1
|
Zeng Q, Li X, Shi X, Yan S. Partial molecular characterization, expression pattern and polymorphism analysis of MHC I genes in Chinese domestic goose (Anser cygnoides). Genet Mol Biol 2024; 47:e20220252. [PMID: 39012094 PMCID: PMC11249561 DOI: 10.1590/1678-4685-gmb-2022-0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/09/2024] [Indexed: 07/17/2024] Open
Abstract
Major histocompatibility complex (MHC) allelic polymorphism is critically important for mediating antigen presentation in vertebrates. Presently, there are insufficient studies of MHC genetic diversity in domestic Anseriform birds. In this study, we analyzed the expression profile of MHC I genes and screened for MHC I exon 2 polymorphism in one domestic goose population from China using Illumina MiSeq sequencing. The results showed that four MHC I alleles (Ancy-IE2*09/*11/*13/*21) in one goose were identified based on cDNA cloning and sequencing using four primer combinations, and the varying number of cDNA clones implied that these four classical sequences showed differential expression patterns. Through next-generation sequencing, 27 alleles were obtained from 68 geese with 3-10 putative alleles per individual, indicating at least the existence of 5 MHC I loci in the goose. The marked excess of the non-synonymous over the synonymous substitution in the peptide-binding region (PBR) along 27 alleles and five positively selected sites (PSSs) detected around the PBR indicated that balancing selection might be the major force in shaping high MHC variation in the goose. Additionally, IA alleles displaying lower polymorphism were subject to less positive selection pressure than non-IA alleles with a higher level of polymorphism.
Collapse
Affiliation(s)
- Qianqian Zeng
- Qilu University of Technology, School of Bioengineering, State
Key Laboratory of Biobased Material and Green Papermaking, Jinan, Shandong,
China
| | - Xiaojie Li
- Qilu University of Technology, School of Bioengineering, State
Key Laboratory of Biobased Material and Green Papermaking, Jinan, Shandong,
China
| | - Xiaomin Shi
- Qilu University of Technology, School of Bioengineering, State
Key Laboratory of Biobased Material and Green Papermaking, Jinan, Shandong,
China
| | - Shigan Yan
- Qilu University of Technology, School of Bioengineering, State
Key Laboratory of Biobased Material and Green Papermaking, Jinan, Shandong,
China
| |
Collapse
|
2
|
Winternitz J, Chakarov N, Rinaud T, Ottensmann M, Krüger O. High functional allelic diversity and copy number in both MHC classes in the common buzzard. BMC Ecol Evol 2023; 23:24. [PMID: 37355591 PMCID: PMC10290333 DOI: 10.1186/s12862-023-02135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/12/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND The major histocompatibility complex (MHC), which encodes molecules that recognize various pathogens and parasites and initiates the adaptive immune response in vertebrates, is renowned for its exceptional polymorphism and is a model of adaptive gene evolution. In birds, the number of MHC genes and sequence diversity varies greatly among taxa, believed due to evolutionary history and differential selection pressures. Earlier characterization studies and recent comparative studies suggest that non-passerine species have relatively few MHC gene copies compared to passerines. Additionally, comparative studies that have looked at partial MHC sequences have speculated that non-passerines have opposite patterns of selection on MHC class I (MHC-I) and class II (MHC-II) loci than passerines: namely, greater sequence diversity and signals of selection on MHC-II than MHC-I. However, new sequencing technology is revealing much greater MHC variation than previously expected while also facilitating full sequence variant detection directly from genomic data. Our study aims to take advantage of high-throughput sequencing methods to fully characterize both classes and domains of MHC of a non-passerine bird of prey, the common buzzard (Buteo buteo), to test predictions of MHC variation and differential selection on MHC classes. RESULTS Using genetic, genomic, and transcriptomic high-throughput sequencing data, we established common buzzards have at least three loci that produce functional alleles at both MHC classes. In total, we characterize 91 alleles from 113 common buzzard chicks for MHC-I exon 3 and 41 alleles from 125 chicks for MHC-IIB exon 2. Among these alleles, we found greater sequence polymorphism and stronger diversifying selection at MHC-IIB exon 2 than MHC-I exon 3, suggesting differential selection pressures on MHC classes. However, upon further investigation of the entire peptide-binding groove by including genomic data from MHC-I exon 2 and MHC-IIA exon 2, this turned out to be false. MHC-I exon 2 was as polymorphic as MHC-IIB exon 2 and MHC-IIA exon 2 was essentially invariant. Thus, comparisons between MHC-I and MHC-II that included both domains of the peptide-binding groove showed no differences in polymorphism nor diversifying selection between the classes. Nevertheless, selection analysis indicates balancing selection has been acting on common buzzard MHC and phylogenetic inference revealed that trans-species polymorphism is present between common buzzards and species separated for over 33 million years for class I and class II. CONCLUSIONS We characterize and confirm the functionality of unexpectedly high copy number and allelic diversity in both MHC classes of a bird of prey. While balancing selection is acting on both classes, there is no evidence of differential selection pressure on MHC classes in common buzzards and this result may hold more generally once more data for understudied MHC exons becomes available.
