1
|
Kumar A, Pal A, Singh P, Rani I, Tondolo V, Rongioletti M, Squitti R. Might Diet, APOE-APOA1 Axis, and Iron Metabolism Provide Clues About the Discrepancy in Alzheimer's Disease Occurrence Between Humans and Chimpanzees? A Bioinformatics-Based Re-Analysis of Gene Expression Data on Mice Fed with Human and Chimpanzee Diets. Biol Trace Elem Res 2024; 202:3750-3759. [PMID: 37938458 DOI: 10.1007/s12011-023-03932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
The emergence of conflicting reports on the natural occurrence of Alzheimer's disease (AD) in non-human primates has prompted research on the comparison of the role of diet-associated changes in gene expression between humans and non-human primates. This article analyzes the effects of different human and chimpanzee diets and their link with apolipoproteins, lipid, and iron (Fe) metabolism, starting from available data, to find out any gap in the existing knowledge. By using a system biology approach, we have re-analyzed the liver and brain RNA seq data of mice fed with either human or chimpanzee diet for 2 weeks to look for genetic differences that may explain the differences in AD occurrence between those two classes. In liver samples of mice fed with the chimpanzee diet in comparison to the human diet, apolipoprotein A-1, ceruloplasmin, and 10 other genes were upregulated while 21 genes were downregulated. However, brain apolipoprotein E4 gene expression was not changed upon diet. Genetic, structural, and functional differences in apolipoprotein E protein, along with differences in Fe metabolisms and a longer lifespan of humans during evolution may account for the observed disparity.
Collapse
Affiliation(s)
- Ashok Kumar
- Centre for Systems Biology and Bioinformatics, Panjab University, Chandigarh, India
| | - Amit Pal
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani, West Bengal, 741245, India.
| | - Parminder Singh
- Centre for Systems Biology and Bioinformatics, Panjab University, Chandigarh, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Sadopur, Ambala, India
| | - Vincenzo Tondolo
- Digestive and Colorectal Surgery, Ospedale Isola Tiberina, Gemelli Isola, 00186, Rome, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Mauro Rongioletti
- Department of Laboratory Science, Ospedale Isola Tiberina, Gemelli Isola, 00186, Rome, Italy
| | - Rosanna Squitti
- Department of Laboratory Science, Ospedale Isola Tiberina, Gemelli Isola, 00186, Rome, Italy
| |
Collapse
|
2
|
Chacón CF, Parachú Marcó MV, Poletta GL, Siroski PA. Lipid metabolism in crocodilians: A field with promising applications in the field of ecotoxicology. ENVIRONMENTAL RESEARCH 2024; 252:119017. [PMID: 38704009 DOI: 10.1016/j.envres.2024.119017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
In the last years, lipid physiology has become an important research target for systems biology applied to the field of ecotoxicology. Lipids are not only essential components of biological membranes, but also participate in extra and intracellular signaling processes and as signal transducers and amplifiers of regulatory cascades. Particularly in sauropsids, lipids are the main source of energy for reproduction, growth, and embryonic development. In nature, organisms are exposed to different stressors, such as parasites, diseases and environmental contaminants, which interact with lipid signaling and metabolic pathways, disrupting lipid homeostasis. The system biology approach applied to ecotoxicological studies is crucial to evaluate metabolic regulation under environmental stress produced by xenobiotics. In this review, we cover information of molecular mechanisms that contribute to lipid metabolism homeostasis in sauropsids, specifically in crocodilian species. We focus on the role of lipid metabolism as a powerful source of energy and its importance during oocyte maturation, which has been increasingly recognized in many species, but information is still scarce in crocodiles. Finally, we highlight priorities for future research on the influence of environmental stressors on lipid metabolism, their potential effect on the reproductive system and thus on the offspring, and their implications on crocodilians conservation.
