1
|
Michael AN, Okoye IC. The Entomo-Toxicological Effect Of Dichlorvos on Cuticular Hydrocarbon Profiles of Some Sarco-Saprophagous Insects for Forensic Applications. J Chem Ecol 2025; 51:17. [PMID: 39893324 DOI: 10.1007/s10886-025-01558-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 02/04/2025]
Abstract
Forensic entomology has relied on species-specificity, quantitative and qualitative variations of cuticular hydrocarbons to successfully carry out chemotaxonomic identification of insects based on species, age and gender. This work studied the effects of dichlorvos on the cuticular hydrocarbon profiles of some adult sarco-saprophagous insects of forensic importance that fed on dichlorvos-poisoned carrions for utility during death investigations. Cuticular hydrocarbons (CHCs) were extracted from adult insects of the species Chrysomya albiceps, Sarcophaga exuberans, Musca domestica, Hermetia illucens, Dermestes maculatus and Necrobia rufipes from both dichlorvos-poisoned and control pig (Sus scrofa Linnaeus) carrions and subjected to chemotaxonomic profiling using Gas Chromatography-Mass Spectrometry (GC-MS). A total of 41 CHCs were successfully identified from insects of both the dichlorvos-poisoned and control carrions ranging from C8 to C33 carbons consisting of majorly the n-alkanes, methyl branched alkanes and an alkene. There was a higher abundance of CHCs present in the insects of dichlorvos-poisoned carrions than the control group. The highest mean peak concentration and abundance of the CHCs was recorded by 2,6,10,14 -Tetramethyl Pentadecane (10.38 ± 0.53 μg/mg for dichlorvos-poisoned carrions and 8.99 ± 1.13 μg/mg for the control carrions). The visualization of the species-specific differences in CHCs compositions showed less overlapping CHCs clusters and quantitative metrics of principal component analysis plots of the insects from both carrion groups with high eigenvalues > 3 which were indications of good species level discrimination. The study showed that insects' CHCs profiles of dichlorvos-poisoned and control carrions exhibited uniqueness cum variations in terms of abundance and chemical identity.
Collapse
Affiliation(s)
- Ani Nweze Michael
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Ikem Chris Okoye
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
2
|
Barbosa-da-Silva HR, Pontes WJT, Lira AFA, Navarro DMAF, Salomão RP, Maia ACD. The role of intraspecific mechanical and chemical signaling for mate and sexual recognition in male Tityus pusillus (Scorpiones, Buthidae). ZOOLOGY 2025; 168:126235. [PMID: 39693864 DOI: 10.1016/j.zool.2024.126235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
Hydrophobic compounds present in the cuticular wax layer (CWL) of terrestrial arthropods protect them from dehydration and are also involved in chemical communication. However, the role of CWL compounds in the behavioral ecology of scorpions has been studied less often, with most investigations focusing on their responses to mechanical stimuli. In this study, we aimed to characterize the CWL composition of Tityus pusillus (Scorpiones, Buthidae) and examine the influence of CWL solvent extracts and movement on intraspecific mate and sexual recognition by males of this species. We analyzed CWL hexane extracts of adult female and male T. pusillus by gas chromatography-mass spectrometry (GC-MS). In paired behavioral tests inside an experimental arena, we exposed adult males to i) live and intact dead conspecific females; ii) intact dead females and females without the CWL (removed with solvent washes); and iii) intact dead males with and without the CWL. Our results showed that CWL extracts of both female and male T. pusillus contained a series of linear alkanes (C21 - C34; > 54 % relative composition), as well as fatty acyls (> 9.5 %) and methyl-branched alkanes (> 9.1 %). Two unassigned C31 monomethyl-branched alkanes were exclusively identified in male CWL extracts (∼ 4.7 %), while female samples contained high relative concentrations (> 22.5 %) of sterol derivatives, present only as minor constituents in male samples. Male T. pusillus performed sexually-oriented behavioral acts when paired with both live and dead conspecific females, intact or without the CWL. However, they ignored conspecific dead males. Our results show that CWL compounds have a role in intraspecific sexual recognition by male T. pusillus but only the CWL compounds does not explain mate recognition.