Collapse
Affiliation(s)
- Jamie Winternitz
- Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany
| | - Nayden Chakarov
- Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany
| | - Tony Rinaud
- Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany
| | - Meinolf Ottensmann
- Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany
| | - Oliver Krüger
- Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany
| |
Collapse
|
3
|
Gaigher A, Rota A, Neves F, Muñoz-Mérida A, Blasco-Aróstegui J, Almeida T, Veríssimo A. Extensive MHC class IIβ diversity across multiple loci in the small-spotted catshark (Scyliorhinus canicula). Sci Rep 2023; 13:3837. [PMID: 36882519 PMCID: PMC9992475 DOI: 10.1038/s41598-023-30876-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
The major histocompatibility complex (MHC) is a multigene family responsible for pathogen detection, and initiation of adaptive immune responses. Duplication, natural selection, recombination, and their resulting high functional genetic diversity spread across several duplicated loci are the main hallmarks of the MHC. Although these features were described in several jawed vertebrate lineages, a detailed MHC IIβ characterization at the population level is still lacking for chondrichthyans (chimaeras, rays and sharks), i.e. the most basal lineage to possess an MHC-based adaptive immune system. We used the small-spotted catshark (Scyliorhinus canicula, Carcharhiniformes) as a case-study species to characterize MHC IIβ diversity using complementary molecular tools, including publicly available genome and transcriptome datasets, and a newly developed high-throughput Illumina sequencing protocol. We identified three MHC IIβ loci within the same genomic region, all of which are expressed in different tissues. Genetic screening of the exon 2 in 41 individuals of S. canicula from a single population revealed high levels of sequence diversity, evidence for positive selection, and footprints of recombination. Moreover, the results also suggest the presence of copy number variation in MHC IIβ genes. Thus, the small-spotted catshark exhibits characteristics of functional MHC IIβ genes typically observed in other jawed vertebrates.
Collapse
Affiliation(s)
- Arnaud Gaigher
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany.
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany.
| | - Alessia Rota
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Fabiana Neves
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Antonio Muñoz-Mérida
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Javier Blasco-Aróstegui
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Faculty of Sciences, University of Lisbon, Campo Grande 016, 1749-016, Lisbon, Portugal
| | - Tereza Almeida
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Ana Veríssimo
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| |
Collapse
|
4
|
Gong Y, Guo Y, He YM, Yuan Y, Yang BG, Duan XH, Liu CL, Zhang JH, Hong QH, Ma YH, Na RS, Han YG, Zeng Y, Huang YF, Zhao YJ, Zhao ZQ, E G. Comparative analysis of the genetic diversity of the neutral microsatellite loci and second exon of the goat MHC-DQB1 gene. Anim Biotechnol 2023; 34:85-92. [PMID: 34289783 DOI: 10.1080/10495398.2021.1935980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
This study compared and analyzed the genetic diversity and population structure of exon 2 of the DQB1 gene and 13 autosomal neutral microsatellite markers from 14 Chinese goat breeds to explore the potential evolutionary mechanism of the major histocompatibility complex (MHC). A total of 287 haplotypes were constructed from MHC-DQB1 exon 2 from 14 populations, and 82 nucleotide polymorphic sites (SNPs, 31.78%) and 172 heterozygous individuals (79.12%) were identified. The FST values of the microsatellites and MHC-DQB ranged between 0.01831-0.26907 and 0.00892-0.38871, respectively. Furthermore, 14 goat populations showed rich genetic diversity in the microsatellite loci and MHC-DQB1 exon 2. However, the population structure and phylogenetic relationship represented by the two markers were different. Positive selection and Tajima's D test results showed the occurrence of a diversified selection mechanism, which was primarily based on a positive and balancing selection in goat DQB. This study also found that the DQB sequences of bovines exhibited trans-species polymorphism (TSP) among species and families. In brief, this study indicated that positive and balancing selection played a major role in maintaining the genetic diversity of DQB, and TSP of MHC in bovines was common, which enhanced the understanding of the MHC evolution.