Collapse
Affiliation(s)
- C F Chacón
- Laboratorio de Ecología Molecular Aplicada (LEMA), Instituto de Ciencias Veterinarias del Litoral- Consejo Nacional de Investigaciones Científicas y Técnicas (ICiVet Litoral-CONICET/UNL), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina; Proyecto Yacaré (MAyCC, Gob. de Santa Fe), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina.
| | - M V Parachú Marcó
- Laboratorio de Ecología Molecular Aplicada (LEMA), Instituto de Ciencias Veterinarias del Litoral- Consejo Nacional de Investigaciones Científicas y Técnicas (ICiVet Litoral-CONICET/UNL), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina; Proyecto Yacaré (MAyCC, Gob. de Santa Fe), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina
| | - G L Poletta
- Laboratorio de Ecología Molecular Aplicada (LEMA), Instituto de Ciencias Veterinarias del Litoral- Consejo Nacional de Investigaciones Científicas y Técnicas (ICiVet Litoral-CONICET/UNL), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina; Toxicología, Farmacología y Bioquímica Legal, FBCB-UNL, CONICET, Ciudad Universitaria, Paraje El Pozo S/N, 3000, Santa Fe, Argentina
| | - P A Siroski
- Laboratorio de Ecología Molecular Aplicada (LEMA), Instituto de Ciencias Veterinarias del Litoral- Consejo Nacional de Investigaciones Científicas y Técnicas (ICiVet Litoral-CONICET/UNL), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina; Proyecto Yacaré (MAyCC, Gob. de Santa Fe), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina
| |
Collapse
|
3
|
Ros-Rocher N, Kidner R, Gerdt C, Davidson W, Ruiz-Trillo I, Gerdt J. Chemical factors induce aggregative multicellularity in a close unicellular relative of animals. Proc Natl Acad Sci U S A 2023; 120:e2216668120. [PMID: 37094139 PMCID: PMC10161120 DOI: 10.1073/pnas.2216668120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 04/26/2023] Open
Abstract
Regulated cellular aggregation is an essential process for development and healing in many animal tissues. In some animals and a few distantly related unicellular species, cellular aggregation is regulated by diffusible chemical cues. However, it is unclear whether regulated cellular aggregation was part of the life cycles of the first multicellular animals and/or their unicellular ancestors. To fill this gap, we investigated the triggers of cellular aggregation in one of animals' closest unicellular living relatives-the filasterean Capsaspora owczarzaki. We discovered that Capsaspora aggregation is induced by chemical cues, as observed in some of the earliest branching animals and other unicellular species. Specifically, we found that calcium ions and lipids present in lipoproteins function together to induce aggregation of viable Capsaspora cells. We also found that this multicellular stage is reversible as depletion of the cues triggers disaggregation, which can be overcome upon reinduction. Our finding demonstrates that chemically regulated aggregation is important across diverse members of the holozoan clade. Therefore, this phenotype was plausibly integral to the life cycles of the unicellular ancestors of animals.
Collapse
Affiliation(s)
- Núria Ros-Rocher
- Department of Functional Genomics and Evolution, Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), 08003 Barcelona, Spain
- Department of Cell Biology and Infection and Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France
| | - Ria Q. Kidner
- Department of Chemistry, Indiana University, Bloomington, IN47405
| | - Catherine Gerdt
- Department of Chemistry, Indiana University, Bloomington, IN47405
| | - W. Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH45221
| | - Iñaki Ruiz-Trillo
- Department of Functional Genomics and Evolution, Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010Barcelona, Spain
| | - Joseph P. Gerdt
- Department of Chemistry, Indiana University, Bloomington, IN47405
| |
Collapse
|
4
|
Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L, Svensson M, Martinson I, Boza-Serrano A, Venero JL, Nielsen HM, Gouras GK, Deierborg T. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Mol Neurodegener 2022; 17:62. [PMID: 36153580 PMCID: PMC9509584 DOI: 10.1186/s13024-022-00566-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-β load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Sabine C. Konings
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Javier Frontiñán-Rubio
- Oxidative Stress and Neurodegeneration Group, Faculty of Medicine, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Juan García-Revilla
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Martina Svensson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Isak Martinson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Antonio Boza-Serrano
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luís Venero
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Henrietta M. Nielsen
- Department of Biochemistry and Biophysics at, Stockholm University, Stockholm, Sweden
| | - Gunnar K. Gouras
