1
|
Liu YJ, Zhang TY, Wang QQ, Draisma SGA, Hu ZM. Comparative structure and evolution of the organellar genomes of Padina usoehtunii (Dictyotales) with the brown algal crown radiation clade. BMC Genomics 2024; 25:747. [PMID: 39080531 PMCID: PMC11290263 DOI: 10.1186/s12864-024-10616-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Organellar genomes have become increasingly essential for studying genetic diversity, phylogenetics, and evolutionary histories of seaweeds. The order Dictyotales (Dictyotophycidae), a highly diverse lineage within the Phaeophyceae, is long-term characterized by a scarcity of organellar genome datasets compared to orders of the brown algal crown radiation (Fucophycidae). RESULTS We sequenced the organellar genomes of Padina usoehtunii, a representative of the order Dictyotales, to investigate the structural and evolutionary differences by comparing to five other major brown algal orders. Our results confirmed previously reported findings that the rate of structural rearrangements in chloroplast genomes is higher than that in mitochondria, whereas mitochondrial sequences exhibited a higher substitution rate compared to chloroplasts. Such evolutionary patterns contrast with land plants and green algae. The expansion and contraction of the inverted repeat (IR) region in the chloroplast correlated with the changes in the number of boundary genes. Specifically, the size of the IR region influenced the position of the boundary gene rpl21, with complete rpl21 genes found within the IR region in Dictyotales, Sphacelariales and Ectocarpales, while the rpl21 genes in Desmarestiales, Fucales, and Laminariales span both the IR and short single copy (SSC) regions. The absence of the rbcR gene in the Dictyotales may indicate an endosymbiotic transfer from the chloroplast to the nuclear genome. Inversion of the SSC region occurred at least twice in brown algae. Once in a lineage only represented by the Ectocarpales in the present study and once in a lineage only represented by the Fucales. Photosystem genes in the chloroplasts experienced the strongest signature of purifying selection, while ribosomal protein genes in both chloroplasts and mitochondria underwent a potential weak purifying selection. CONCLUSIONS Variations in chloroplast genome structure among different brown algal orders are evolutionarily linked to their phylogenetic positions in the Phaeophyceae tree. Chloroplast genomes harbor more structural rearrangements than the mitochondria, despite mitochondrial genes exhibiting faster mutation rates. The position and the change in the number of boundary genes likely shaped the IR regions in the chloroplast, and the produced structural variability is important mechanistically to create gene diversity in brown algal chloroplast.
Collapse
Affiliation(s)
- Yi-Jia Liu
- Ocean School, Yantai University, Yantai, 264005, China
| | | | - Qi-Qi Wang
- Ocean School, Yantai University, Yantai, 264005, China
| | - Stefano G A Draisma
- Excellence Center for Biodiversity of Peninsular Thailand, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| | - Zi-Min Hu
- Ocean School, Yantai University, Yantai, 264005, China.
| |
Collapse
|
2
|
Zhang S, Liang Y, Zhang J, Draisma SGA, Duan D. Organellar genome comparisons of Sargassum polycystum and S. plagiophyllum (Fucales, Phaeophyceae) with other Sargassum species. BMC Genomics 2022; 23:629. [PMID: 36050627 PMCID: PMC9438170 DOI: 10.1186/s12864-022-08862-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/31/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Sargassum polycystum C. Agardh and Sargassum plagiophyllum C. Agardh are inhabitants of tropical coastal areas, their populations are negatively influenced by global warming and marine environment changes. The mitochondrial and chloroplast genomes of these species have not been sequenced. RESULTS The mitochondrial genomes of S. polycystum and S. plagiophyllum were 34,825 bp and 34,862 bp, respectively, and their corresponding chloroplast genomes were 124,493 bp and 124,536 bp, respectively. The mitochondrial and chloroplast genomes of these species share conserved synteny, sequence regions and gene number when compared with the organellar genomes of other Sargassum species. Based on sequence analysis of 35 protein-coding genes, we deduced that S. polycystum and S. plagiophyllum were closely related with S. ilicifolium; these species diverged approximately 0.3 million years ago (Ma; 0.1-0.53 Ma) during the Pleistocene period (0.01-2.59 Ma). Rates of synonymous and non-synonymous substitutions in the mitochondrial genome of the Sargassum genus were 3 times higher than those in the chloroplast genome. In the mitochondrial genome, rpl5, rpl31 and rps11 had the highest synonymous substitution rates. In the chloroplast genome, psaE, rpl14 and rpl27 had the highest synonymous substitution rates. CONCLUSIONS Phylogenetic analysis confirms the close relationship between the two sequenced species and S. ilicifolium. Both synonymous and non-synonymous substitution rates show significant divergence between the group of mitochondrial genomes versus the group of chloroplast genomes. The deciphering of complete mitochondrial and chloroplast genomes is significant as it advances our understanding of the evolutionary and phylogenetic relationships between species of brown seaweeds.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- University of Chinese Academy Sciences, Beijing, 100094, China
