles, rods were concentrated in the dorsal retina and cones in the ventral retina, enhancing sensitivity in the lower visual field and visual acuity in the upper field. The GCL cells had peak densities in the temporal retina of C. durissus and adults of B. jararaca, indicating higher acuity in the frontal field. In juveniles of B. jararaca, the peak density of GCL cells in the ventral retina indicates better acuity in the upper field. The estimated visual acuity varied from 2.3 to 2.8 cycles per degree. Our results showed interspecific differences and suggest ontogenetic plasticity of the retinal architecture associated with changes in the niche occupied by viperid snakes, and highlight the importance of the retinal topography for visual ecology and behavior of snakes.
Collapse
|
8
|
Gower DJ, Fleming JF, Pisani D, Vonk FJ, Kerkkamp HMI, Peichl L, Meimann S, Casewell NR, Henkel CV, Richardson MK, Sanders KL, Simões BF. Eye-Transcriptome and Genome-Wide Sequencing for Scolecophidia: Implications for Inferring the Visual System of the Ancestral Snake. Genome Biol Evol 2021; 13:6430116. [PMID: 34791190 PMCID: PMC8643396 DOI: 10.1093/gbe/evab253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 12/28/2022] Open
Abstract
Molecular genetic data have recently been incorporated in attempts to reconstruct the ecology of the ancestral snake, though this has been limited by a paucity of data for one of the two main extant snake taxa, the highly fossorial Scolecophidia. Here we present and analyze vision genes from the first eye-transcriptomic and genome-wide data for Scolecophidia, for Anilios bicolor, and A. bituberculatus, respectively. We also present immunohistochemistry data for retinal anatomy and visual opsin-gene expression in Anilios. Analyzed in the context of 19 lepidosaurian genomes and 12 eye transcriptomes, the new genome-wide and transcriptomic data provide evidence for a much more reduced visual system in Anilios than in non-scolecophidian (=alethinophidian) snakes and in lizards. In Anilios, there is no evidence of the presence of 7 of the 12 genes associated with alethinophidian photopic (cone) phototransduction. This indicates extensive gene loss and many of these candidate gene losses occur also in highly fossorial mammals with reduced vision. Although recent phylogenetic studies have found evidence for scolecophidian paraphyly, the loss in Anilios of visual genes that are present in alethinophidians implies that the ancestral snake had a better-developed visual system than is known for any extant scolecophidian.
Collapse
Affiliation(s)
- David J Gower
- Life Sciences, The Natural History Museum, London, United Kingdom
| | - James F Fleming
- School of Life Sciences, University of Bristol, Bristol, United Kingdom.,Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Davide Pisani
- School of Life Sciences, University of Bristol, Bristol, United Kingdom.,School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Freek J Vonk
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | | | - Leo Peichl
- Institute of Cellular and Molecular Anatomy, Dr. Senckenberg Anatomy, Goethe University Frankfurt, Frankfurt am Main, Germany.,Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sonja Meimann
- Institute of Cellular and Molecular Anatomy, Dr. Senckenberg Anatomy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Christiaan V Henkel
- Institute of Biology, University of Leiden, Leiden, The Netherlands.,Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Kate L Sanders
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Bruno F Simões
- School of Life Sciences, University of Bristol, Bristol, United Kingdom.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
9
|
Hauzman E, Pierotti MER, Bhattacharyya N, Tashiro JH, Yovanovich CAM, Campos PF, Ventura DF, Chang BSW. Simultaneous expression of UV and violet SWS1 opsins expands the visual palette in a group of freshwater snakes. Mol Biol Evol 2021; 38:5225-5240. [PMID: 34562092 PMCID: PMC8662652 DOI: 10.1093/molbev/msab285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Snakes are known to express a rod visual opsin and two cone opsins, only (SWS1, LWS), a reduced palette resulting from their supposedly fossorial origins. Dipsadid snakes in the genus Helicops are highly visual predators that successfully invaded freshwater habitats from ancestral terrestrial-only habitats. Here, we report the first case of multiple SWS1 visual pigments in a vertebrate, simultaneously expressed in different photoreceptors and conferring both UV and violet sensitivity to Helicops snakes. Molecular analysis and in vitro expression confirmed the presence of two functional SWS1 opsins, likely the result of recent gene duplication. Evolutionary analyses indicate that each sws1 variant has undergone different evolutionary paths with strong purifying selection acting on the UV-sensitive copy and dN/dS ∼1 on the violet-sensitive copy. Site-directed mutagenesis points to the functional role of a single amino acid substitution, Phe86Val, in the large spectral shift between UV and violet opsins. In addition, higher densities of photoreceptors and SWS1 cones in the ventral retina suggest improved acuity in the upper visual field possibly correlated with visually guided behaviors. The expanded visual opsin repertoire and specialized retinal architecture are likely to improve photon uptake in underwater and terrestrial environments, and provide the neural substrate for a gain in chromatic discrimination, potentially conferring unique color vision in the UV–violet range. Our findings highlight the innovative solutions undertaken by a highly specialized lineage to tackle the challenges imposed by the invasion of novel photic environments and the extraordinary diversity of evolutionary trajectories taken by visual opsin-based perception in vertebrates.