Collapse
Affiliation(s)
- Ying Gong
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Yi Guo
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Yong-Meng He
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Ying Yuan
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Bai-Gao Yang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Xing-Hai Duan
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Cheng-Li Liu
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Jia-Hua Zhang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Qiong-Hua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Yue-Hui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ri-Su Na
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Yan-Guo Han
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Yan Zeng
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Yong-Fu Huang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Yong-Ju Zhao
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Zhong-Quan Zhao
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Guangxin E
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Lam DK, Frantz AC, Burke T, Geffen E, Sin SYW. Both selection and drift drive the spatial pattern of adaptive genetic variation in a wild mammal. Evolution 2023; 77:221-238. [PMID: 36626810 DOI: 10.1093/evolut/qpac014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 10/03/2022] [Accepted: 11/04/2022] [Indexed: 01/12/2023]
Abstract
The major histocompatibility complex (MHC) has been intensively studied for the relative effects of different evolutionary forces in recent decades. Pathogen-mediated balancing selection is generally thought to explain the high polymorphism observed in MHC genes, but it is still unclear to what extent MHC diversity is shaped by selection relative to neutral drift. In this study, we genotyped MHC class II DRB genes and 15 neutral microsatellite loci across 26 geographic populations of European badgers (Meles meles) covering most of their geographic range. By comparing variation of microsatellite and diversity of MHC at different levels, we demonstrate that both balancing selection and drift have shaped the evolution of MHC genes. When only MHC allelic identity was investigated, the spatial pattern of MHC variation was similar to that of microsatellites. By contrast, when functional aspects of the MHC diversity (e.g., immunological supertypes) were considered, balancing selection appears to decrease genetic structuring across populations. Our comprehensive sampling and analytical approach enable us to conclude that the likely mechanisms of selection are heterozygote advantage and/or rare-allele advantage. This study is a clear demonstration of how both balancing selection and genetic drift simultaneously affect the evolution of MHC genes in a widely distributed wild mammal.
Collapse
Affiliation(s)
- Derek Kong Lam
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Alain C Frantz
- Musée National d'Histoire Naturelle, Luxembourg, Luxembourg
| | - Terry Burke
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Eli Geffen
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Xu N, Ye W, Sun C, He K, Zhu Y, Lan H, Lu C, Liu H. Genetic Diversity and Differentiation of MHC Class I Genes in Red-Crowned Crane Populations. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.898581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The red-crowned crane (Grus japonensis) has been demoted to “vulnerable species” because its populations have apparently stabilized in Japan and Korea. Low variation and genetic drift may cause damage to the nascent recovery of the G. japonensis population. The major histocompatibility complex (MHC) is one of the most polymorphic gene families in the vertebrate genome and can reflect information on the adaptive evolution of endangered species. In this study, variations in MHC I exon 3 of captive G. japonensis in China were assessed and compared with those in cranes from Japan. Forty MHC alleles of 274 base pairs were isolated from 32 individuals from two captive populations in China. There was high variability in the nucleotide and amino acid composition, showing the proportion of polymorphic sites of 18.98 and 32.97%, respectively. Comparative analyses of the Chinese and Japanese populations based on 222 base pair sequences revealed more alleles and higher variation in the Chinese population. The lack of significant geographical differentiation of G. japonensis was supported by the genetic differentiation coefficient (0.04506) between the Chinese and Japanese populations. Positive selection of antigen-binding sites was observed, which contributed to maintaining the diversity of MHC class I genes. Phylogenetic analysis suggested the persistence of trans-species polymorphisms among MHC class I genes in Gruidae species. Our results may contribute to optimizing the management of G. japonensis populations and population recovery of this threatened species.
Collapse
|
7
|
He K, Liang CH, Zhu Y, Dunn P, Zhao A, Minias P. Reconstructing Macroevolutionary Patterns in Avian MHC Architecture With Genomic Data. Front Genet 2022; 13:823686. [PMID: 35251132 PMCID: PMC8893315 DOI: 10.3389/fgene.2022.823686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/25/2022] [Indexed: 12/28/2022] Open
Abstract
The Major Histocompatibility Complex (MHC) is a hyper-polymorphic genomic region, which forms a part of the vertebrate adaptive immune system and is crucial for intra- and extra-cellular pathogen recognition (MHC-I and MHC-IIA/B, respectively). Although recent advancements in high-throughput sequencing methods sparked research on the MHC in non-model species, the evolutionary history of MHC gene structure is still poorly understood in birds. Here, to explore macroevolutionary patterns in the avian MHC architecture, we retrieved contigs with antigen-presenting MHC and MHC-related genes from available genomes based on third-generation sequencing. We identified: 1) an ancestral avian MHC architecture with compact size and tight linkage between MHC-I, MHC-IIA/IIB and MHC-related genes; 2) three major patterns of MHC-IIA/IIB unit organization in different avian lineages; and 3) lineage-specific gene translocation events (e.g., separation of the antigen-processing TAP genes from the MHC-I region in passerines), and 4) the presence of a single MHC-IIA gene copy in most taxa, showing evidence of strong purifying selection (low dN/dS ratio and low number of positively selected sites). Our study reveals long-term macroevolutionary patterns in the avian MHC architecture and provides the first evidence of important transitions in the genomic arrangement of the MHC region over the last 100 million years of bird evolution.
