1
|
Sánchez-Vialas A, Copete-Mosquera LA, Calvo-Revuelta M. Contributions to the amphibians and reptiles of Myanmar: insights from the Leonardo Fea legacy housed at the Museo Nacional de Ciencias Naturales of Madrid. Zootaxa 2024; 5457:1-64. [PMID: 39646953 DOI: 10.11646/zootaxa.5457.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Indexed: 12/10/2024]
Abstract
The Museo Nacional de Ciencias Naturales (MNCN) holds a significant repository of historical specimens collected by Leonardo Fea in Myanmar from 1885 to 1889, which have remained overlooked for decades. In this work, we present a commented taxonomic catalogue of the MNCN amphibians and reptiles collected by L. Fea. Based on this material, we unveil the first documented record of Wijayarana melasma in Myanmar and identify a potential new species of Leptobrachium. Also, the collection contains several topotypes of six species: Limnonectes macrognathus, Orixalus carinensis, Chirixalus doriae, Xenophrys parva, Brachytarsophrys carinense, and Leiolepis ocellata. These findings emphasize the crucial role of scientific collections in revealing information that have gone unnoticed for more than a century, hinting at a potential underestimation of Myanmar's biodiversity.
Collapse
Affiliation(s)
- Alberto Sánchez-Vialas
- Museo Nacional de Ciencias Naturales (MNCN-CSIC); C/ José Gutiérrez Abascal; 2. 28006; Madrid; Spain.
| | - Luis A Copete-Mosquera
- Museo Nacional de Ciencias Naturales (MNCN-CSIC); C/ José Gutiérrez Abascal; 2. 28006; Madrid; Spain; Grupo de Investigación en Herpetología; Programa en Biología; Facultad de Ciencias Naturales; Universidad Tecnológica del Chocó; 270002 Quibdó; Colombia.
| | - Marta Calvo-Revuelta
- Museo Nacional de Ciencias Naturales (MNCN-CSIC); C/ José Gutiérrez Abascal; 2. 28006; Madrid; Spain.
| |
Collapse
|
2
|
Lo YY, Cheng RC, Lin CP. Integrative species delimitation and five new species of lynx spiders (Araneae, Oxyopidae) in Taiwan. PLoS One 2024; 19:e0301776. [PMID: 38722906 PMCID: PMC11081396 DOI: 10.1371/journal.pone.0301776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/21/2024] [Indexed: 05/13/2024] Open
Abstract
An accurate assessment of species diversity is a cornerstone of biology and conservation. The lynx spiders (Araneae: Oxyopidae) represent one of the most diverse and widespread cursorial spider groups, however their species richness in Asia is highly underestimated. In this study, we revised species diversity with extensive taxon sampling in Taiwan and explored species boundaries based on morphological traits and genetic data using a two-step approach of molecular species delimitation. Firstly, we employed a single COI dataset and applied two genetic distance-based methods: ABGD and ASAP, and two topology-based methods: GMYC and bPTP. Secondly, we further analyzed the lineages that were not consistently delimited, and incorporated H3 to the dataset for a coalescent-based analysis using BPP. A total of eight morphological species were recognized, including five new species, Hamataliwa cordivulva sp. nov., Hamat. leporauris sp. nov., Tapponia auriola sp. nov., T. parva sp. nov. and T. rarobulbus sp. nov., and three newly recorded species, Hamadruas hieroglyphica (Thorell, 1887), Hamat. foveata Tang & Li, 2012 and Peucetia latikae Tikader, 1970. All eight morphological species exhibited reciprocally monophyletic lineages. The results of molecular-based delimitation analyses suggested a variety of species hypotheses that did not fully correspond to the eight morphological species. We found that Hamat. cordivulva sp. nov. and Hamat. foveata showed shallow genetic differentiation in the COI, but they were unequivocally distinguishable according to their genitalia. In contrast, T. parva sp. nov. represented a deep divergent lineage, while differences of genitalia were not detected. This study highlights the need to comprehensively employ multiple evidence and methods to delineate species boundaries and the values of diagnostic morphological characters for taxonomic studies in lynx spiders.