| | - Yanshuo Liang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- University of Chinese Academy Sciences, Beijing, 100094, China
| | - Jie Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Stefano G A Draisma
- Excellence Center for Biodiversity of Peninsular Thailand, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Delin Duan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
3
|
Kim JI, Jo BY, Park MG, Yoo YD, Shin W, Archibald JM. Evolutionary Dynamics and Lateral Gene Transfer in Raphidophyceae Plastid Genomes. FRONTIERS IN PLANT SCIENCE 2022; 13:896138. [PMID: 35769291 PMCID: PMC9235467 DOI: 10.3389/fpls.2022.896138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The Raphidophyceae is an ecologically important eukaryotic lineage of primary producers and predators that inhabit marine and freshwater environments worldwide. These organisms are of great evolutionary interest because their plastids are the product of eukaryote-eukaryote endosymbiosis. To obtain deeper insight into the evolutionary history of raphidophycean plastids, we sequenced and analyzed the plastid genomes of three freshwater and three marine species. Our comparison of these genomes, together with the previously reported plastid genome of Heterosigma akashiwo, revealed unexpected variability in genome structure. Unlike the genomes of other analyzed species, the plastid genome of Gonyostomum semen was found to contain only a single rRNA operon, presumably due to the loss of genes from the inverted repeat (IR) region found in most plastid genomes. In contrast, the marine species Fibrocapsa japonica contains the largest IR region and overall plastid genome for any raphidophyte examined thus far, mainly due to the presence of four large gene-poor regions and foreign DNA. Two plastid genes, tyrC in F. japonica and He. akashiwo and serC in F. japonica, appear to have arisen via lateral gene transfer (LGT) from diatoms, and several raphidophyte open reading frames are demonstrably homologous to sequences in diatom plasmids and plastid genomes. A group II intron in the F. japonica psbB gene also appears to be derived by LGT. Our results provide important insights into the evolutionary history of raphidophyte plastid genomes via LGT from the plastids and plasmid DNAs of diatoms.
Collapse
Affiliation(s)
- Jong Im Kim
- Department of Biology, Chungnam National University, Daejeon, South Korea
| | - Bok Yeon Jo
- Nakdonggang National Institute of Biological Resources, Sangju, South Korea
| | - Myung Gil Park
- LOHABE, Department of Oceanography, Chonnam National University, Gwangju, South Korea
| | - Yeong Du Yoo
- Department of Marine Biology, College of Ocean Sciences and Technology, Kunsan National University, Kunsan, South Korea
| | - Woongghi Shin
- Department of Biology, Chungnam National University, Daejeon, South Korea
| | - John M. Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
4
|
Gastineau R, Yilmaz E, Solak CN, Lemieux C, Turmel M, Witkowski A. Complete chloroplast genome of the mixotrophic chrysophyte Poterioochromonas malhamensis (Ochromonadales, Synurophyceae) from Van Lake in Eastern Anatolia. Mitochondrial DNA B Resour 2021; 6:2719-2721. [PMID: 34471690 PMCID: PMC8405094 DOI: 10.1080/23802359.2021.1923416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Romain Gastineau
- Institute of Marine and Environmental Sciences, University of Szczecin, Szczecin, Poland
| | - Elif Yilmaz
- Institute of Marine and Environmental Sciences, University of Szczecin, Szczecin, Poland
- Department of Biology, Arts and Science Faculty, Dumlupinar University, Kütahya, Turkey
| | - Cüneyt Nadir Solak
- Department of Biology, Arts and Science Faculty, Dumlupinar University, Kütahya, Turkey
| | - Claude Lemieux
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Monique Turmel
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Szczecin, Poland
| |
Collapse
|
5
|
