1
|
Ye H, Wang Y, Liu H, Lei D, Li H, Gao Z, Feng X, Han M, Qie Q, Zhou H. The Phylogeography of Deciduous Tree Ulmus macrocarpa (Ulmaceae) in Northern China. PLANTS (BASEL, SWITZERLAND) 2024; 13:1334. [PMID: 38794406 PMCID: PMC11125379 DOI: 10.3390/plants13101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Disentangling how climate oscillations and geographical events significantly influence plants' genetic architecture and demographic history is a central topic in phytogeography. The deciduous ancient tree species Ulmus macrocarpa is primarily distributed throughout Northern China and has timber and horticultural value. In the current study, we studied the phylogenic architecture and demographical history of U. macrocarpa using chloroplast DNA with ecological niche modeling. The results indicated that the populations' genetic differentiation coefficient (NST) value was significantly greater than the haplotype frequency (GST) (p < 0.05), suggesting that U. macrocarpa had a clear phylogeographical structure. Phylogenetic inference showed that the putative chloroplast haplotypes could be divided into three groups, in which the group Ⅰ was considered to be ancestral. Despite significant genetic differentiation among these groups, gene flow was detected. The common ancestor of all haplotypes was inferred to originate in the middle-late Miocene, followed by the haplotype overwhelming diversification that occurred in the Quaternary. Combined with demography pattern and ecological niche modeling, we speculated that the surrounding areas of Shanxi and Inner Mongolia were potential refugia for U. macrocarpa during the glacial period in Northern China. Our results illuminated the demography pattern of U. macrocarpa and provided clues and references for further population genetics investigations of precious tree species distributed in Northern China.
Collapse
Affiliation(s)
- Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yiling Wang
- School of Life Sciences, Shanxi Normal University, Taiyuan 030031, China
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Dingfan Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Haochen Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhimei Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiaolong Feng
- School of Life Sciences, Shanxi Normal University, Taiyuan 030031, China
| | - Mian Han
- School of Life Sciences, Shanxi Normal University, Taiyuan 030031, China
| | - Qiyang Qie
- School of Life Sciences, Shanxi Normal University, Taiyuan 030031, China
| | - Huijuan Zhou
- Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an 710061, China
| |
Collapse
|
2
|
Han M, Niu M, Gao T, Shen Y, Zhou X, Zhang Y, Liu L, Chai M, Sun G, Wang Y. Responsive Alternative Splicing Events of Opisthopappus Species against Salt Stress. Int J Mol Sci 2024; 25:1227. [PMID: 38279226 PMCID: PMC10816081 DOI: 10.3390/ijms25021227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
Salt stress profoundly affects plant growth, prompting intricate molecular responses, such as alternative splicing (AS), for environmental adaptation. However, the response of AS events to salt stress in Opisthopappus (Opisthopappus taihangensis and Opisthopappus longilobus) remains unclear, which is a Taihang Mountain cliff-dwelling species. Using RNA-seq data, differentially expressed genes (DEGs) were identified under time and concentration gradients of salt stress. Two types of AS, skipped exon (SE) and mutually exclusive exons (MXE), were found. Differentially alternative splicing (DAS) genes in both species were significantly enriched in "protein phosphorylation", "starch and sucrose metabolism", and "plant hormone signal transduction" pathways. Meanwhile, distinct GO terms and KEGG pathways of DAS occurred between two species. Only a small subset of DAS genes overlapped with DEGs under salt stress. Although both species likely adopted protein phosphorylation to enhance salt stress tolerance, they exhibited distinct responses. The results indicated that the salt stress mechanisms of both Opisthopappus species exhibited similarities and differences in response to salt stress, which suggested that adaptive divergence might have occurred between them. This study initially provides a comprehensive description of salt responsive AS events in Opisthopappus and conveys some insights into the molecular mechanisms behind species tolerance on the Taihang Mountains.