Collapse
Affiliation(s)
- Ying-Yuan Lo
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Wild Animals Division, Biodiversity Research Institute, Nantou, Taiwan
| | - Ren-Chung Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Research Center for Global Change Biology, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Ping Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
3
|
Pérez-Rodríguez R, Domínguez-Domínguez O, Pedraza-Lara C, Rosas-Valdez R, Pérez-Ponce de León G, García-Andrade AB, Doadrio I. Multi-locus phylogeny of the catfish genus Ictalurus Rafinesque, 1820 (Actinopterygii, Siluriformes) and its systematic and evolutionary implications. BMC Ecol Evol 2023; 23:27. [PMID: 37370016 PMCID: PMC10304232 DOI: 10.1186/s12862-023-02134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Ictalurus is one of the most representative groups of North American freshwater fishes. Although this group has a well-studied fossil record and has been the subject of several morphological and molecular phylogenetic studies, incomplete taxonomic sampling and insufficient taxonomic studies have produced a rather complex classification, along with intricate patterns of evolutionary history in the genus that are considered unresolved and remain under debate. RESULTS Based on four loci and the most comprehensive taxonomic sampling analyzed to date, including currently recognized species, previously synonymized species, undescribed taxa, and poorly studied populations, this study produced a resolved phylogenetic framework that provided plausible species delimitation and an evolutionary time framework for the genus Ictalurus. CONCLUSIONS Our phylogenetic hypothesis revealed that Ictalurus comprises at least 13 evolutionary units, partially corroborating the current classification and identifying populations that emerge as putative undescribed taxa. The divergence times of the species indicate that the diversification of Ictalurus dates to the early Oligocene, confirming its status as one of the oldest genera within the family Ictaluridae.
Collapse
Affiliation(s)
- Rodolfo Pérez-Rodríguez
- Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, 58000, Michoacán, México
| | - Omar Domínguez-Domínguez
- Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, 58000, Michoacán, México
| | - Carlos Pedraza-Lara
- Forensic Science, Medicine School, National Autonomous University of Mexico, Circuito de la investigación científica s/n, Ciudad Universitaria, Coyoacan, 04510, CdMx, Mexico
| | - Rogelio Rosas-Valdez
- Laboratorio de Colecciones Biológicas y Sistemática Molecular, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Campus Universitario II, Col. Agronómica, Zacatecas, C. P. 98066, México
| | - Gerardo Pérez-Ponce de León
- Instituto de Biología, UNAM, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, C.P. 04510, D.F, México
- Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Km 4.5 Carretera Mérida-Tetiz, Ucú, Yucatán, México
| | - Ana Berenice García-Andrade
- Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, 58000, Michoacán, México
- Laboratorio de Macroecología Evolutiva, Red de Biología Evolutiva, Instituto de Ecología, A.C. Carretera antigua a Coatepec 351, El Haya, Xalapa, 91070, Veracruz, México
| | - Ignacio Doadrio
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, c/José Gutiérrez Abascal 2, Madrid, E-28006, España.
| |
Collapse
|
4
|
Figueroa A, Low MEY, Lim KKP. Singapore's herpetofauna: updated and annotated checklist, history, conservation, and distribution. Zootaxa 2023; 5287:1-378. [PMID: 37518684 DOI: 10.11646/zootaxa.5287.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Indexed: 08/01/2023]
Abstract
Given Singapore's location at the confluence of important maritime trading routes, and that it was established as a British East India Company trading post in 1819, it is unsurprising that Singapore has become one of the centres of natural history collecting and research in Southeast Asia. Despite its small size, Singapore is home to a diverse herpetofauna assemblage and boasts a rich herpetological history. The first systematic studies of Singapore's herpetofauna (within the Linnaean binomial framework) date back to Stamford Raffles and the naturalists hired by him who first came to the island in 1819. Specimens that were collected during and after this time were deposited in museums worldwide. Over time, 39 species from Singapore were described as new to science. Due to the entrepôt nature of Singapore with its associated purchasing and trading of specimens (both alive and dead), poor record-keeping, and human introductions, numerous extraneous species from outside of Singapore were reported to occur on the island. Such issues have left a complicated legacy of ambiguous records and taxonomic complications concerning the identity of Singapore's species-rich herpetofauna, many of which were only resolved in the past 30-40 years. By compiling a comprehensive collection of records and publications relating to the herpetofauna of Singapore, we construct an updated and more accurate listing of the herpetofauna of Singapore. Our investigation culminated in the evaluation of 309 species, in which we compiled a final species checklist recognising 166 species (149 native and 17 non-native established species). Among the 149 native species are two caecilians, 24 frogs, one crocodilian, 13 turtles (three visitors), 34 lizards, and 75 snakes. Of the 17 non-native species are five frogs, four turtles, six lizards, and two snakes. The remaining 143 species represent species to be excluded from Singapore's herpetofauna species checklist. For each of the 309 species examined, we provide species accounts and explanatory annotations. Furthermore, we discuss Singapore's herpetofauna from a historical and conservation perspective. Immediate deforestation and nationwide urbanisation following colonisation completely eliminated many species from throughout much of the country and restricted them to small, degraded forest patches. We hope this publication highlights the importance of publishing observations and serves as a valuable resource to future researchers, naturalists, biological consultants, and policy makers in initiating studies on species ecology, distribution, status, and promoting conservation efforts to safeguard Singapore's herpetofauna.