Barcytė D, Eikrem W, Engesmo A, Seoane S, Wohlmann J, Horák A, Yurchenko T, Eliáš M. Olisthodiscus represents a new class of Ochrophyta. JOURNAL OF PHYCOLOGY 2021; 57:1094-1118. [PMID: 33655496 DOI: 10.1111/jpy.13155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The phylogenetic diversity of Ochrophyta, a diverse and ecologically important radiation of algae, is still incompletely understood even at the level of the principal lineages. One taxon that has eluded simple classification is the marine flagellate genus Olisthodiscus. We investigated Olisthodiscus luteus K-0444 and documented its morphological and genetic differences from the NIES-15 strain, which we described as Olisthodiscus tomasii sp. nov. Phylogenetic analyses of combined 18S and 28S rRNA sequences confirmed that Olisthodiscus constitutes a separate, deep, ochrophyte lineage, but its position could not be resolved. To overcome this problem, we sequenced the plastid genome of O. luteus K-0444 and used the new data in multigene phylogenetic analyses, which suggested that Olisthodiscus is a sister lineage of the class Pinguiophyceae within a broader clade additionally including Chrysophyceae, Synchromophyceae, and Eustigmatophyceae. Surprisingly, the Olisthodiscus plastid genome contained three genes, ycf80, cysT, and cysW, inherited from the rhodophyte ancestor of the ochrophyte plastid yet lost from all other ochrophyte groups studied so far. Combined with nuclear genes for CysA and Sbp proteins, Olisthodiscus is the only known ochrophyte possessing a plastidial sulfate transporter SulT. In addition, the finding of a cemA gene in the Olisthodiscus plastid genome and an updated phylogenetic analysis ruled out the previously proposed hypothesis invoking horizontal cemA transfer from a green algal plastid into Synurales. Altogether, Olisthodiscus clearly represents a novel phylogenetically distinct ochrophyte lineage, which we have proposed as a new class, Olisthodiscophyceae.
Collapse
Affiliation(s)
- Dovilė Barcytė
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Wenche Eikrem
- Norwegian Institute for Water Research, Gaustadallèen 21, 0349, Oslo, Norway
- Natural history Museum, University of Oslo, P.O. Box 1172 Blindern, 0318, Oslo, Norway
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316, Oslo, Norway
| | - Anette Engesmo
- Norwegian Institute for Water Research, Gaustadallèen 21, 0349, Oslo, Norway
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316, Oslo, Norway
| | - Sergio Seoane
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Jens Wohlmann
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316, Oslo, Norway
| | - Aleš Horák
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 37005, České Budějovice, Czech Republic
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Tatiana Yurchenko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| |
Collapse
|
6
|
Gastineau R, Davidovich NA, Davidovich OI, Lemieux C, Turmel M, Wróbel RJ, Witkowski A. Extreme Enlargement of the Inverted Repeat Region in the Plastid Genomes of Diatoms from the Genus Climaconeis. Int J Mol Sci 2021; 22:7155. [PMID: 34281209 PMCID: PMC8268801 DOI: 10.3390/ijms22137155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
We sequenced the plastid genomes of three diatoms from the genus Climaconeis, including two strains formerly designated as Climaconeis scalaris. At 208,097 and 216,580 bp, the plastid genomes of the latter strains are the largest ever sequenced among diatoms and their increased size is explained by the massive expansion of the inverted repeat region. Important rearrangements of gene order were identified among the two populations of Climaconeis cf. scalaris. The other sequenced Climaconeis chloroplast genome is 1.5 times smaller compared with those of the Climaconeis cf. scalaris strains and it features an usual quadripartite structure. The extensive structural changes reported here for the genus Climaconeis are compared with those previously observed for other algae and plants displaying large plastid genomes.
Collapse
Affiliation(s)
- Romain Gastineau
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland; (N.A.D.); (A.W.)
| | - Nikolaï A. Davidovich
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland; (N.A.D.); (A.W.)
- Karadag Scientific Station–Natural Reserve of the Russian Academy of Sciences, p/o Kurortnoe, Feodosiya, 98188 Crimea, Russia;
| | - Olga I. Davidovich
- Karadag Scientific Station–Natural Reserve of the Russian Academy of Sciences, p/o Kurortnoe, Feodosiya, 98188 Crimea, Russia;
| | - Claude Lemieux
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada; (C.L.); (M.T.)
| | - Monique Turmel
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada; (C.L.); (M.T.)
| | - Rafał J. Wróbel
- Engineering of Catalytic and Sorbent Materials Department, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland;
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland; (N.A.D.); (A.W.)