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Cooper HF, Best RJ, Andrews LV, Corbin JPM, Garthwaite I, Grady KC, Gehring CA, Hultine KR, Whitham TG, Allan GJ. Evidence of climate-driven selection on tree traits and trait plasticity across the climatic range of a riparian foundation species. Mol Ecol 2022; 31:5024-5040. [PMID: 35947510 DOI: 10.1111/mec.16645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
Selection on quantitative traits by heterogeneous climatic conditions can lead to substantial trait variation across a species range. In the context of rapidly changing environments, however, it is equally important to understand selection on trait plasticity. To evaluate the role of selection in driving divergences in traits and their associated plasticities within a widespread species, we compared molecular and quantitative trait variation in Populus fremontii (Fremont cottonwood), a foundation riparian distributed throughout Arizona. Using SNP data and genotypes from 16 populations reciprocally planted in three common gardens, we first performed QST -FST analyses to detect selection on traits and trait plasticity. We then explored the environmental drivers of selection using trait-climate and plasticity-climate regressions. Three major findings emerged: 1) There was significant genetic variation in traits expressed in each of the common gardens and in the phenotypic plasticity of traits across gardens, both of which were heritable. 2) Based on QST -FST comparisons, there was evidence of selection in all traits measured; however, this result varied from no effect in one garden to highly significant in another, indicating that detection of past selection is environmentally dependent. We also found strong evidence of divergent selection on plasticity across environments for two traits. 3) Traits and/or their plasticity were often correlated with population source climate (R2 up to 0.77 and 0.66, respectively). These results suggest that steep climate gradients across the Southwest have played a major role in shaping the evolution of divergent phenotypic responses in populations and genotypes now experiencing climate change.
Collapse
Affiliation(s)
- Hillary F Cooper
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, USA
| | - Rebecca J Best
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, USA
| | - Lela V Andrews
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA
| | - Jaclyn P M Corbin
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, USA
| | - Iris Garthwaite
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, USA
| | - Kevin C Grady
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | - Catherine A Gehring
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, USA
| | - Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, USA
| | - Thomas G Whitham
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, USA
| | - Gerard J Allan
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
6
|
Ishak GM, Feugang JM, Pechanova O, Pechan T, Peterson DG, Willard ST, Ryan PL, Gastal EL. Follicular-fluid proteomics during equine follicle development. Mol Reprod Dev 2022; 89:298-311. [PMID: 35762042 DOI: 10.1002/mrd.23622] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/04/2022] [Accepted: 06/03/2022] [Indexed: 11/06/2022]
Abstract
The complex composition of the follicular fluid (FF), the intimate proximity to the oocyte, and the continual changes in their composition have a major effect on folliculogenesis and oogenesis. To date, the profiling of FF proteomes during follicle selection, development, and ovulation has not been comprehensively investigated. Therefore, a shotgun proteomics approach and bioinformatics analyses were used to profile the proteomes of equine FF harvested in vivo from follicles at the following development stages: predeviation (18-20 mm), deviation (22-25 mm), postdeviation (26-29 mm), preovulatory (30-35 mm), and impending ovulation. A total of 294 proteins were detected in FF (FDR <1%), corresponding to 65 common proteins and 124, 142, 167, 132, and 142 proteins in the predeviation, deviation, postdeviation, preovulatory, and impending ovulation groups, respectively. The higher expression of properdin and several other proteins belonging to the complement system during the deviation time and ovulation suggested their contribution in the selection of the future dominant follicle and ovulation. Apolipoprotein A-1 and antithrombin-III appeared to be important throughout folliculogenesis. The "complement and coagulation cascades" was the major KEGG pathway across all stages of follicle development. The significant expression of several proteins belonging to the serine-type endopeptidase indicated their likely contribution to follicle and oocyte development. Our data provide an extensive description and functional analyses of the equine FF proteome during follicle selection, development, and ovulation. This information will help improve understanding of the ovarian function and ovulatory dysfunctions and might serve as a reference for future biomarker discovery for oocyte quality assessment.