Collapse
Affiliation(s)
- Ke He
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
- *Correspondence: Ke He, ; Piotr Minias,
| | - Chun-hong Liang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Ying Zhu
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Peter Dunn
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Ayong Zhao
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łodz, Łódź, Poland
- *Correspondence: Ke He, ; Piotr Minias,
| |
Collapse
|
8
|
|
9
|
Qin S, Dunn PO, Yang Y, Liu H, He K. Polymorphism and varying selection within the MHC class I of four Anas species. Immunogenetics 2021; 73:395-404. [PMID: 34195858 DOI: 10.1007/s00251-021-01222-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
Ducks (Anatidae) are often vectors for the spread of pathogens because of their long-distance migrations. These migrations also expose ducks to a wide variety of pathogens in their wintering and breeding grounds, and, as a consequence, we might expect strong selection on their immune genes. Here, we studied exons 2 and 3 of the MHC class I in four species of Anas ducks (A. platyrhynchos, A. poecilorhyncha, A. formosa, and A. querquedula) using Illumina-sequencing. Both exons 2 and 3 code for the peptide-binding region of class I molecules; however, most previous studies of birds have only focused on exon 3. Here, we found stronger positive selection on exon 2 than exon 3, as indicated by more species with dN/dS > 1 and higher Wu-Kabat values. There was little evidence that divergence time influenced polymorphism, the numbers of identical alleles (partial α1 or α2 regions) among four Anas, or selection, suggesting that these widespread species might share similar levels of selection from pathogens. The high similarity of allele numbers, positively selected sites (PSS), conserved motifs, and variable protein sites (VPS) supported the persistence of trans-species polymorphism in Anas for at least 10 million years. Our study revealed exon 2 as a relatively unexplored source of variation in avian MHC class I, which should be considered in future studies.
Collapse
Affiliation(s)
- Shidi Qin
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Agriculture and Forestry University, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China
| | - Peter O Dunn
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Yang Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Agriculture and Forestry University, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China
| | - Hongyi Liu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ke He
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Agriculture and Forestry University, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China.
| |
Collapse
|
10
|
Naito‐Liederbach AM, Sato Y, Nakajima N, Maeda T, Inoue T, Yamazaki T, Ogden R, Inoue‐Murayama M. Genetic diversity of the endangered Japanese golden eagle at neutral and functional loci. Ecol Res 2021. [DOI: 10.1111/1440-1703.12246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Yu Sato
- Wildlife Research Center Kyoto University Kyoto Japan
- Royal (Dick) School of Veterinary Studies and the Roslin Institute University of Edinburgh Roslin UK
| | - Nobuyoshi Nakajima
- Center for Environmental Biology and Ecosystem Studies National Institute for Environmental Studies Tsukuba Japan
| | - Taku Maeda
- Iwate Prefectural Research Institute for Environmental Sciences and Public Health Morioka Japan
| | - Takehiko Inoue
- Asian Raptor Research and Conservation Network Yasu Japan
| | - Toru Yamazaki
- Asian Raptor Research and Conservation Network Yasu Japan
| | - Rob Ogden
- Royal (Dick) School of Veterinary Studies and the Roslin Institute University of Edinburgh Roslin UK
| | | |
Collapse
|
11
|
Minias P, Janiszewska A, Pikus E, Zadworny T, Anderwald D. MHC Reflects Fine-Scale Habitat Structure in White-Tailed Eagles, Haliaeetus albicilla. J Hered 2021; 112:335-345. [PMID: 33942876 DOI: 10.1093/jhered/esab026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/26/2021] [Indexed: 11/12/2022] Open
Abstract
The major histocompatibility complex (MHC) genes code for key immune receptors responsible for recognition of intra- and extracellular pathogens (MHC class I and class II, respectively). It was hypothesized that MHC polymorphism can be maintained via fluctuating selection resulting from between-habitat variation in pathogen regimes. We examined associations between MHC class I and class II genes and habitat structure in an apex avian predator, the white-tailed eagle, Haliaeetus albicilla. We genotyped MHC class I and class II genes in ca. 150 white-tailed eagle chicks from nearly 100 nesting territories distributed across 3 distinct populations in Poland. Habitat structure was quantified at the level of foraging territories and directly at the nest sites. We found strong support for associations of habitat traits with diversity and allelic composition at the MHC class II. Forest area within territory and forest productivity were identified as the major habitat predictors of MHC class II polymorphism, whereas other habitat traits (distance to nearest open water, grassland, and water area within territory or understory presence) showed fewer associations with class II alleles. In contrast, there was little support for associations between MHC class I genes and habitat structure. All significant associations were apparent at the within-population level rather than between populations. Our results suggest that extracellular (rather than intracellular) pathogens may exert much stronger selective pressure on the white-tailed eagle. Associations of habitat structure with MHC class II may reflect fluctuating (balancing) selection, which maintains MHC diversity within populations.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha, Łódź, Poland