| |
Collapse
|
7
|
Rascón-Cruz Q, González-Barriga CD, Iglesias-Figueroa BF, Trejo-Muñoz JC, Siqueiros-Cendón T, Sinagawa-García SR, Arévalo-Gallegos S, Espinoza-Sánchez EA. Plastid transformation: Advances and challenges for its implementation in agricultural crops. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
8
|
Russell S, Jackson C, Reyes-Prieto A. High Sequence Divergence but Limited Architectural Rearrangements in Organelle Genomes of Cyanophora (Glaucophyta) Species. J Eukaryot Microbiol 2020; 68:e12831. [PMID: 33142007 DOI: 10.1111/jeu.12831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/16/2020] [Accepted: 10/27/2020] [Indexed: 11/29/2022]
Abstract
Cyanophora is the glaucophyte model taxon. Following the sequencing of the nuclear genome of C. paradoxa, studies based on single organelle and nuclear molecular markers revealed previously unrecognized species diversity within this glaucophyte genus. Here, we present the complete plastid (ptDNA) and mitochondrial (mtDNA) genomes of C. kugrensii, C. sudae, and C. biloba. The respective sizes and coding capacities of both ptDNAs and mtDNAs are conserved among Cyanophora species with only minor differences due to specific gene duplications. Organelle phylogenomic analyses consistently recover the species C. kugrensii and C. paradoxa as a clade and C. sudae and C. biloba as a separate group. The phylogenetic affiliations of the four Cyanophora species are consistent with architectural similarities shared at the organelle genomic level. Genetic distance estimations from both organelle sequences are also consistent with phylogenetic and architecture evidence. Comparative analyses confirm that the Cyanophora mitochondrial genes accumulate substitutions at 3-fold higher rates than plastid counterparts, suggesting that mtDNA markers are more appropriate to investigate glaucophyte diversity and evolutionary events that occur at a population level. The study of complete organelle genomes is becoming the standard for species delimitation and is particularly relevant to study cryptic diversity in microbial groups.
Collapse
Affiliation(s)
- Sarah Russell
- Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB, E3B 5A3, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Christopher Jackson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Royal Botanic Gardens Victoria, Melbourne, Vic., Australia
| | - Adrian Reyes-Prieto
- Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB, E3B 5A3, Canada
| |
Collapse
|
9
|
Čertnerová D, Škaloud P. Substantial intraspecific genome size variation in golden-brown algae and its phenotypic consequences. ANNALS OF BOTANY 2020; 126:1077-1087. [PMID: 32686820 PMCID: PMC7596369 DOI: 10.1093/aob/mcaa133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS While nuclear DNA content variation and its phenotypic consequences have been well described for animals, vascular plants and macroalgae, much less about this topic is known regarding unicellular algae and protists in general. The dearth of data is especially pronounced when it comes to intraspecific genome size variation. This study attempts to investigate the extent of intraspecific variability in genome size and its adaptive consequences in a microalgal species. METHODS Propidium iodide flow cytometry was used to estimate the absolute genome size of 131 strains (isolates) of the golden-brown alga Synura petersenii (Chrysophyceae, Stramenopiles), identified by identical internal transcribed spacer (ITS) rDNA barcodes. Cell size, growth rate and genomic GC content were further assessed on a sub-set of strains. Geographic location of 67 sampling sites across the Northern hemisphere was used to extract climatic database data and to evaluate the ecogeographical distribution of genome size diversity. KEY RESULTS Genome size ranged continuously from 0.97 to 2.02 pg of DNA across the investigated strains. The genome size was positively associated with cell size and negatively associated with growth rate. Bioclim variables were not correlated with genome size variation. No clear trends in the geographical distribution of strains of a particular genome size were detected, and strains of different genome size occasionally coexisted at the same locality. Genomic GC content was significantly associated only with genome size via a quadratic relationship. CONCLUSIONS Genome size variability in S. petersenii was probably triggered by an evolutionary mechanism operating via gradual changes in genome size accompanied by changes in genomic GC content, such as, for example, proliferation of transposable elements. The variation was reflected in cell size and relative growth rate, possibly with adaptive consequences.