Collapse
Affiliation(s)
- Hugo R Barbosa-da-Silva
- Programa de Pós-Graduação em Ecologia e Conservação, Instituto de Biociências, Universidade Federal do Mato Grosso do Sul, Campo Grande 79070-900, Brazil; Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil.
| | - Wendel J T Pontes
- Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | - André F A Lira
- Colección Nacional de Arácnidos, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Daniela M A F Navarro
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife 50740-560, Brazil
| | - Renato P Salomão
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz 54090, Mexico
| | - Artur C D Maia
- Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil; Laboratory of Sciences for the Environment, University of Corsica, UMR 6134 SPE, Ajaccio 20000, France
| |
Collapse
|
3
|
Golian MJ, Friedman DA, Harrison M, McMahon DP, Buellesbach J. Chemical and transcriptomic diversity do not correlate with ascending levels of social complexity in the insect order Blattodea. Ecol Evol 2024; 14:e70063. [PMID: 39091327 PMCID: PMC11289792 DOI: 10.1002/ece3.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/21/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
Eusocial insects, such as ants and termites, are characterized by high levels of coordinated social organization. This is contrasted by solitary insects that display more limited forms of collective behavior. It has been hypothesized that this gradient in sociobehavioral sophistication is positively correlated with chemical profile complexity, due to a potentially increased demand for diversity in chemical communication mechanisms in insects with higher levels of social complexity. However, this claim has rarely been assessed empirically. Here, we compare different levels of chemical and transcriptomic complexity in selected species of the order Blattodea that represent different levels of social organization, from solitary to eusocial. We primarily focus on cuticular hydrocarbon (CHC) complexity, since it has repeatedly been demonstrated that CHCs are key signaling molecules conveying a wide variety of chemical information in solitary as well as eusocial insects. We assessed CHC complexity and divergence between our studied taxa of different social complexity levels as well as the differentiation of their respective repertoires of CHC biosynthesis gene transcripts. Surprisingly, we did not find any consistent pattern of chemical complexity correlating with social complexity, nor did the overall chemical divergence or transcriptomic repertoire of CHC biosynthesis genes reflect on the levels of social organization. Our results challenge the assumption that increasing social complexity is generally reflected in more complex chemical profiles and point toward the need for a more cautious and differentiated view on correlating complexity on a chemical, genetic, and social level.
Collapse
Affiliation(s)
- Marek J. Golian
- Institute for Evolution & BiodiversityUniversity of MünsterMünsterGermany
| | - Daniel A. Friedman
- Department of Entomology & NematologyUniversity of California – DavisDavisCaliforniaUSA
| | - Mark Harrison
- Institute for Evolution & BiodiversityUniversity of MünsterMünsterGermany
| | - Dino P. McMahon
- Institute of Biology – Zoology, Freie Universität BerlinBerlinGermany
- Department for Materials and EnvironmentBAM Federal Institute for Materials Research and TestingBerlinGermany
| | - Jan Buellesbach
- Institute for Evolution & BiodiversityUniversity of MünsterMünsterGermany
| |
Collapse
|
4
|
Steurer M, Ruther J, Pokorny T. Behavioural consequences of intraspecific variability in a mate recognition signal. Proc Biol Sci 2024; 291:20232518. [PMID: 38444335 PMCID: PMC10915540 DOI: 10.1098/rspb.2023.2518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024] Open
Abstract
Mate recognition is paramount for sexually reproducing animals, and many insects rely on cuticular hydrocarbons (CHCs) for close-range sexual communication. To ensure reliable mate recognition, intraspecific sex pheromone variability should be low. However, CHCs can be influenced by several factors, with the resulting variability potentially impacting sexual communication. While intraspecific CHC variability is a common phenomenon, the consequences thereof for mate recognition remain largely unknown. We investigated the effect of CHC variability on male responses in a parasitoid wasp showing a clear-cut within-population CHC polymorphism (three distinct female chemotypes, one thereof similar to male profiles). Males clearly discriminated between female and male CHCs, but not between female chemotypes in no-choice assays. When given a choice, a preference hierarchy emerged. Interestingly, the most attractive chemotype was the one most similar to male profiles. Mixtures of female CHCs were as attractive as chemotype-pure ones, while a female-male mixture negatively impacted male responses, indicating assessment of the entire, complex CHC profile composition. Our study reveals that the evaluation of CHC profiles can be strict towards 'undesirable' features, but simultaneously tolerant enough to cover a range of variants. This reconciles reliable mate recognition with naturally occurring variability.