| | - Aleksandra Janiszewska
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha, Łódź, Poland
| | - Ewa Pikus
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha, Łódź, Poland
| | - Tomasz Zadworny
- Regional Directorate of Environmental Protection in Łódź, Traugutta, Łódź, Poland
| | | |
Collapse
|
12
|
Gousy-Leblanc M, Yannic G, Therrien JF, Lecomte N. Mapping our knowledge on birds of prey population genetics. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01368-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Cruz-López M, Fernández G, Hipperson H, Palacios E, Cavitt J, Galindo-Espinosa D, Gómez Del Angel S, Pruner R, Gonzalez O, Burke T, Küpper C. Allelic diversity and patterns of selection at the major histocompatibility complex class I and II loci in a threatened shorebird, the Snowy Plover (Charadrius nivosus). BMC Evol Biol 2020; 20:114. [PMID: 32912143 PMCID: PMC7488298 DOI: 10.1186/s12862-020-01676-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 08/20/2020] [Indexed: 12/02/2022] Open
Abstract
Background Understanding the structure and variability of adaptive loci such as the major histocompatibility complex (MHC) genes is a primary research goal for evolutionary and conservation genetics. Typically, classical MHC genes show high polymorphism and are under strong balancing selection, as their products trigger the adaptive immune response in vertebrates. Here, we assess the allelic diversity and patterns of selection for MHC class I and class II loci in a threatened shorebird with highly flexible mating and parental care behaviour, the Snowy Plover (Charadrius nivosus) across its broad geographic range. Results We determined the allelic and nucleotide diversity for MHC class I and class II genes using samples of 250 individuals from eight breeding population of Snowy Plovers. We found 40 alleles at MHC class I and six alleles at MHC class II, with individuals carrying two to seven different alleles (mean 3.70) at MHC class I and up to two alleles (mean 1.45) at MHC class II. Diversity was higher in the peptide-binding region, which suggests balancing selection. The MHC class I locus showed stronger signatures of both positive and negative selection than the MHC class II locus. Most alleles were present in more than one population. If present, private alleles generally occurred at very low frequencies in each population, except for the private alleles of MHC class I in one island population (Puerto Rico, lineage tenuirostris). Conclusion Snowy Plovers exhibited an intermediate level of diversity at the MHC, similar to that reported in other Charadriiformes. The differences found in the patterns of selection between the class I and II loci are consistent with the hypothesis that different mechanisms shape the sequence evolution of MHC class I and class II genes. The rarity of private alleles across populations is consistent with high natal and breeding dispersal and the low genetic structure previously observed at neutral genetic markers in this species.
Collapse
Affiliation(s)
- Medardo Cruz-López
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Cd. México, Mexico.
| | - Guillermo Fernández
- Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Apartado Postal 811, 82040, Mazatlán, Sinaloa, Mexico
| | - Helen Hipperson
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Eduardo Palacios
- Centro de Investigación Científica y de Educación Superior de Ensenada, Unidad La Paz, Miraflores 334, Col. Bellavista, 23050, La Paz, Baja California Sur, Mexico
| | - John Cavitt
- Avian Ecology Laboratory Department of Zoology, Weber State University, Ogden, UT, 84408, USA
| | - Daniel Galindo-Espinosa
- Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, Carretera al Sur km 5.5, A.P. 19-B, 23080, La Paz, B.C.S., Mexico
| | - Salvador Gómez Del Angel
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Cd. México, Mexico
| | - Raya Pruner
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Panama City, FL, USA
| | - Oscar Gonzalez
- Grupo Aves del Perú, Gómez del Carpio 135, Barrio Medico, 34, Lima, Peru.,Department of Natural Sciences, Emmanuel College, Franklin Springs, GA, 30369, USA
| | - Terry Burke
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Clemens Küpper
- Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, 82319, Seewiesen, Germany.