Collapse
Affiliation(s)
- Mian Han
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Mengfan Niu
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Ting Gao
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Yuexin Shen
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Xiaojuan Zhou
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Yimeng Zhang
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Li Liu
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Min Chai
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Genlou Sun
- Department of Botany, Saint Mary’s University, Halifax, NS B3H 3C3, Canada
| | - Yiling Wang
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| |
Collapse
|
3
|
He L, Luo J, Niu S, Bai D, Chen Y. Population structure analysis to explore genetic diversity and geographical distribution characteristics of wild tea plant in Guizhou Plateau. BMC PLANT BIOLOGY 2023; 23:255. [PMID: 37189087 DOI: 10.1186/s12870-023-04239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Tea, the second largest consumer beverage in the world after water, is widely cultivated in tropical and subtropical areas. However, the effect of environmental factors on the distribution of wild tea plants is unclear. RESULTS A total of 159 wild tea plants were collected from different altitudes and geological types of the Guizhou Plateau. Using the genotyping-by-sequencing method, 98,241 high-quality single nucleotide polymorphisms were identified. Genetic diversity, population structure analysis, principal component analysis, phylogenetic analysis, and linkage disequilibrium were performed. The genetic diversity of the wild tea plant population from the Silicate Rock Classes of Camellia gymnogyna was higher than that from the Carbonate Rock Classes of Camellia tachangensis. In addition, the genetic diversity of wild tea plants from the second altitude gradient was significantly higher than that of wild tea plants from the third and first altitude gradients. Two inferred pure groups (GP01 and GP02) and one inferred admixture group (GP03) were identified by population structure analysis and were verified by principal component and phylogenetic analyses. The highest differentiation coefficients were determined for GP01 vs. GP02, while the lowest differentiation coefficients were determined for GP01 vs. GP03. CONCLUSIONS This study revealed the genetic diversity and geographical distribution characteristics of wild tea plants in the Guizhou Plateau. There are significant differences in genetic diversity and evolutionary direction between Camellia tachangensis with Carbonate Rock Classes at the first altitude gradient and Camellia gymnogyna with Silicate Rock Classes at the third altitude gradient. Geological environment, soil mineral element content, soil pH, and altitude markedly contributed to the genetic differentiation between Camellia tachangensis and Camellia gymnogyna.
Collapse
Affiliation(s)
- Limin He
- College of Tea Science / Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, People's Republic of China
| | - Jing Luo
- College of Tea Science / Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, People's Republic of China
| | - Suzhen Niu
- College of Tea Science / Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, People's Republic of China.
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Ministry of Education, Institute of Agro-Bioengineering, Guiyang, 550025, Guizhou Province, People's Republic of China.
| | - Dingchen Bai
- College of Tea Science / Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, People's Republic of China
| | - Yanjun Chen
- College of Tea Science / Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, People's Republic of China
| |
Collapse
|
4
|
Wang Y, Lan Y, Ye H, Feng X, Qie Q, Liu L, Chai M. Reproductive Biology and Breeding Systems of Two Opisthopappus Endemic and Endangered Species on the Taihang Mountains. PLANTS (BASEL, SWITZERLAND) 2023; 12:1954. [PMID: 37653873 PMCID: PMC10222883 DOI: 10.3390/plants12101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 09/02/2023]
Abstract
Opisthopappus is a perennial, endemic herb of the Taihang Mountains in China. Two species of this genus (O. longilobus and O. taihangensis) are important wild genetic resources for Asteraceae; however, their reproductive biology has been lacking until now. This study is the first detailed report on the reproductive biology and breeding systems of two Opisthopappus species. Through field observations, the floral syndromes of O. longilobus and O. taihangensis were found to possess a similar pattern, although O. taihangensis has a relatively larger capitulum, more ray ligules, and disc florets. The flowers of both O. longilobus and O. taihangensis are protandrous, a character that can prevent autogamy at the single-flower level, and insects are required for pollination. Further, brightly ligules, brightly bisexual florets, unique fragrance, and amount of nectar suggest that these species propagate via an entomophilous pollination system. Hymenopteran and Diptera species were observed as the effective pollinators for these two species. The outcrossing index, pollen/ovule ratio and the results of hand pollination indicated that these Opisthopappus species might have a mixed mating system that combines cross-fertilization and partial self-fertilization for O. longilobus and O. taihangensis, outcrossing predominated in the breeding system, while self-pollination played an important role in seed production when insect pollination was unavailable, particularly in a harsh environment, such as the Taihang Mountains cliffs. Meanwhile, O. taihangensis might better adapt to severe surroundings with relatively complex floral syndromes, specifically through the attraction of visiting insects and a high seed set rate. The above results not only provide reference information toward a better understanding of the survival strategies of O. longilobus and O. taihangensis in the Taihang Mountains but also lay a solid foundation for further exploring the molecular mechanisms that underly their adaptation under cliff environments.