Collapse
Affiliation(s)
- Einat Hauzman
- Department of Experimental Psychology, Psychology Institute, University of São Paulo, São Paulo, Brazil.,Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Michele E R Pierotti
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Nihar Bhattacharyya
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Juliana H Tashiro
- Department of Experimental Psychology, Psychology Institute, University of São Paulo, São Paulo, Brazil
| | - Carola A M Yovanovich
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Pollyanna F Campos
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Dora F Ventura
- Department of Experimental Psychology, Psychology Institute, University of São Paulo, São Paulo, Brazil.,Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Belinda S W Chang
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada.,Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Zamore SA, Araujo N, Socha JJ. Visual acuity in the flying snake, Chrysopelea paradisi. Integr Comp Biol 2020; 63:icaa143. [PMID: 33084888 DOI: 10.1093/icb/icaa143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Visual control during high-speed aerial locomotion requires a visual system adapted for such behaviors. Flying snakes (genus: Chrysopelea) are capable of gliding at speeds up to 11 m s-1 and perform visual assessments before take-off. Determining nuances of control requires a closed-loop experimental system, such as immersive virtual arenas. To characterize vision in the flying snake Chrysopelea paradisi, we used digitally reconstructed models of the head to determine a 3D field of vision. We also used optokinetic drum experiments and compared slowphase optokinetic nystagmus (OKN) speeds to calculate visual acuity and conducted preliminary experiments to determine whether snakes would respond to closed-loop virtual stimuli. Visual characterization showed that C. paradisi likely has a large field of view (308.5 ± 6.5° azimuthal range), with a considerable binocular region (33.0 ± 11.0° azimuthal width) that extends overhead. Their visual systems are broadly tuned and motion-sensitive, with peak OKN response gains of 0.50 ± 0.11 seen at 46.06 ± 11.08 Hz, and a low spatial acuity, with peak gain of 0.92 ± 0.41 seen at 2.89 ± 0.16 cpd (cycles per degree). These characteristics were used to inform settings in an immersive virtual arena, including framerate, brightness, and stimulus size. In turn, the immersive virtual arena was used to reproduce the optokinetic drum experiments. We elicited OKN in open-loop experiments, with a mean gain of 0.21 ± 0.9 seen at 0.019 ± 6x10-5 cpd and 1.79 ± 0.01 Hz. In closed-loop experiments, snakes did not exhibit OKN, but held the image fixed, indicating visual stabilization. These results demonstrate for that C. paradisi responds to visual stimuli in a digital virtual arena. The accessibility and adaptability of the virtual setup make it suitable for future studies of visual control in snakes and other animals in an unconstrained setting.