| |
Collapse
|
14
|
Minias P, Gutiérrez JS, Dunn PO. Avian major histocompatibility complex copy number variation is associated with helminth richness. Biol Lett 2020; 16:20200194. [PMID: 32634375 DOI: 10.1098/rsbl.2020.0194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genes of the major histocompatibility complex (MHC) play a key role in the adaptive immunity of vertebrates, as they encode receptors responsible for antigen recognition. Evolutionary history of the MHC proceeded through numerous gene duplications, which increase the spectrum of pathogens recognized by individuals. Although pathogen-mediated selection is believed to be a primary driver of MHC expansion over evolutionary times, empirical evidence for this association is virtually lacking. Here, we used an extensive dataset on MHC class II copy number variation in non-passerine birds to test for an evolutionary correlation with helminth parasite richness. As expected, our phylogenetically-informed modelling revealed a positive association between MHC copy number and total helminth richness, even after controlling for a broad spectrum of ecological and life-history traits. Thus, total helminth richness appears to be the most important correlate of MHC copy number, supporting a leading role of pathogen-mediated selection in the evolution of MHC in birds. Our results provide some of the first, although correlative, evidence linking parasitism to interspecific variation in MHC copy number among birds.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237 Łódź, Poland
| | - Jorge S Gutiérrez
- Department of Anatomy, Cell Biology and Zoology, Faculty of Sciences, University of Extremadura, Badajoz, 06006, Spain
| | - Peter O Dunn
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237 Łódź, Poland.,Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
15
|
Stervander M, Dierickx EG, Thorley J, Brooke MDL, Westerdahl H. High MHC gene copy number maintains diversity despite homozygosity in a Critically Endangered single-island endemic bird, but no evidence of MHC-based mate choice. Mol Ecol 2020; 29:3578-3592. [PMID: 32416000 DOI: 10.1111/mec.15471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/14/2020] [Accepted: 05/04/2020] [Indexed: 12/30/2022]
Abstract
Small population sizes can, over time, put species at risk due to the loss of genetic variation and the deleterious effects of inbreeding. Losing diversity in the major histocompatibility complex (MHC) could be particularly harmful, given its key role in the immune system. Here, we assess MHC class I (MHC-I) diversity and its effects on mate choice and survival in the Critically Endangered Raso lark Alauda razae, a species restricted to the 7 km2 islet of Raso, Cape Verde, since ~1460, whose population size has dropped as low as 20 pairs. Exhaustively genotyping 122 individuals, we find no effect of MHC-I genotype/diversity on mate choice or survival. However, we demonstrate that MHC-I diversity has been maintained through extreme bottlenecks by retention of a high number of gene copies (at least 14), aided by cosegregation of multiple haplotypes comprising 2-8 linked MHC-I loci. Within-locus homozygosity is high, contributing to low population-wide diversity. Conversely, each individual had comparably many alleles, 6-16 (average 11), and the large and divergent haplotypes occur at high frequency in the population, resulting in high within-individual MHC-I diversity. This functional immune gene diversity will be of critical importance for this highly threatened species' adaptive potential.
Collapse
Affiliation(s)
- Martin Stervander
- Department of Biology, Lund University, Lund, Sweden.,Department of Biology and Environmental Science, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden.,Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Elisa G Dierickx
- Department of Zoology, University of Cambridge, Cambridge, UK.,Fauna & Flora International, Cambridge, UK
| | - Jack Thorley
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - M de L Brooke
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
16
|
E GX, Chen LP, Zhou DK, Yang BG, Zhang JH, Zhao YJ, Hong QH, Ma YH, Chu MX, Zhang LP, Basang WD, Zhu YB, Han YG, Na RS, Zeng Y, Zhao ZQ, Huang YF, Han JL. Evolutionary relationship and population structure of domestic Bovidae animals based on MHC-linked and neutral autosomal microsatellite markers. Mol Immunol 2020; 124:83-90. [PMID: 32544655 DOI: 10.1016/j.molimm.2020.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 11/26/2022]
Abstract
Major histocompatibility complex (MHC) genes are critical for disease resistance or susceptibility responsible for host-pathogen interactions determined mainly by extensive polymorphisms in the MHC genes. Here, we examined the diversity and phylogenetic pattern of MHC haplotypes reconstructed using three MHC-linked microsatellite markers in 55 populations of five Bovidae species and compared them with those based on neutral autosomal microsatellite markers (NAMs). Three-hundred-and-forty MHC haplotypes were identified in 1453 Bovidae individuals, suggesting significantly higher polymorphism and heterozygosity compared with those based on NAMs. The ambitious boundaries in population differentiation (phylogenetic network, pairwise FST and STRUCTURE analyses) within and between species assessed using the MHC haplotypes were different from those revealed by NAMs associated closely with speciation, geographical distribution, domestication and management histories. In addition, the mean FST was significantly correlated negatively with the number of observed alleles (NA), observed (HO) and expected (HE) heterozygosity and polymorphism information content (PIC) (P < 0.05) in the MHC haplotype dataset while there was no correction of the mean FST estimates (P> 0.05) between the MHC haplotype and NAMs datasets. Analysis of molecular variance (AMOVA) revealed a lower percentage of total variance (PTV) between species/groups based on the MHC-linked microsatellites than NAMs. Therefore, it was inferred that individuals within populations accumulated as many MHC variants as possible to increase their heterozygosity and thus the survival rate of their affiliated populations and species, which eventually reduced population differentiation and thereby complicated their classification and phylogenetic relationship inference. In summary, host-pathogen coevolution and heterozygote advantage, rather than demographic history, act as key driving forces shaping the MHC diversity within the populations and determining the interspecific MHC diversity.