Collapse
Affiliation(s)
- Ghassan M Ishak
- Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Olga Pechanova
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Tibor Pechan
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Scott T Willard
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Peter L Ryan
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Eduardo L Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| |
Collapse
|
7
|
A Clinical Case of a Homozygous Deletion in the APOA5 Gene with Severe Hypertriglyceridemia. Genes (Basel) 2022; 13:genes13061062. [PMID: 35741823 PMCID: PMC9222921 DOI: 10.3390/genes13061062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/28/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Hypertriglyceridemia (HTG) is one of the most common forms of lipid metabolism disorders. The leading clinical manifestations are pancreatitis, atherosclerotic vascular lesions, and the formation of eruptive xanthomas. The most severe type of HTG is primary (or hereditary) hypertriglyceridemia, linked to pathogenic genetic variants in LPL, APOC2, LMF1, and APOA5 genes. Case: We present a clinical case of severe primary hypertriglyceridemia (TG level > 55 mmol/L in a 4-year-old boy) in a consanguineous family. The disease developed due to a previously undescribed homozygous deletion in the APOA5 gene (NM_052968: c.579_592delATACGCCGAGAGCC p.Tyr194Gly*68). We also evaluate the clinical significance of a genetic variant in the LPL gene (NM_000237.2: c.106G>A (rs1801177) p.Asp36Asn), which was previously described as a polymorphism. In one family, we also present a different clinical significance even in heterozygous carriers: from hypertriglyceridemia to normotriglyceridemia. We provide evidence that this heterogeneity has developed due to polymorphism in the LPL gene, which plays the role of an additional trigger. Conclusions: The homozygous deletion of the APOA5 gene is responsible for the severe hypertriglyceridemia, and another SNP in the LPL gene worsens the course of the disease.
Collapse
|
8
|
HDL as Bidirectional Lipid Vectors: Time for New Paradigms. Biomedicines 2022; 10:biomedicines10051180. [PMID: 35625916 PMCID: PMC9138557 DOI: 10.3390/biomedicines10051180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
The anti-atherogenic properties of high-density lipoproteins (HDL) have been explained mainly by reverse cholesterol transport (RCT) from peripheral tissues to the liver. The RCT seems to agree with most of the negative epidemiological correlations between HDL cholesterol levels and coronary artery disease. However, therapies designed to increase HDL cholesterol failed to reduce cardiovascular risk, despite their capacity to improve cholesterol efflux, the first stage of RCT. Therefore, the cardioprotective role of HDL may not be explained by RCT, and it is time for new paradigms about the physiological function of these lipoproteins. It should be considered that the main HDL apolipoprotein, apo AI, has been highly conserved throughout evolution. Consequently, these lipoproteins play an essential physiological role beyond their capacity to protect against atherosclerosis. We propose HDL as bidirectional lipid vectors carrying lipids from and to tissues according to their local context. Lipid influx mediated by HDL appears to be particularly important for tissue repair right on site where the damage occurs, including arteries during the first stages of atherosclerosis. In contrast, the HDL-lipid efflux is relevant for secretory cells where the fusion of intracellular vesicles drastically enlarges the cytoplasmic membrane with the potential consequence of impairment of cell function. In such circumstances, HDL could deliver some functional lipids and pick up not only cholesterol but an integral part of the membrane in excess, restoring the viability of the secretory cells. This hypothesis is congruent with the beneficial effects of HDL against atherosclerosis as well as with their capacity to induce insulin secretion and merits experimental exploration.
Collapse
|
9
|
Jarosz ŁS, Michalak K, Marek A, Hejdysz M, Ciszewski A, Kaczmarek S, Kwiecień M, Grądzki Z. The effect of feed supplementation with zinc glycine chelate and zinc sulphate on hepatic proteome profiles in chickens. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Tréguier Y, Bull-Maurer A, Roingeard P. Apolipoprotein E, a Crucial Cellular Protein in the Lifecycle of Hepatitis Viruses. Int J Mol Sci 2022; 23:ijms23073676. [PMID: 35409035 PMCID: PMC8998859 DOI: 10.3390/ijms23073676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Apolipoprotein E (ApoE) is a multifunctional protein expressed in several tissues, including those of the liver. This lipoprotein component is responsible for maintaining lipid content homeostasis at the plasma and tissue levels by transporting lipids between the liver and peripheral tissues. The ability of ApoE to interact with host-cell surface receptors and its involvement in several cellular pathways raised questions about the hijacking of ApoE by hepatotropic viruses. Hepatitis C virus (HCV) was the first hepatitis virus reported to be dependent on ApoE for the completion of its lifecycle, with ApoE being part of the viral particle, mediating its entry into host cells and contributing to viral morphogenesis. Recent studies of the hepatitis B virus (HBV) lifecycle have revealed that this virus and its subviral envelope particles also incorporate ApoE. ApoE favors HBV entry and is crucial for the morphogenesis of infectious particles, through its interaction with HBV envelope glycoproteins. This review summarizes the data highlighting the crucial role of ApoE in the lifecycles of HBV and HCV and discusses its potential role in the lifecycle of other hepatotropic viruses.