Collapse
Affiliation(s)
- Sharri A Zamore
- ATLAS Institute, University of Colorado Boulder, Boulder, CO, 80309, United States
| | - Nicole Araujo
- Dept. of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - John J Socha
- Dept. of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
11
|
Simões BF, Gower DJ, Rasmussen AR, Sarker MAR, Fry GC, Casewell NR, Harrison RA, Hart NS, Partridge JC, Hunt DM, Chang BS, Pisani D, Sanders KL. Spectral Diversification and Trans-Species Allelic Polymorphism during the Land-to-Sea Transition in Snakes. Curr Biol 2020; 30:2608-2615.e4. [PMID: 32470360 DOI: 10.1016/j.cub.2020.04.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/05/2020] [Accepted: 04/23/2020] [Indexed: 11/16/2022]
Abstract
Snakes are descended from highly visual lizards [1] but have limited (probably dichromatic) color vision attributed to a dim-light lifestyle of early snakes [2-4]. The living species of front-fanged elapids, however, are ecologically very diverse, with ∼300 terrestrial species (cobras, taipans, etc.) and ∼60 fully marine sea snakes, plus eight independently marine, amphibious sea kraits [1]. Here, we investigate the evolution of spectral sensitivity in elapids by analyzing their opsin genes (which are responsible for sensitivity to UV and visible light), retinal photoreceptors, and ocular lenses. We found that sea snakes underwent rapid adaptive diversification of their visual pigments when compared with their terrestrial and amphibious relatives. The three opsins present in snakes (SWS1, LWS, and RH1) have evolved under positive selection in elapids, and in sea snakes they have undergone multiple shifts in spectral sensitivity toward the longer wavelengths that dominate below the sea surface. Several relatively distantly related Hydrophis sea snakes are polymorphic for shortwave sensitive visual pigment encoded by alleles of SWS1. This spectral site polymorphism is expected to confer expanded "UV-blue" spectral sensitivity and is estimated to have persisted twice as long as the predicted survival time for selectively neutral nuclear alleles. We suggest that this polymorphism is adaptively maintained across Hydrophis species via balancing selection, similarly to the LWS polymorphism that confers allelic trichromacy in some primates. Diving sea snakes thus appear to share parallel mechanisms of color vision diversification with fruit-eating primates.
Collapse
Affiliation(s)
- Bruno F Simões
- University of Plymouth, School of Biological and Marine Sciences, Drake Circus, Plymouth PL4 8AA, United Kingdom; University of Bristol, School of Biological Sciences and School of Earth Sciences, Tyndall Avenue, Bristol BS8 1TG, United Kingdom; The University of Adelaide, School of Biological Sciences, North Terrace, Adelaide, South Australia 5005, Australia.
| | - David J Gower
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | - Arne R Rasmussen
- The Royal Danish Academy of Fine Arts, School of Architecture, Design and Conservation, Philip de Langes Allé, 1435 Copenhagen K, Denmark
| | - Mohammad A R Sarker
- University of Dhaka, Department of Zoology, Curzon Hall Campus, Dhaka 1000, Bangladesh
| | - Gary C Fry
- CSIRO Oceans and Atmosphere, Queensland Biosciences Precinct, St Lucia, Queensland 4072, Australia
| | - Nicholas R Casewell
- Liverpool School of Tropical Medicine, Centre for Snakebite Research & Interventions, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Robert A Harrison
- Liverpool School of Tropical Medicine, Centre for Snakebite Research & Interventions, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Nathan S Hart
- Macquarie University, Department of Biological Sciences, North Ryde, Sydney, New South Wales 2109, Australia
| | - Julian C Partridge
- The University of Western Australia, Oceans Institute, Crawley, Perth, Western Australia 6009, Australia
| | - David M Hunt
- The University of Western Australia, School of Biological Sciences, Crawley, Perth, Western Australia 6009, Australia; The Lions Eye Institute, Centre for Ophthalmology and Visual Science, Nedlands, Perth, Western Australia 6009, Australia
| | - Belinda S Chang
- University of Toronto, Departments of Ecology & Evolutionary, Cell & Systems Biology, Willcocks Street, Toronto M5S 3G5, Canada
| | - Davide Pisani
- University of Bristol, School of Biological Sciences and School of Earth Sciences, Tyndall Avenue, Bristol BS8 1TG, United Kingdom
| | - Kate L Sanders
- The University of Adelaide, School of Biological Sciences, North Terrace, Adelaide, South Australia 5005, Australia; Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| |
Collapse
|
12
|
Hauzman E. Adaptations and evolutionary trajectories of the snake rod and cone photoreceptors. Semin Cell Dev Biol 2020; 106:86-93. [PMID: 32359892 DOI: 10.1016/j.semcdb.2020.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
Most vertebrates have duplex retinas, with two classes of photoreceptors, rods and cones. In the group of Snakes, however, distinct patterns of retinal morphology are associated with transitions between diurnal-nocturnal habits and reflect important adaptations of their visual system. Pure-cone, pure-rod and duplex retinas were described in different species, and this variability led Gordon Walls (1934) to formulate the transmutation theory, which suggests that rods and cones are not fixed entities, but can assume transitional states. Three opsin genes are expressed in retinas of most snake species, lws, rh1, and sws1, and recent studies have shown that the rhodopsin gene, rh1, is expressed in pure-cone retinas of diurnal snakes. This expression raised many questions about the nature of transmutation and functional aspects of the rhodopsin in a cone-like photoreceptor. Extreme differences in the retinal architecture of diurnal and nocturnal snakes also highlight the complexity of adaptations of their visual structures, which might have contributed to the adaptive radiation of this group and will be discussed in this review.