Collapse
Affiliation(s)
| | - Martyn E Y Low
- Lee Kong Chian Natural History Museum; 2 Conservatory Drive; Singapore 117377.
| | - Kelvin K P Lim
- Lee Kong Chian Natural History Museum; 2 Conservatory Drive; Singapore 117377.
| |
Collapse
|
5
|
Ortiz D, Pekár S, Bryjová A. Gene flow assessment helps to distinguish strong genomic structure from speciation in an Iberian ant-eating spider. Mol Phylogenet Evol 2023; 180:107682. [PMID: 36574825 DOI: 10.1016/j.ympev.2022.107682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/01/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022]
Abstract
Although genomic data is boosting our understanding of evolution, we still lack a solid framework to perform reliable genome-based species delineation. This problem is especially critical in the case of phylogeographically structured organisms, with allopatric populations showing similar divergence patterns as species. Here, we assess the species limits and phylogeography of Zodarion alacre, an ant-eating spider widely distributed across the Iberian Peninsula. We first performed species delimitation based on genome-wide data and then validated these results using additional evidence. A commonly employed species delimitation strategy detected four distinct lineages with almost no admixture, which present allopatric distributions. These lineages showed ecological differentiation but no clear morphological differentiation, and evidence of introgression in a mitochondrial barcode. Phylogenomic networks found evidence of substantial gene flow between lineages. Finally, phylogeographic methods highlighted remarkable isolation by distance and detected evidence of range expansion from south-central Portugal to central-north Spain. We conclude that despite their deep genomic differentiation, the lineages of Z. alacre do not show evidence of complete speciation. Our results likely shed light on why Zodarion is among the most diversified spider genera despite its limited distribution and support the use of gene flow evidence to inform species boundaries.
Collapse
Affiliation(s)
- David Ortiz
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia.
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Anna Bryjová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
6
|
Othman SN, Shin Y, Kim HT, Chuang MF, Bae Y, Hoti J, Zhang Y, Jang Y, Borzée A. Evaluating the efficiency of popular species identification analytical methods, and integrative workflow using morphometry and barcoding bioinformatics for taxonomy and origin of traded cryptic brown frogs. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
7
|
Firneno TJ, O’Neill JR, Itgen MW, Kihneman TA, Townsend JH, Fujita MK. Delimitation despite discordance: Evaluating the species limits of a confounding species complex in the face of mitonuclear discordance. Ecol Evol 2021; 11:12739-12753. [PMID: 34594535 PMCID: PMC8462145 DOI: 10.1002/ece3.8018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/24/2022] Open
Abstract
The delimitation of species is an essential pursuit of biology, and proper taxonomies are crucial for the assessment and conservation management of organismal diversity. However, delimiting species can be hindered by a number of factors including highly conserved morphologies (e.g., cryptic species), differences in criteria of species concepts, lineages being in the early stages of the speciation or divergence process, and discordance between gene topologies (e.g., mitonuclear discordance). Here we use a taxonomically confounded species complex of toads in Central America that exhibits extensive mitonuclear discordance to test delimitation hypotheses. Our investigation integrates mitochondrial sequences, nuclear SNPs, morphology, and macroecological data to determine which taxonomy best explains the divergence and evolutionary relationships among these toads. We found that a three species taxonomy following the distributions of the nuclear SNP haplotypes offers the best explanation of the species in this complex based off of the integrated data types. Due to the taxonomic instability of this group, we also discuss conservation concerns in the face of improper taxonomic delimitation. Our study provides an empirical and integrative hypothesis testing framework to assess species delimitation hypotheses in the face of cryptic morphology and mitonuclear discordance and highlights the importance that a stable taxonomy has over conservation-related actions.