Collapse
Affiliation(s)
- Guang-Xin E
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Li-Peng Chen
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Dong-Ke Zhou
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Bai-Gao Yang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Jia-Hua Zhang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Yong-Ju Zhao
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Qiong-Hua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Yue-Hui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Ming-Xing Chu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Lu-Pei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Wang-Dui Basang
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement (Tibet Academy of Agricultural and Animal Husbandry Science (TAAAS)), Lhasa 850002, China
| | - Yan-Bin Zhu
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement (Tibet Academy of Agricultural and Animal Husbandry Science (TAAAS)), Lhasa 850002, China
| | - Yan-Guo Han
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Ri-Su Na
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Yan Zeng
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Zhong-Quan Zhao
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Yong-Fu Huang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China.
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi 00100, Kenya.
| |
Collapse
|
17
|
Episodic positive diversifying selection on key immune system genes in major avian lineages. Genetica 2019; 147:337-350. [PMID: 31782071 DOI: 10.1007/s10709-019-00081-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/19/2019] [Indexed: 01/08/2023]
Abstract
The major histocompatibility complex (MHC) of the adaptive immune system and the toll-like receptor (TLR) family of the innate immune system are involved in the detection of foreign invaders, and thus are subject to parasite-driven molecular evolution. Herein, we tested for macroevolutionary signatures of selection in these gene families within and among all three major clades of birds (Paleognathae, Galloanserae, and Neoaves). We characterized evolutionary relationships of representative immune genes (Mhc1 and Tlr2b) and a control gene (ubiquitin, Ubb), using a relatively large and phylogenetically diverse set of species with complete coding sequences (34 orthologous loci for Mhc1, 29 for Tlr2b, and 37 for Ubb). Episodic positive diversifying selection was found in the gene-wide phylogenies of the two immune genes, as well as at specific sites within each gene (8.5% of codon sites in Mhc1 and 2.7% in Tlr2b), but not in the control gene (Ubb). We found 20% of lineages under episodic diversifying selection in Mhc1 versus 9.1% in Tlr2b. For Mhc1, selection was relaxed in the Galloanserae and intensified in the Neoaves relative to the other clades, but no differences were detected among clades in the Tlr2b gene. In summary, we provide evidence of episodic positive diversifying selection in key immune genes and demonstrate differential strengths of selection within Class Aves, with the adaptive gene showing an increased divergence and evolutionary rate over the innate gene, contributing to the growing understanding of vertebrate immune gene evolution.
Collapse
|
18
|
Doyle JM, Willoughby JR, Bell DA, Bloom PH, Bragin EA, Fernandez NB, Katzner TE, Leonard K, DeWoody JA. Elevated Heterozygosity in Adults Relative to Juveniles Provides Evidence of Viability Selection on Eagles and Falcons. J Hered 2019; 110:696-706. [DOI: 10.1093/jhered/esz048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
AbstractViability selection yields adult populations that are more genetically variable than those of juveniles, producing a positive correlation between heterozygosity and survival. Viability selection could be the result of decreased heterozygosity across many loci in inbred individuals and a subsequent decrease in survivorship resulting from the expression of the deleterious alleles. Alternatively, locus-specific differences in genetic variability between adults and juveniles may be driven by forms of balancing selection, including heterozygote advantage, frequency-dependent selection, or selection across temporal and spatial scales. We use a pooled-sequencing approach to compare genome-wide and locus-specific genetic variability between 74 golden eagle (Aquila chrysaetos), 62 imperial eagle (Aquila heliaca), and 69 prairie falcon (Falco mexicanus) juveniles and adults. Although genome-wide genetic variability is comparable between juvenile and adult golden eagles and prairie falcons, imperial eagle adults are significantly more heterozygous than juveniles. This evidence of viability selection may stem from a relatively smaller imperial eagle effective population size and potentially greater genetic load. We additionally identify ~2000 single-nucleotide polymorphisms across the 3 species with extreme differences in heterozygosity between juveniles and adults. Many of these markers are associated with genes implicated in immune function or olfaction. These loci represent potential targets for studies of how heterozygote advantage, frequency-dependent selection, and selection over spatial and temporal scales influence survivorship in avian species. Overall, our genome-wide data extend previous studies that used allozyme or microsatellite markers and indicate that viability selection may be a more common evolutionary phenomenon than often appreciated.