Collapse
Affiliation(s)
- Einat Hauzman
- Department of Experimental Psychology, Psychology Institute, University of São Paulo, Av. Professor Mello Moraes, 1721, Bloco A - D9. Butantã, São Paulo, CEP. 05508-030, Brazil.
| |
Collapse
|
13
|
Vasconcelos FTGRD, Naman MJV, Hauzman E, Baron J, Fix Ventura D, Bonci DMO. LWS visual pigment in owls: Spectral tuning inferred by genetics. Vision Res 2019; 165:90-97. [DOI: 10.1016/j.visres.2019.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 11/30/2022]
|
14
|
Katti C, Stacey-Solis M, Coronel-Rojas NA, Davies WIL. The Diversity and Adaptive Evolution of Visual Photopigments in Reptiles. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
15
|
Hauzman E, Kalava V, Bonci DMO, Ventura DF. Characterization of the melanopsin gene (Opn4x) of diurnal and nocturnal snakes. BMC Evol Biol 2019; 19:174. [PMID: 31462236 PMCID: PMC6714106 DOI: 10.1186/s12862-019-1500-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A number of non-visual responses to light in vertebrates, such as circadian rhythm control and pupillary light reflex, are mediated by melanopsins, G-protein coupled membrane receptors, conjugated to a retinal chromophore. In non-mammalian vertebrates, melanopsin expression is variable within the retina and extra-ocular tissues. Two paralog melanopsin genes were classified in vertebrates, Opn4x and Opn4m. Snakes are highly diversified vertebrates with a wide range of daily activity patterns, which raises questions about differences in structure, function and expression pattern of their melanopsin genes. In this study, we analyzed the melanopsin genes expressed in the retinas of 18 snake species from three families (Viperidae, Elapidae, and Colubridae), and also investigated extra-retinal tissue expression. RESULTS Phylogenetic analysis revealed that the amplified gene belongs to the Opn4x group, and no expression of the Opn4m was found. The same paralog is expressed in the iris, but no extra-ocular expression was detected. Molecular evolutionary analysis indicated that melanopsins are evolving primarily under strong purifying selection, although lower evolutionary constraint was detected in snake lineages (ω = 0.2), compared to non-snake Opn4x and Opn4m (ω = 0.1). Statistical analysis of selective constraint suggests that snake phylogenetic relationships have driven stronger effects on melanopsin evolution, than the species activity pattern. In situ hybridization revealed the presence of melanopsin within cells in the outer and inner nuclear layers, in the ganglion cell layer, and intense labeling in the optic nerve. CONCLUSIONS The loss of the Opn4m gene and extra-ocular photosensitive tissues in snakes may be associated with a prolonged nocturnal/mesopic bottleneck in the early history of snake evolution. The presence of melanopsin-containing cells in all retinal nuclear layers indicates a globally photosensitive retina, and the expression in classic photoreceptor cells suggest a regionalized co-expression of melanopsin and visual opsins.
Collapse
Affiliation(s)
- Einat Hauzman
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, Av. Professor Mello Moraes, 1721, Bloco A - Sala D9. Butantã, São Paulo, SP, 05508-030, Brazil. .,Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brazil.