Collapse
Affiliation(s)
- Yannick Tréguier
- INSERM U1259 MAVIVH, Université de Tours et CHU de Tours, 37032 Tours, France; (Y.T.); (A.B.-M.)
| | - Anne Bull-Maurer
- INSERM U1259 MAVIVH, Université de Tours et CHU de Tours, 37032 Tours, France; (Y.T.); (A.B.-M.)
| | - Philippe Roingeard
- INSERM U1259 MAVIVH, Université de Tours et CHU de Tours, 37032 Tours, France; (Y.T.); (A.B.-M.)
- Plateforme IBiSA des Microscopies, Université de Tours et CHU de Tours, 37032 Tours, France
- Correspondence: ; Tel.: +33-0247-366-232
| |
Collapse
|
11
|
Javadifar A, Ghezeldasht SA, Rahimi H, Valizadeh N, Borojerdi ZR, Vahidi Z, Rezaee SR. Possible deterioration of Apolipoproteins expression by HTLV-1 infection in favor of infected leukemic cells in adult T-cell leukemia/lymphoma (ATLL). GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Kotlyarov SN, Kotlyarova AA. Role of lipid metabolism and systemic inflammation in the development of atherosclerosis in animal models. I.P. PAVLOV RUSSIAN MEDICAL BIOLOGICAL HERALD 2021. [DOI: 10.23888/pavlovj2021291134-146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Systemic inflammation makes a significant contribution to the pathogenesis of atherosclerosis and has been the subject of numerous studies. Works aiming to analyze the mechanisms of atherosclerosis development often include experiments on animals. A primary task of such research is the characterization, justification, and selection of an adequate model.
Aim. To evaluate the peculiarities of lipid metabolism and systemic inflammation in chronic obstructive pulmonary disease (COPD) in the development of atherosclerosis in animal models.
Materials and Methods. Analyses of cross-links between species-specific peculiarities of lipid metabolism and the immune response, as well as a bioinformatic analysis of differences in Toll-like receptor 4 (TLR4) in mice, rats, and rabbits in comparison with its human homolog, were carried out. A search for and analysis of the amino acid sequences of human, mouse, rat, and rabbit TLR4 was performed in the International database GenBank of National Center of Biotechnical Information and in The Universal Protein Resource (UniProt) database. Multiple alignments of the TLR4 amino acid sequences were implemented in the Clustal Omega program, version 1.2.4. Reconstruction and visualization of molecular phylogenetic trees were performed using the MEGA7 program according to the Neighbor-Joining and Maximum Parsimony methods.
Results. Species-specific differences of the peculiarities of lipid metabolism and the innate immune response in humans, mice, and rabbits were shown that must be taken into account in analyses of study results.
Conclusion.Disorders in lipid metabolism and systemic inflammation mediated by the innate immune system participating in the pathogenesis of atherosclerosis in COPD possess species-specific differences that should be taken into account in analyses of study results.