Collapse
Affiliation(s)
- Thomas J. Firneno
- Department of BiologyUniversity of Texas at ArlingtonArlingtonTXUSA
- Department of Biology, Amphibian and Reptile Diversity Research CenterUniversity of Texas at ArlingtonArlingtonTXUSA
| | | | | | | | - Josiah H. Townsend
- Department of BiologyIndiana University of PennsylvaniaIndianaPAUSA
- Departamento de Ambiente y DesarrolloCentro Zamorano de BiodiversidadEscuela Agrícola Panamericana ZamoranoMunicipalidad de San Antonio de OrienteFrancisco MorazánHonduras
| | - Matthew K. Fujita
- Department of BiologyUniversity of Texas at ArlingtonArlingtonTXUSA
- Department of Biology, Amphibian and Reptile Diversity Research CenterUniversity of Texas at ArlingtonArlingtonTXUSA
| |
Collapse
|
8
|
Leaché AD, Davis HR, Singhal S, Fujita MK, Lahti ME, Zamudio KR. Phylogenomic Assessment of Biodiversity Using a Reference-Based Taxonomy: An Example With Horned Lizards (Phrynosoma). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.678110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Phylogenomic investigations of biodiversity facilitate the detection of fine-scale population genetic structure and the demographic histories of species and populations. However, determining whether or not the genetic divergence measured among populations reflects species-level differentiation remains a central challenge in species delimitation. One potential solution is to compare genetic divergence between putative new species with other closely related species, sometimes referred to as a reference-based taxonomy. To be described as a new species, a population should be at least as divergent as other species. Here, we develop a reference-based taxonomy for Horned Lizards (Phrynosoma; 17 species) using phylogenomic data (ddRADseq data) to provide a framework for delimiting species in the Greater Short-horned Lizard species complex (P. hernandesi). Previous species delimitation studies of this species complex have produced conflicting results, with morphological data suggesting that P. hernandesi consists of five species, whereas mitochondrial DNA support anywhere from 1 to 10 + species. To help address this conflict, we first estimated a time-calibrated species tree for P. hernandesi and close relatives using SNP data. These results support the paraphyly of P. hernandesi; we recommend the recognition of two species to promote a taxonomy that is consistent with species monophyly. There is strong evidence for three populations within P. hernandesi, and demographic modeling and admixture analyses suggest that these populations are not reproductively isolated, which is consistent with previous morphological analyses that suggest hybridization could be common. Finally, we characterize the population-species boundary by quantifying levels of genetic divergence for all 18 Phrynosoma species. Genetic divergence measures for western and southern populations of P. hernandesi failed to exceed those of other Phrynosoma species, but the relatively small population size estimated for the northern population causes it to appear as a relatively divergent species. These comparisons underscore the difficulties associated with putting a reference-based approach to species delimitation into practice. Nevertheless, the reference-based approach offers a promising framework for the consistent assessment of biodiversity within clades of organisms with similar life histories and ecological traits.