Collapse
Affiliation(s)
- Maximilian Steurer
- Institute of Zoology, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Joachim Ruther
- Institute of Zoology, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Tamara Pokorny
- Institute of Zoology, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
5
|
Qiao JW, Fan YL, Wu BJ, Bai TT, Wang YH, Zhang ZF, Wang D, Liu TX. Downregulation of NADPH-cytochrome P450 reductase via RNA interference increases the susceptibility of Acyrthosiphon pisum to desiccation and insecticides. INSECT SCIENCE 2022; 29:1105-1119. [PMID: 34723412 DOI: 10.1111/1744-7917.12982] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CPR) is involved in the metabolism of endogenous and exogenous substances, and detoxification of insecticides. RNA interference (RNAi) of CPR in certain insects causes developmental defects and enhanced susceptibility to insecticides. However, the CPR of Acyrthosiphon pisum has not been characterized, and its function is still not understood. In this study, we investigated the biochemical functions of A. pisum CPR (ApCPR). ApCPR was found to be transcribed in all developmental stages and was abundant in the embryo stage, and in the gut, head, and abdominal cuticle. After optimizing the dose and silencing duration of RNAi for downregulating ApCPR, we found that ApCPR suppression resulted in a significant decrease in the production of cuticular and internal hydrocarbon contents, and of cuticular waxy coatings. Deficiency in cuticular hydrocarbons (CHCs) decreased the survival rate of A. pisum under desiccation stress and increased its susceptibility to contact insecticides. Moreover, desiccation stress induced a significant increase in ApCPR mRNA levels. We further confirmed that ApCPR participates in CHC production. These results indicate that ApCPR modulates CHC production, desiccation tolerance, and insecticide susceptibility in A. pisum, and presents a novel target for pest control.
Collapse
Affiliation(s)
- Jian-Wen Qiao
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Bing-Jin Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Tian-Tian Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Ying-Hao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Zhan-Feng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Tong-Xian Liu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
6
|
Golian M, Bien T, Schmelzle S, Esparza-Mora MA, McMahon DP, Dreisewerd K, Buellesbach J. Neglected Very Long-Chain Hydrocarbons and the Incorporation of Body Surface Area Metrics Reveal Novel Perspectives for Cuticular Profile Analysis in Insects. INSECTS 2022; 13:insects13010083. [PMID: 35055926 PMCID: PMC8778109 DOI: 10.3390/insects13010083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary The waxy layer covering the surface of most terrestrial insects is mainly composed of non-polar lipids termed cuticular hydrocarbons (CHCs). These have a long research history as important dual traits for both desiccation prevention and chemical communication. We analyzed CHC profiles of seven species of the insect order Blattodea (termites and cockroaches) with the most commonly applied chromatographic method, gas-chromatography coupled with mass spectrometry (GC-MS), and the more novel approach of silver-assisted laser desorption/ionization mass spectrometry (Ag-LDI-MS). Comparing these two analytical methods, we demonstrated that the conventional GC-MS approach does not provide enough information on the entire CHC profile range in the tested species. Ag-LDI-MS was able to detect very long-chain CHCs ranging up to C58, which remained undetected when solely relying on standard GC-MS analysis. Additionally, we measured the body surface areas of each tested species applying 3D scanning technology to assess their respective CHC amounts per mm2. When adjusting for body surface areas, proportional CHC quantity distributions shifted considerably between our studied species, suggesting the importance of including this factor when conducting quantitative CHC comparisons, particularly in insects that vary substantially in body size. Abstract Most of our knowledge on insect cuticular hydrocarbons (CHCs) stems from analytical techniques based on gas-chromatography coupled with mass spectrometry (GC-MS). However, this method has its limits under standard conditions, particularly in detecting compounds beyond a chain length of around C40. Here, we compare the CHC chain length range detectable by GC-MS with the range assessed by silver-assisted laser desorption/ionization mass spectrometry (Ag-LDI-MS), a novel and rarely applied technique on insect CHCs, in seven species of the order Blattodea. For all tested species, we unveiled a considerable range of very long-chain CHCs up to C58, which are not detectable by standard GC-MS technology. This indicates that general studies on insect CHCs may frequently miss compounds in this range, and we encourage future studies to implement analytical techniques extending the conventionally accessed chain length range. Furthermore, we incorporate 3D scanned insect body surface areas as an additional factor for the comparative quantification of extracted CHC amounts between our study species. CHC quantity distributions differed considerably when adjusted for body surface areas as opposed to directly assessing extracted CHC amounts, suggesting that a more accurate evaluation of relative CHC quantities can be achieved by taking body surface areas into account.
Collapse
Affiliation(s)
- Marek Golian
- Institute for Evolution & Biodiversity, University of Münster, Hüfferstr. 1, D-48149 Münster, Germany;
| | - Tanja Bien
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany; (T.B.); (K.D.)
| | - Sebastian Schmelzle
- Ecological Networks, Technical University of Darmstadt, Schnittspahnstr. 2, D-64287 Darmstadt, Germany;
| | - Margy Alejandra Esparza-Mora
- Institute of Biology—Zoology, Free University of Berlin, Unter den Eichen 87, D-12205 Berlin, Germany; (M.A.E.-M.); (D.P.M.)
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, D-12205 Berlin, Germany
| | - Dino Peter McMahon
- Institute of Biology—Zoology, Free University of Berlin, Unter den Eichen 87, D-12205 Berlin, Germany; (M.A.E.-M.); (D.P.M.)