| | | | - Daniela Maria Oliveira Bonci
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, Av. Professor Mello Moraes, 1721, Bloco A - Sala D9. Butantã, São Paulo, SP, 05508-030, Brazil.,Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brazil
| | - Dora Fix Ventura
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, Av. Professor Mello Moraes, 1721, Bloco A - Sala D9. Butantã, São Paulo, SP, 05508-030, Brazil.,Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brazil
| |
Collapse
|
16
|
Gower DJ, Sampaio FL, Peichl L, Wagner HJ, Loew ER, Mclamb W, Douglas RH, Orlov N, Grace MS, Hart NS, Hunt DM, Partridge JC, Simões BF. Evolution of the eyes of vipers with and without infrared-sensing pit organs. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- David J Gower
- Department of Life Sciences, The Natural History Museum, London, UK
| | - Filipa L Sampaio
- Department of Life Sciences, The Natural History Museum, London, UK
| | - Leo Peichl
- Max Planck Institute for Brain Research, Germany
- Dr. Senckenbergische Anatomie, Goethe University Frankfurt, Germany
| | | | - Ellis R Loew
- Department of Biomedical Sciences, Cornell University, USA
| | - William Mclamb
- Department of Biological Sciences, Florida Institute of Technology, and Center for the Advancement of Science in Space, Melbourne, FL, USA
| | - Ronald H Douglas
- Department of Life Sciences, The Natural History Museum, London, UK
- Department of Optometry and Visual Science, City, University of London, London, UK
| | - Nikolai Orlov
- Department of Herpetology, Zoological Institute, Russian Academy of Sciences, Russia
| | - Michael S Grace
- College of Science, Florida Institute of Technology, Melbourne, FL, USA
| | - Nathan S Hart
- Department of Biological Sciences, Macquarie University, Australia
| | - David M Hunt
- School of Biological Sciences, The University of Western Australia, Australia
- Centre for Ophthalmology and Vision Science, Lions Eye Institute, The University of Western Australia, Perth, Australia
| | - Julian C Partridge
- School of Biological Sciences, The University of Western Australia, Australia
- Oceans Institute, The University of Western Australia, Perth, WA, Australia
| | - Bruno F Simões
- Department of Life Sciences, The Natural History Museum, London, UK
- School of Earth Sciences, University of Bristol, Bristol, UK
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
17
|
Bittencourt GB, Hauzman E, Bonci DMO, Ventura DF. Photoreceptors morphology and genetics of the visual pigments of Bothrops jararaca and Crotalus durissus terrificus (Serpentes, Viperidae). Vision Res 2019; 158:72-77. [PMID: 30826356 DOI: 10.1016/j.visres.2019.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/11/2019] [Accepted: 02/24/2019] [Indexed: 10/27/2022]
Abstract
Snakes inhabit a great variety of habitats, whose spectral quality of light may vary a lot and influence specific adaptations of their visual system. In this study, we investigated the genetics of the visual opsins and the morphology of retinal photoreceptors, of two nocturnal snakes from the Viperidae family, Bothrops jararaca and Crotalus durissus terrificus, which inhabit preferentially the Atlantic Rain Forest and the Brazilian Savannah, respectively. Total RNA was extracted from homogenized retinas and converted to cDNA. The opsin genes expressed in snake retinas, LWS, RH1, and SWS1, were amplified by polymerase chain reactions (PCRs) and sequenced. The absorption peak (λmax) of the opsins were estimated based on amino acids located at specific spectral tuning sites. Photoreceptor cell populations were analyzed using immunohistochemistry with anti-opsin antibodies. Results showed the same morphological cell populations and same opsins absorption peaks, in both viperid species: double and single cones with LWS photopigment and λmax at ∼555 nm; single cones with SWS1 photopigment and λmax at ∼360 nm; and rods with the rhodopsin RH1 photopigment and λmax at ∼500 nm. The results indicate adaptations to nocturnal habit in both species despite the differences in habitat, and the possibility of a dichromatic color vision at photopic conditions.
Collapse
Affiliation(s)
- Guido Barbieri Bittencourt
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil
| | - Einat Hauzman
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil; Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil.