Collapse
Affiliation(s)
- Dora Čertnerová
- Department of Botany, Faculty of Science, Charles University, Benátská, Prague, Czech Republic
| | - Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, Benátská, Prague, Czech Republic
| |
Collapse
|
10
|
Kim JI, Jeong M, Archibald JM, Shin W. Comparative Plastid Genomics of Non-Photosynthetic Chrysophytes: Genome Reduction and Compaction. FRONTIERS IN PLANT SCIENCE 2020; 11:572703. [PMID: 33013997 PMCID: PMC7511666 DOI: 10.3389/fpls.2020.572703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/24/2020] [Indexed: 05/11/2023]
Abstract
Spumella-like heterotrophic chrysophytes are important eukaryotic microorganisms that feed on bacteria in aquatic and soil environments. They are characterized by their lack of pigmentation, naked cell surface, and extremely small size. Although Spumella-like chrysophytes have lost their photosynthetic ability, they still possess a leucoplast and retain a plastid genome. We have sequenced the plastid genomes of three non-photosynthetic chrysophytes, Spumella sp. Baeckdong012018B8, Pedospumella sp. Jangsampo120217C5 and Poteriospumella lacustris Yongseonkyo072317C3, and compared them to the previously sequenced plastid genome of "Spumella" sp. NIES-1846 and photosynthetic chrysophytes. We found the plastid genomes of Spumella-like flagellates to be generally conserved with respect to genome structure and housekeeping gene content. We nevertheless also observed lineage-specific gene rearrangements and duplication of partial gene fragments at the boundary of the inverted repeat and single copy regions. Most gene losses correspond to genes for proteins involved in photosynthesis and carbon fixation, except in the case of petF. The newly sequenced plastid genomes range from ~55.7 kbp to ~62.9 kbp in size and share a core set of 45 protein-coding genes, 3 rRNAs, and 32 to 34 tRNAs. Our results provide insight into the evolutionary history of organelle genomes via genome reduction and gene loss related to loss of photosynthesis in chrysophyte evolution.
Collapse
Affiliation(s)
- Jong Im Kim
- Department of Biology, Chungnam National University, Daejeon, South Korea
| | - Minseok Jeong
- Department of Biology, Chungnam National University, Daejeon, South Korea
| | - John M. Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Woongghi Shin
- Department of Biology, Chungnam National University, Daejeon, South Korea
- *Correspondence: Woongghi Shin,
| |
Collapse
|
11
|
Han KY, Maciszewski K, Graf L, Yang JH, Andersen RA, Karnkowska A, Yoon HS. Dictyochophyceae Plastid Genomes Reveal Unusual Variability in Their Organization. JOURNAL OF PHYCOLOGY 2019; 55:1166-1180. [PMID: 31325913 DOI: 10.1111/jpy.12904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/01/2019] [Indexed: 05/22/2023]
Abstract
Dictyochophyceae (silicoflagellates) are unicellular freshwater and marine algae (Heterokontophyta, stramenopiles). Despite their abundance in global oceans and potential ecological significance, discovered in recent years, neither nuclear nor organellar genomes of representatives of this group were sequenced until now. Here, we present the first complete plastid genome sequences of Dictyochophyceae, obtained from four species: Dictyocha speculum, Rhizochromulina marina, Florenciella parvula and Pseudopedinella elastica. Despite their comparable size and genetic content, these four plastid genomes exhibit variability in their organization: plastid genomes of F. parvula and P. elastica possess conventional quadripartite structure with a pair of inverted repeats, R. marina instead possesses two direct repeats with the same orientation and D. speculum possesses no repeats at all. We also observed a number of unusual traits in the plastid genome of D. speculum, including expansion of the intergenic regions, presence of an intron in the otherwise non-intron-bearing psaA gene, and an additional copy of the large subunit of RuBisCO gene (rbcL), the last of which has never been observed in any plastid genome. We conclude that despite noticeable gene content similarities between the plastid genomes of Dictyochophyceae and their relatives (pelagophytes, diatoms), the number of distinctive features observed in this lineage strongly suggests that additional taxa require further investigation.