Collapse
|
13
|
Han Q, Han Y, Wen H, Pang Y, Li Q. Molecular Evolution of Apolipoprotein Multigene Family and the Original Functional Properties of Serum Apolipoprotein (LAL2) in Lampetra japonica. Front Immunol 2020; 11:1751. [PMID: 32849624 PMCID: PMC7431520 DOI: 10.3389/fimmu.2020.01751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/30/2020] [Indexed: 01/20/2023] Open
Abstract
Apolipoprotein (APO) genes represent a large family of genes encoding various binding proteins associated with plasma lipid transport. Due to the long divergence history, it remains to be confirmed whether these genes evolved from a common ancestor through gene duplication and original function, and how this evolution occurred. In this study, based on the phylogenetic tree, sequence alignment, motifs, and evolutionary analysis of gene synteny and collinearity, APOA, APOC, and APOE in higher vertebrates may have a common ancestor, lamprey serum apolipoprotein LAL1 or LAL2, which traces back to 360 million years ago. Moreover, the results of immunofluorescence, immunohistochemistry, and flow cytometry show that LAL2 is primarily distributed in the liver, kidney, and blood leukocytes of lampreys, and specifically localized in the cytoplasm of liver cells and leukocytes, as well as secreted into sera. Surface plasmon resonance technology demonstrates that LAL2 colocalizes to breast adenocarcinoma cells (MCF-7) or chronic myeloid leukemia cells (K562) associated with lamprey immune protein (LIP) and further enhances the killing effect of LIP on tumor cells. In addition, using quantitative real-time PCR (Q-PCR) and western blot methods, we found that the relative mRNA and protein expression of lal2 in lamprey leukocytes and sera increased significantly at different times after stimulating with Staphylococcus aureus, Vibrio anguillarum, and Polyinosinic-polycytidylic acid (Poly I:C). Moreover, LAL2 was found to recognize and bind to gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) and gram-negative bacteria (Escherichia coli) and play an important role in the antibacterial process. All in all, our data reveals a long, complex evolutionary history for apolipoprotein genes under different selection pressures, confirms the immune effect of LAL2 in lamprey sera against pathogens, and lays the foundation for further research regarding biological functions of lamprey immune systems.
Collapse
Affiliation(s)
- Qing Han
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yinglun Han
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Hongyan Wen
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
14
|
Zhao Y, Liu W, Zhao X, Yu Z, Guo H, Yang Y, Zhang J, Moussian B, Zhang J. Apolipophorin-II/I Contributes to Cuticular Hydrocarbon Transport and Cuticle Barrier Construction in Locusta migratoria. Front Physiol 2020; 11:790. [PMID: 32733279 PMCID: PMC7360829 DOI: 10.3389/fphys.2020.00790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Apolipophorins are carrier proteins that bind lipids and mediate their transport from tissue to tissue in animals. Apolipophorin I and II (apoLp-II/I) are the major apolipophorins in insects. The implication of apoLp-II/I in cuticle lipid-barrier formation in insects has not been addressed to date. In the present study, we investigated the function of apoLp-II/I in the migratory locust Locusta migratoria (LmapoLp-II/I). During the development of fifth instar nymphs, LmapoLp-II/I transcript levels increased until mid-instar, and then decreased gradually until molting to the adult stage. We found that LmapoLp-II/I was predominately expressed in the fat body and the integument including oenocytes and epidermal cells. Immunodetection experiments revealed that LmapoLp-I mainly localized in the cytoplasm of oenocytes and epidermal cells. Silencing of LmapoLp-II/I caused molting defects in nymphs. Importantly, RNA interference against LmapoLp-II/I resulted in a significant decrease in the content of cuticle surface lipids including alkanes and methyl alkanes. Cuticular permeability was significantly enhanced in these nymphs in Eosin Y penetration assays. By consequence, desiccation resistance and insecticide tolerance of dsLmapoLp-II/I-treated locusts were reduced. Taken together, our results indicate that LmapoLp-II/I is involved in the transport and deposition of surface-cuticular lipids that are crucial for maintaining normal cuticle barrier function in L. migratoria.
Collapse
Affiliation(s)
- Yiyan Zhao
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China.,College of Life Science, Shanxi University, Taiyuan, China
| | - Weimin Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Xiaoming Zhao
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Zhitao Yu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Hongfang Guo
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China.,College of Life Science, Shanxi University, Taiyuan, China
| | - Yang Yang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China.,College of Life Science, Shanxi University, Taiyuan, China
| | - Jianqin Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Bernard Moussian
- Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.,Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|