Collapse
Affiliation(s)
- Yiling Wang
- School of Life Sciences, Shanxi Normal University, Taiyuan 030031, China; (Y.L.); (X.F.); (Q.Q.); (L.L.)
| | - Yafei Lan
- School of Life Sciences, Shanxi Normal University, Taiyuan 030031, China; (Y.L.); (X.F.); (Q.Q.); (L.L.)
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China;
| | - Xiaolong Feng
- School of Life Sciences, Shanxi Normal University, Taiyuan 030031, China; (Y.L.); (X.F.); (Q.Q.); (L.L.)
| | - Qiyang Qie
- School of Life Sciences, Shanxi Normal University, Taiyuan 030031, China; (Y.L.); (X.F.); (Q.Q.); (L.L.)
| | - Li Liu
- School of Life Sciences, Shanxi Normal University, Taiyuan 030031, China; (Y.L.); (X.F.); (Q.Q.); (L.L.)
| | - Min Chai
- School of Life Sciences, Shanxi Normal University, Taiyuan 030031, China; (Y.L.); (X.F.); (Q.Q.); (L.L.)
| |
Collapse
|
5
|
Liu Z, Lan Y, Zhang H, Hao W, He S, Liu L, Feng X, Qie Q, Chai M, Wang Y. Responses of Aroma Related Metabolic Attributes of Opisthopappus longilobus Flowers to Environmental Changes. PLANTS (BASEL, SWITZERLAND) 2023; 12:1592. [PMID: 37111816 PMCID: PMC10140910 DOI: 10.3390/plants12081592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Opisthopappus longilobus (Opisthopappus) and its descendant species, Opisthopappus taihangensis, commonly thrive on the Taihang Mountains of China. Being typical cliff plants, both O. longilobus and O. taihangensis release unique aromatics. To determine the potential differentiation and environmental response patterns, comparative metabolic analysis was performed on O. longilobus wild flower (CLW), O. longilobus transplant flower (CLT), and O. taihangensis wild flower (TH) groups. Significant differences in the metabolic profiles were found, not within O. longilobus, but between O. longilobus and O. taihangensis flowers. Within these metabolites, twenty-eight substances related to the scents were obtained (one alkene, two aldehydes, three esters, eight phenols, three acids, three ketones, three alcohols, and five flavonoids), of which eugenol and chlorogenic were the primary aromatic molecules and enriched in the phenylpropane pathway. Network analysis showed that close relationships occurred among identified aromatic substances. The variation coefficient (CV) of aromatic metabolites in O. longilobus was lower than O. taihangensis. The aromatic related compounds were significantly correlated with the lowest temperatures in October and in December of the sampled sites. The results indicated that phenylpropane, particularly eugenol and chlorogenic, played important roles in the responses of O. longilobus species to environmental changes.