Collapse
Affiliation(s)
- Kwi Young Han
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Korea
| | - Kacper Maciszewski
- Department of Molecular Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Louis Graf
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Korea
| | - Ji Hyun Yang
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Korea
| | - Robert A Andersen
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, 98250, USA
| | - Anna Karnkowska
- Department of Molecular Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Hwan Su Yoon
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Korea
| |
Collapse
|
12
|
Bråte J, Fuss J, Jakobsen KS, Klaveness D. Draft genome assembly and transcriptome sequencing of the golden algae Hydrurus foetidus (Chrysophyceae). F1000Res 2019; 8:401. [DOI: 10.12688/f1000research.16734.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2019] [Indexed: 11/20/2022] Open
Abstract
Hydrurus foetidus is a freshwater chrysophyte alga. It thrives in cold rivers in polar and high alpine regions. It has several morphological traits reminiscent of single-celled eukaryotes, but can also form macroscopic thalli. Despite its ability to produce polyunsaturated fatty acids, its life under cold conditions and its variable morphology, very little is known about its genome and transcriptome. Here, we present an extensive set of next-generation sequencing data, including genomic short reads from Illumina sequencing and long reads from Nanopore sequencing, as well as full length cDNAs from PacBio IsoSeq sequencing and a small RNA dataset (smaller than 200 bp) sequenced with Illumina. The genome sequences were combined to produce an assembly consisting of 5069 contigs, with a total assembly size of 171 Mb and a 77% BUSCO completeness. The new data generated here may contribute to a better understanding of the evolution and ecological roles of chrysophyte algae, as well as to resolve the branching patterns at a larger phylogenetic scale.
Collapse
|
13
|
Bråte J, Fuss J, Mehrota S, Jakobsen KS, Klaveness D. Draft genome assembly and transcriptome sequencing of the golden algae Hydrurus foetidus (Chrysophyceae). F1000Res 2019; 8:401. [PMID: 31632652 PMCID: PMC6784874 DOI: 10.12688/f1000research.16734.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2019] [Indexed: 01/01/2023] Open
Abstract
Hydrurusfoetidus is a freshwater chrysophyte alga. It thrives in cold rivers in polar and high alpine regions. It has several morphological traits reminiscent of single-celled eukaryotes, but can also form macroscopic thalli. Despite its ability to produce polyunsaturated fatty acids, its life under cold conditions and its variable morphology, very little is known about its genome and transcriptome. Here, we present an extensive set of next-generation sequencing data, including genomic short reads from Illumina sequencing and long reads from Nanopore sequencing, as well as full length cDNAs from PacBio IsoSeq sequencing and a small RNA dataset (smaller than 200 bp) sequenced with Illumina. The genome sequences were combined to produce an assembly consisting of 5069 contigs, with a total assembly size of 171 Mb and a 77% BUSCO completeness. The new data generated here may contribute to a better understanding of the evolution and ecological roles of chrysophyte algae, as well as to resolve the branching patterns at a larger phylogenetic scale.
Collapse
Affiliation(s)
- Jon Bråte
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, 0316, Norway
| | - Janina Fuss
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, 24118, Germany
| | - Shruti Mehrota
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, 0316, Norway.,Section for Aquatic Biology and Toxicology (AQUA), Department of Biosciences, University of Oslo, Oslo, 0316, Norway
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, 0316, Norway
| | - Dag Klaveness
- Section for Aquatic Biology and Toxicology (AQUA), Department of Biosciences, University of Oslo, Oslo, 0316, Norway
| |
Collapse
|
14
|
Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes. Proc Natl Acad Sci U S A 2019; 116:6914-6923. [PMID: 30872488 DOI: 10.1073/pnas.1819976116] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The division of life into producers and consumers is blurred by evolution. For example, eukaryotic phototrophs can lose the capacity to photosynthesize, although they may retain vestigial plastids that perform other essential cellular functions. Chrysophyte algae have undergone a particularly large number of photosynthesis losses. Here, we present a plastid genome sequence from a nonphotosynthetic chrysophyte, "Spumella" sp. NIES-1846, and show that it has retained a nearly identical set of plastid-encoded functions as apicomplexan parasites. Our transcriptomic analysis of 12 different photosynthetic and nonphotosynthetic chrysophyte lineages reveals remarkable convergence in the functions of these nonphotosynthetic plastids, along with informative lineage-specific retentions and losses. At one extreme, Cornospumella fuschlensis retains many photosynthesis-associated proteins, although it appears to have lost the reductive pentose phosphate pathway and most plastid amino acid metabolism pathways. At the other extreme, Paraphysomonas lacks plastid-targeted proteins associated with gene expression and all metabolic pathways that require plastid-encoded partners, indicating a complete loss of plastid DNA in this genus. Intriguingly, some of the nucleus-encoded proteins that once functioned in the expression of the Paraphysomonas plastid genome have been retained. These proteins were likely to have been dual targeted to the plastid and mitochondria of the chrysophyte ancestor, and are uniquely targeted to the mitochondria in Paraphysomonas Our comparative analyses provide insights into the process of functional reduction in nonphotosynthetic plastids.
Collapse
|