Collapse
|
9
|
Ecological and spatial patterns associated with diversification of South American Physaria (Brassicaceae) through the general concept of species. ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-021-00486-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Identification and Species Delimitation of the Enigmatic Marsh Frog Pulchrana rawa (Matsui, Mumpuni, and Hamidy, 2012): Second Confirmed Specimen and First Country Record for Malaysia. J HERPETOL 2020. [DOI: 10.1670/19-132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Othman SN, Chen YH, Chuang MF, Andersen D, Jang Y, Borzée A. Impact of the Mid-Pleistocene Revolution and Anthropogenic Factors on the Dispersion of Asian Black-Spined Toads ( Duttaphrynus melanostictus). Animals (Basel) 2020; 10:E1157. [PMID: 32650538 PMCID: PMC7401666 DOI: 10.3390/ani10071157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 11/28/2022] Open
Abstract
Divergence-time estimation critically improves the understanding of biogeography processes underlying the distribution of species, especially when fossil data is not available. We hypothesise that the Asian black-spined toad, Duttaphrynus melanostictus, expanded into the Eastern Indomalaya following the Quaternary glaciations with the subsequent colonisation of new landscapes during the Last Glacial Maximum. Divergence dating inferred from 364 sequences of mitochondrial tRNAGly ND3 supported the emergence of a common ancestor to the three D. melanostictus clades around 1.85 (±0.77) Ma, matching with the Lower to Mid-Pleistocene transition. Duttaphrynus melanostictus then dispersed into Southeast Asia from the central Indo-Pacific and became isolated in the Southern Sundaic and Wallacea regions 1.43 (±0.10) Ma through vicariance as a result of sea level oscillations. The clade on the Southeast Asian mainland then colonised the peninsula from Myanmar to Vietnam and expanded towards Southeastern China at the end of the Mid-Pleistocene Revolution 0.84 (±0.32) Ma. Population dynamics further highlight an expansion of the Southeast Asian mainland population towards Taiwan, the Northeastern edge of the species' range after the last interglacial, and during the emergence of the Holocene human settlements around 7000 BP. Thus, the current divergence of D. melanostictus into three segregated clades was mostly shaped by Quaternary glaciations, followed by natural dispersion events over land bridges and accelerated by anthropogenic activities.
Collapse
Affiliation(s)
- Siti N. Othman
- Department of Life Sciences and Division of EcoScience, Ewha Womans University, Seoul 03760, Korea; (S.N.O.); (M.-F.C.); (D.A.); (Y.J.)
| | - Yi-Huey Chen
- Department of Life Science, Chinese Culture University, Taipei 11114, Taiwan;
| | - Ming-Feng Chuang
- Department of Life Sciences and Division of EcoScience, Ewha Womans University, Seoul 03760, Korea; (S.N.O.); (M.-F.C.); (D.A.); (Y.J.)
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Desiree Andersen
- Department of Life Sciences and Division of EcoScience, Ewha Womans University, Seoul 03760, Korea; (S.N.O.); (M.-F.C.); (D.A.); (Y.J.)
| | - Yikweon Jang
- Department of Life Sciences and Division of EcoScience, Ewha Womans University, Seoul 03760, Korea; (S.N.O.); (M.-F.C.); (D.A.); (Y.J.)
| | - Amaël Borzée
- Laboratory of Animal Behaviour and Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
12
|
Jusoh WFA, Ballantyne L, Chan KO. DNA-based species delimitation reveals cryptic and incipient species in synchronous flashing fireflies (Coleoptera: Lampyridae) of Southeast Asia. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Synchronous flashing fireflies of the genus Pteroptyx are ubiquitous throughout Southeast Asia, yet fundamental knowledge about their biodiversity is lacking. Recent studies have revealed notable population-level phylogeographical structure within the Pteroptyx tener and P. bearni groups in Malaysia, suggesting that cryptic species may exist. Additionally, morphological and genetic similarities between P. balingiana and P. malaccae have raised questions about the former’s validity as a distinct species. We collected samples from previously unsampled populations and assembled the most comprehensive genetic dataset for Pteroptyx to date, to characterize species boundaries within the P. tener, P. bearni and P. malaccae groups. Using a suite of species delimitation analyses, we show that P. tener along the west coast of Peninsular Malaysia (PM) is distinct from populations from the east coast and Borneo despite the absence of morphological differentiation. However, analyses could not conclusively differentiate P. bearni from Borneo and eastern PM, nor identify P. balingiana and P. malaccae as distinct species, indicating that these populations may be conspecific or represent incipient species. This study underlines the need to increase geographical, taxonomic and genetic sampling of Southeast Asian fireflies to provide a better understanding of their biodiversity.
Collapse
Affiliation(s)
- Wan F A Jusoh
- Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, Singapore
| | - Lesley Ballantyne
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - Kin Onn Chan
- Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|