Collapse
|
6
|
Complete Chloroplast Genome Sequence of Endangered Species in the Genus Opisthopappus C. Shih: Characterization, Species Identification, and Phylogenetic Relationships. Genes (Basel) 2022; 13:genes13122410. [PMID: 36553677 PMCID: PMC9778092 DOI: 10.3390/genes13122410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Opisthopappus C. Shih is a rare genus of the Asteraceae family native to the Taihang Mountains in China. Due to the narrow distribution area, poor reproduction ability and human harvesting, Opisthopappus is threatened by extinction. However, the limited genetic information within Opisthopappus impede understanding of the conservation efforts and bioprospecting. Therefore, in this study, we reported the complete chloroplast (cp) genome sequences of two Opisthopappus species, including Opisthopappus taihangensis and Opisthopappus longilobus. The cp genomes of O. taihangensis and O. longilobus were 151,117 and 151,123 bp, which contained 88 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The repeat sequences, codon usage, RNA-editing sites, and comparative analyses revealed a high degree of conservation between the two species. The ycf1 gene was identified as a potential molecular marker. The phylogenetic tree demonstrated that O. longilobus was a separate species and not a synonym or variety of O. taihangensis. The molecular clock showed that two species diverge over a large time span, O. longilobus diverged at 15.24 Mya (Million years ago), whereas O. taihangensis diverged at 5.40 Mya We found that Opisthopappus and Ajania are closely related, which provides new ideas for the development of Opisthopappus. These results provide biological information and an essential basis to understand the evolutionary history of the Opisthopappus species, which will aid in the future the bioprospecting and conservation of endangered species.
Collapse
|
7
|
Liu H, Chen W, Chai Y, Liu W, Chen H, Sun L, Tang X, Luo C, Chen D, Cheng X, Wang F, Yuan X, Huang C. Terpenoids and their gene regulatory networks in Opisthopappus taihangensis 'Taihang Mingzhu' as detected by transcriptome and metabolome analyses. FRONTIERS IN PLANT SCIENCE 2022; 13:1014114. [PMID: 36247591 PMCID: PMC9557748 DOI: 10.3389/fpls.2022.1014114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
'Taihang Mingzhu' is the hybrid offspring of Opisthopappus taihangensis, and it has an excellent characteristic of whole-plant fragrance. At present, the genes and metabolites involved in the synthesis of its aromatic compounds are unknown because of the paucity of molecular biology studies on flowering in the Opisthopappus Shih genus. To elucidate the biosynthetic pathways of terpenoids, the main aromatic compounds in 'Taihang Mingzhu', we conducted transcriptome and metabolite analyses on its leaves and bud, inflorescences at the color-development, flowering, and full-bloom stages. A total of 82,685 unigenes were obtained, of which 43,901 were annotated on the basis of information at the protein databases Nr, SwissProt, KEGG, and COG/KOG (e-value<0.00001). Using gas headspace solid-phase microextraction chromatography - mass spectrometry (HS-SPME-GC/MS), 1350 metabolites were identified, the most abundant of which were terpenoids (302 metabolites). Analyses of the gene regulatory network of terpenoids in 'Taihang Mingzhu' identified 52 genes potentially involved in the regulation of terpenoid synthesis. The correlations between genes related to terpenoid metabolism/regulation and metabolite abundance were analyzed. We also extracted the essential oil from the leaves of 'Taihang Mingzhu' by hydrodistillation, and obtained 270 aromatic compounds. Again, the most abundant class was terpenoids. These results provide guidance for the extraction of essential oil from 'Taihang Mingzhu' leaves and flowers. In addition, our analyses provide valuable genetic resources to identify genetic targets to manipulate the aromatic profiles of this plant and other members the Opisthopappus Shih genus by molecular breeding.