| | - Daniela Maria Oliveira Bonci
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil; Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Dora Fix Ventura
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil; Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
18
|
Crowe-Riddell JM, Simões BF, Partridge JC, Hunt DM, Delean S, Schwerdt JG, Breen J, Ludington A, Gower DJ, Sanders KL. Phototactic tails: Evolution and molecular basis of a novel sensory trait in sea snakes. Mol Ecol 2019; 28:2013-2028. [PMID: 30767303 DOI: 10.1111/mec.15022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022]
Abstract
Dermal phototaxis has been reported in a few aquatic vertebrate lineages spanning fish, amphibians and reptiles. These taxa respond to light on the skin of their elongate hind-bodies and tails by withdrawing under cover to avoid detection by predators. Here, we investigated tail phototaxis in sea snakes (Hydrophiinae), the only reptiles reported to exhibit this sensory behaviour. We conducted behavioural tests in 17 wild-caught sea snakes of eight species by illuminating the dorsal surface of the tail and midbody skin using cold white, violet, blue, green and red light. Our results confirmed phototactic tail withdrawal in the previously studied Aipysurus laevis, revealed this trait for the first time in A. duboisii and A. tenuis, and suggested that tail photoreceptors have peak spectral sensitivities between blue and green light (457-514 nm). Based on these results, and an absence of photoresponses in five Aipysurus and Hydrophis species, we tentatively infer that tail phototaxis evolved in the ancestor of a clade of six Aipysurus species (comprising 10% of all sea snakes). Quantifying tail damage, we found that the probability of sustaining tail injuries was not influenced by tail phototactic ability in snakes. Gene profiling showed that transcriptomes of both tail skin and body skin lacked visual opsins but contained melanopsin (opn4x) in addition to key genes of the retinal regeneration and phototransduction cascades. This work suggests that a nonvisual photoreceptor (e.g., Gq rhabdomeric) signalling pathway underlies tail phototaxis, and provides candidate gene targets for future studies of this unusual sensory innovation in reptiles.
Collapse
Affiliation(s)
- Jenna M Crowe-Riddell
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.,Department of Biology, University of Florida, Gainesville, Florida
| | - Bruno F Simões
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.,School of Earth Sciences, University of Bristol, Bristol, UK
| | - Julian C Partridge
- School of Biological Sciences and Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia
| | - David M Hunt
- School of Biological Sciences and Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia.,Centre for Ophthalmology and Vision Science, Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Steven Delean
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Julian G Schwerdt
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - James Breen
- Robinson Research Institute, University of Adelaide, North Adelaide, South Australia, Australia.,Bioinformatics Hub, University of Adelaide, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Alastair Ludington
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.,Bioinformatics Hub, University of Adelaide, Adelaide, South Australia, Australia
| | - David J Gower
- Department of Life Sciences, The Natural History Museum, London, UK
| | - Kate L Sanders
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
19
|
Comparative localization of cystathionine beta synthases and cystathionine gamma lyase in canine, non-human primate and human retina. Exp Eye Res 2019; 181:72-84. [PMID: 30653965 DOI: 10.1016/j.exer.2019.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/18/2018] [Accepted: 01/03/2019] [Indexed: 12/15/2022]
Abstract
Chronic exposure of the retina to light and high concentrations of polyunsaturated fatty acid in photoreceptor cells make this tissue susceptible to oxidative damage. As retinal degenerative diseases are associated with photoreceptor degeneration, the antioxidant activity of both hydrogen sulfide (H2S) and glutathione (GSH) may play an important role in ameliorating disease progression. H2S production is driven by cystathionine-γ-lyase (CSE) and cystathionine-β-synthase (CBS), the key enzymes that also drive transsulfuration pathway (TSP) necessary for GSH production. As it is currently unclear whether localized production of either H2S or GSH contributes to retinal homeostasis, we undertook a comparative analysis of CBS and CSE expression in canine, non-human primate (NHP) and human retinas to determine if these antioxidants could play a regulatory role in age-related or disease-associated retinal degeneration. Retinas from normal dogs, NHPs and humans were used for the study. Laser capture microdissection (LCM) was performed to isolate individual layers of the canine retina and analyze CBS and CSE gene expression by qRT-PCR. Immunohistochemistry and western blotting were performed for CBS and CSE labeling and protein expression in dog, NHP, and human retina, respectively. Using qRT-PCR, western blot, and immunohistochemistry (IHC), we showed that CBS and CSE are expressed in the canine, NHP, and human retina. IHC results from canine retina demonstrated increased expression levels of CBS but not CSE with post-developmental aging. IHC results also showed non-overlapping localization of both proteins with CBS presenting in rods, amacrine, horizontal, and nerve fiber cell layers while CSE was expressed by RPE, cones and Mϋller cells. Finally, we demonstrated that these enzymes localized to all three layers of canine, NHP and human retina: photoreceptors, outer plexiform layer (OPL) and notably in the ganglion cells layer/nerve fiber layer (GCL/NFL). QRT-PCR performed using RNA extracted from tissues isolated from these cell layers using laser capture microdissection (LCM) confirmed that each of CBS and CSE are expressed equally in these three layers. Together, these findings reveal that CSE and CBS are expressed in the retina, thereby supporting further studies to determine the role of H2S and these proteins in oxidative stress and apoptosis in retinal degenerative diseases.
Collapse
|