Collapse
Affiliation(s)
- Jacqueline M Doyle
- Department of Biological Sciences, Towson University, Baltimore, MD
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN
| | - Janna R Willoughby
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama
- Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Douglas A Bell
- Department of Biological Sciences, Towson University, Baltimore, MD
- East Bay Regional Park District, Oakland, CA
- Department of Ornithology and Mammalogy, California Academy of Sciences, San Francisco, CA
| | - Peter H Bloom
- Department of Biological Sciences, Towson University, Baltimore, MD
- Bloom Research Inc., Los Angeles, CA
| | - Evgeny A Bragin
- Department of Biological Sciences, Towson University, Baltimore, MD
- Faculty of Natural Science, Kostanay State Pedagogical University, Kostanay, Kazakhstan
- The Peregrine Fund, Boise, ID
- Science Department, Naurzum National Nature Reserve, Kostanay Oblast, Naurzumski Raijon, Karamendy, Kazakhstan
| | - Nadia B Fernandez
- Department of Biological Sciences, Towson University, Baltimore, MD
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA
| | - Todd E Katzner
- Department of Biological Sciences, Towson University, Baltimore, MD
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, ID
| | - Kolbe Leonard
- Department of Biological Sciences, Towson University, Baltimore, MD
- Department of Computer and Information Sciences, Towson University, Baltimore, MD
| | - J Andrew DeWoody
- Department of Biological Sciences, Towson University, Baltimore, MD
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN
- Department of Biological Sciences, Purdue University, West Lafayette, IN
| |
Collapse
|
19
|
Abduriyim S, Zou D, Zhao H. Origin and evolution of the major histocompatibility complex class I region in eutherian mammals. Ecol Evol 2019; 9:7861-7874. [PMID: 31346446 PMCID: PMC6636196 DOI: 10.1002/ece3.5373] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 01/09/2023] Open
Abstract
Major histocompatibility complex (MHC) genes in vertebrates are vital in defending against pathogenic infections. To gain new insights into the evolution of MHC Class I (MHCI) genes and test competing hypotheses on the origin of the MHCI region in eutherian mammals, we studied available genome assemblies of nine species in Afrotheria, Xenarthra, and Laurasiatheria, and successfully characterized the MHCI region in six species. The following numbers of putatively functional genes were detected: in the elephant, four, one, and eight in the extended class I region, and κ and β duplication blocks, respectively; in the tenrec, one in the κ duplication block; and in the four bat species, one or two in the β duplication block. Our results indicate that MHCI genes in the κ and β duplication blocks may have originated in the common ancestor of eutherian mammals. In the elephant, tenrec, and all four bats, some MHCI genes occurred outside the MHCI region, suggesting that eutherians may have a more complex MHCI genomic organization than previously thought. Bat-specific three- or five-amino-acid insertions were detected in the MHCI α1 domain in all four bats studied, suggesting that pathogen defense in bats relies on MHCIs having a wider peptide-binding groove, as previously assayed by a bat MHCI gene with a three-amino-acid insertion showing a larger peptide repertoire than in other mammals. Our study adds to knowledge on the diversity of eutherian MHCI genes, which may have been shaped in a taxon-specific manner.
Collapse
Affiliation(s)
- Shamshidin Abduriyim
- Department of Ecology, Hubei Key Laboratory of Cell Homeostasis, College of Life ScienceWuhan UniversityWuhanChina
| | - Da‐Hu Zou
- Department of Ecology, Hubei Key Laboratory of Cell Homeostasis, College of Life ScienceWuhan UniversityWuhanChina
| | - Huabin Zhao
- Department of Ecology, Hubei Key Laboratory of Cell Homeostasis, College of Life ScienceWuhan UniversityWuhanChina
| |
Collapse
|