Collapse
Affiliation(s)
- Hua Liu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Wendan Chen
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Yuhong Chai
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Wenchao Liu
- Beijing Liu Wenchao Institute of Summer Chrysanthemums Breeding Science and Technology, Beijing, China
| | - Haixia Chen
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Lei Sun
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Xiaowei Tang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Chang Luo
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Dongliang Chen
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Xi Cheng
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Fengjun Wang
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Xiaohuan Yuan
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Conglin Huang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| |
Collapse
|
8
|
Liu H, Chai Y, Chen H, Chen W, Li Y, Liu W, Guo S, Sun L, Zhou X, Huang C, Tang X, Luo C, Chen D, Cheng X. Analysis of terpenoids and their gene regulatory networks on the basis of the transcriptome and metabolome of Opisthopappus longilobus. FRONTIERS IN PLANT SCIENCE 2022; 13:1015942. [PMID: 36212386 PMCID: PMC9533026 DOI: 10.3389/fpls.2022.1015942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Opisthopappus longilobus, which is a unique wild plant resource in China, produces leaves and flowers with distinct aromas. However, there have been relatively few molecular studies on its floral aroma, which has hindered the research on this plant species at the molecular level and the breeding of novel varieties. In this study, transcriptome and metabolome analyses were performed using O. longilobus leaves, buds, and inflorescences at the exposure, initial opening, and blooming stages. Using high-quality reads and assembly software, a total of 45,674 unigenes were annotated according to the Nr, Swiss-Prot, KOG, and KEGG databases. Additionally, a GC-MS system and a self-built database were used to detect 1,371 metabolites in the leaves, buds, and inflorescences. Terpene metabolites were the most common compounds (308 in total). We analyzed the gene network regulating terpenoid accumulation in O. longilobus and identified 56 candidate genes related to terpenoid synthesis. The expression of OlPMK2, OlMVK1, OlTPS1, and OlTPS3 may lead to the accumulation of 11 different terpenoids specifically in the inflorescences at the exposure, initial opening, and blooming stages. The generated data may be useful for future research on O. longilobus genetic resources and the molecular mechanism regulating aroma formation in this plant species. The findings of this study may be used to accelerate the breeding of new O. longilobus varieties with enhanced aromatic traits.
Collapse
Affiliation(s)
- Hua Liu
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yuhong Chai
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Haixia Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wendan Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yushu Li
- Beijing Vocational College of Agriculture, Beijing, China
| | - Wenchao Liu
- Beijing Liu Wenchao Institute of Summer Chrysanthemum Breeding Science and Technology, Beijing, China
| | - Shuang Guo
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lei Sun
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiumei Zhou
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Conglin Huang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaowei Tang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chang Luo
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dongliang Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xi Cheng
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
9
|
Chen N, Zhang H, Zang E, Liu ZX, Lan YF, Hao WL, He S, Fan X, Sun GL, Wang YL. Adaptation insights from comparative transcriptome analysis of two Opisthopappus species in the Taihang mountains. BMC Genomics 2022; 23:466. [PMID: 35751010 PMCID: PMC9233376 DOI: 10.1186/s12864-022-08703-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Opisthopappus is a major wild source of Asteraceae with resistance to cold and drought. Two species of this genus (Opisthopappus taihangensis and O. longilobus) have been employed as model systems to address the evolutionary history of perennial herb biomes in the Taihang Mountains of China. However, further studies on the adaptive divergence processes of these two species are currently impeded by the lack of genomic resources. To elucidate the molecular mechanisms involved, a comparative analysis of these two species was conducted. Among the identified transcription factors, the bHLH members were most prevalent, which exhibited significantly different expression levels in the terpenoid metabolic pathway. O. longilobus showed higher level of expression than did O. taihangensis in terms of terpenes biosynthesis and metabolism, particularly monoterpenoids and diterpenoids. Analyses of the positive selection genes (PSGs) identified from O. taihangensis and O. longilobus revealed that 1203 genes were related to adaptative divergence, which were under rapid evolution and/or have signs of positive selection. Differential expressions of PSG occurred primarily in the mitochondrial electron transport, starch degradation, secondary metabolism, as well as nucleotide synthesis and S-metabolism pathway processes. Several PSGs were obviously differentially expressed in terpenes biosynthesis that might result in the fragrances divergence between O. longilobus and O. taihangensis, which would provide insights into adaptation of the two species to different environments that characterized by sub-humid warm temperate and temperate continental monsoon climates. The comparative analysis for these two species in Opisthopappus not only revealed how the divergence occurred from molecular perspective, but also provided novel insights into how differential adaptations occurred in Taihang Mountains.
Collapse
Affiliation(s)
- Ning Chen
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Hao Zhang
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - En Zang
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Zhi-Xia Liu
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Ya-Fei Lan
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Wei-Li Hao
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Shan He
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gen-Lou Sun
- Department of Biology, Saint Mary's University, Halifax, B3H3C3, Canada.
| | - Yi-Ling Wang
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China.
| |
Collapse
|