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, D-12205 Berlin, Germany
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany; (T.B.); (K.D.)
| | - Jan Buellesbach
- Institute for Evolution & Biodiversity, University of Münster, Hüfferstr. 1, D-48149 Münster, Germany;
- Correspondence: ; Tel.: +49-(0)-251-83-21637
| |
Collapse
|
7
|
Holze H, Schrader L, Buellesbach J. Advances in deciphering the genetic basis of insect cuticular hydrocarbon biosynthesis and variation. Heredity (Edinb) 2021; 126:219-234. [PMID: 33139902 PMCID: PMC8027674 DOI: 10.1038/s41437-020-00380-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/01/2023] Open
Abstract
Cuticular hydrocarbons (CHCs) have two fundamental functions in insects. They protect terrestrial insects against desiccation and serve as signaling molecules in a wide variety of chemical communication systems. It has been hypothesized that these pivotal dual traits for adaptation to both desiccation and signaling have contributed to the considerable evolutionary success of insects. CHCs have been extensively studied concerning their variation, behavioral impact, physiological properties, and chemical compositions. However, our understanding of the genetic underpinnings of CHC biosynthesis has remained limited and mostly biased towards one particular model organism (Drosophila). This rather narrow focus has hampered the establishment of a comprehensive view of CHC genetics across wider phylogenetic boundaries. This review attempts to integrate new insights and recent knowledge gained in the genetics of CHC biosynthesis, which is just beginning to incorporate work on more insect taxa beyond Drosophila. It is intended to provide a stepping stone towards a wider and more general understanding of the genetic mechanisms that gave rise to the astonishing diversity of CHC compounds across different insect taxa. Further research in this field is encouraged to aim at better discriminating conserved versus taxon-specific genetic elements underlying CHC variation. This will be instrumental in greatly expanding our knowledge of the origins and variation of genes governing the biosynthesis of these crucial phenotypic traits that have greatly impacted insect behavior, physiology, and evolution.
Collapse
Affiliation(s)
- Henrietta Holze
- Molecular Evolution and Sociobiology Group, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, DE-48149, Münster, Germany
| | - Lukas Schrader
- Molecular Evolution and Sociobiology Group, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, DE-48149, Münster, Germany
| | - Jan Buellesbach
- Molecular Evolution and Sociobiology Group, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, DE-48149, Münster, Germany.
- Department of Environmental Science, Policy, and Management, University of California-Berkeley, 130 Mulford Hall #3114, Berkeley, CA, 94720-3114, USA.
| |
Collapse
|
8
|
Talavera JB, Collosi E, Clark MI, Robertson JM, Gray DA. Minimal prezygotic isolation between ecologically divergent sibling species. Biol J Linn Soc Lond 2021; 132:32-43. [PMID: 33390615 PMCID: PMC7761596 DOI: 10.1093/biolinnean/blaa178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/28/2020] [Indexed: 11/14/2022]
Abstract
Divergence in mating signals typically accompanies speciation. We examine two ecologically divergent sibling species of crickets to assess the degree and timing of the evolution of prezygotic reproductive isolation. Gryllus saxatilis occurs in rocky habitats throughout western North America with long-winged individuals capable of long-distance dispersal; Gryllus navajo is endemic to red-rock sandstone areas of south-eastern Utah and north-eastern Arizona and has short-winged individuals only capable of limited dispersal. Previous genetic work suggested some degree of introgression and/or incomplete lineage sorting is likely. Here we: (1) use restriction site associated DNA sequencing (RAD-seq) genetic data to describe the degree of genetic divergence among species and populations; (2) examine the strength of prezygotic isolation by (i) quantifying differences among male mating songs, and (ii) testing whether females prefer G. saxatilis or G. navajo calling songs. Our results show that genetically distinct "pure" species populations and genetically intermediate populations exist. Male mating songs are statistically distinguishable, but the absolute differences are small. In playback experiments, females from pure populations had no preference based on song; however, females from a genetically intermediate population preferred G. navajo song. Together these results suggest that prezygotic isolation is minimal, and mediated by female behaviour in admixed populations.
Collapse
Affiliation(s)
- Janelle B Talavera
- Department of Biology, California State University, Northridge, Northridge, CA, USA
| | - Emma Collosi
- Department of Biology, California State University, Northridge, Northridge, CA, USA
| | - Meaghan I Clark
- Department of Biology, California State University, Northridge, Northridge, CA, USA
| | - Jeanne M Robertson
- Department of Biology, California State University, Northridge, Northridge, CA, USA
| | - David A Gray
- Department of Biology, California State University, Northridge, Northridge, CA, USA
| |
Collapse
|