1
|
Zhao J, Wang Q, Deng X, Qian J, Tian Z, Liu Y, Li M, Zeng X. The treatment strategy of connective tissue disease associated pulmonary arterial hypertension: Evolving into the future. Pharmacol Ther 2022; 239:108192. [DOI: 10.1016/j.pharmthera.2022.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
|
2
|
Pulmonary Hypertension Associated Genetic Variants in Sarcoidosis Associated Pulmonary Hypertension. Diagnostics (Basel) 2022; 12:diagnostics12102564. [PMID: 36292254 PMCID: PMC9601358 DOI: 10.3390/diagnostics12102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a severe complication of sarcoidosis in a minority of patients. Several genetic defects are known to cause hereditary or sporadic PH, but whether variants in PH-associated genes are also involved in sarcoidosis-associated PH (SAPH) is unknown. METHODS 40 patients with SAPH were individually matched to 40 sarcoidosis patients without PH (SA). Whole exome sequencing was performed to identify rare genetic variants in a diagnostic PH gene panel of 13 genes. Additionally, an exploratory analysis was performed to search for other genes of interest. From 572 genes biologically involved in PH pathways, genes were selected in which at least 15% of the SAPH patients and no more than 5% of patients without PH carried a rare variant. RESULTS In the diagnostic PH gene panel, 20 different rare variants, of which 18 cause an amino-acid substitution, were detected in 23 patients: 14 SAPH patients carried a variant, as compared to 5 SA patients without PH (p = 0.018). Most variants were of yet unknown significance. The exploratory approach yielded five genes of interest. First, the NOTCH3 gene that was previously linked to PH, and furthermore PDE6B, GUCY2F, COL5A1, and MMP21. CONCLUSIONS The increased frequency of variants in PH genes in SAPH suggests a mechanism whereby the presence of such a genetic variant in a patient may increase risk for the development of PH in the context of pulmonary sarcoidosis. Replication and studies into the functionality of the variants are required for further understanding the pathogenesis of SAPH.
Collapse
|
3
|
Luo X, Xu JG, Wang Z, Wang X, Zhu Q, Zhao J, Bian L. Bioinformatics Identification of Key Genes for the Development and Prognosis of Lung Adenocarcinoma. INQUIRY : A JOURNAL OF MEDICAL CARE ORGANIZATION, PROVISION AND FINANCING 2022; 59:469580221096259. [PMID: 35635202 PMCID: PMC9158403 DOI: 10.1177/00469580221096259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective: Lung adenocarcinoma (LUAD) is a common malignant tumor with a poor prognosis. The present study aimed to screen the key genes involved in LUAD development and prognosis. Methods: The transcriptome data for 515 LUAD and 347 normal samples were downloaded from The Cancer Genome Atlas and Genotype Tissue Expression databases. The weighted gene co-expression network and differentially expressed genes were used to identify the central regulatory genes for the development of LUAD. Univariate Cox, LASSO, and multivariate Cox regression analyses were utilized to identify prognosis-related genes. Results: The top 10 central regulatory genes of LUAD included IL6, PECAM1, CDH5, VWF, THBS1, CAV1, TEK, HGF, SPP1, and ENG. Genes that have an impact on survival included PECAM1, HGF, SPP1, and ENG. The favorable prognosis genes included KDF1, ZNF691, DNASE2B, and ELAPOR1, while unfavorable prognosis genes included RPL22, ENO1, PCSK9, SNX7, and LCE5A. The areas under the receiver operating characteristic curves of the risk score model in the training and testing datasets were .78 and .758, respectively. Conclusion: Bioinformatics methods were used to identify genes involved in the development and prognosis of LUAD, which will provide a basis for further research on the treatment and prognosis of LUAD.
Collapse
Affiliation(s)
- Xuan Luo
- 36657The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jian Guo Xu
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, China
| | - ZhiYuan Wang
- 36657The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - XiaoFang Wang
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - QianYing Zhu
- 36657The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juan Zhao
- 36657The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Bian
- 36657The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Song T, Huang D, Song D. The potential regulatory role of BMP9 in inflammatory responses. Genes Dis 2021; 9:1566-1578. [PMID: 36157503 PMCID: PMC9485205 DOI: 10.1016/j.gendis.2021.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/24/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Inflammation is a protective response of the body to pathogens and injury. Hence, it is particularly important to explore the pathogenesis and key regulatory factors of inflammation. BMP9 is a unique member of the BMP family, which is widely known for its strong osteogenic potential and insensitivity to the inhibition of BMP3. Recently, several studies have reported an underlying pivotal link between BMP9 and inflammation. What is clear, though not well understood, is that BMP9 plays a role in inflammation in a carefully choreographed manner in different contexts. In this review, we have summarized current studies focusing on BMP9 and inflammation in various tissues and the latest advances in BMP9 expression, signal transduction, and crystal structure to better understand the relationship between BMP9 and inflammation. In addition, we also briefly summarized the inflammatory characteristics of some TGF-β superfamily members to provide better insights and ideas for the study of BMP9 and inflammation.
Collapse
Affiliation(s)
- Tianzhu Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
- Key Laboratory of Oral Diseases of Gansu Province, Northwest Minzu University, Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu 730030, PR China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
- Corresponding author.
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
- Corresponding author.
| |
Collapse
|
5
|
Fazal S, Bisserier M, Hadri L. Molecular and Genetic Profiling for Precision Medicines in Pulmonary Arterial Hypertension. Cells 2021; 10:638. [PMID: 33805595 PMCID: PMC7999465 DOI: 10.3390/cells10030638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare and chronic lung disease characterized by progressive occlusion of the small pulmonary arteries, which is associated with structural and functional alteration of the smooth muscle cells and endothelial cells within the pulmonary vasculature. Excessive vascular remodeling is, in part, responsible for high pulmonary vascular resistance and the mean pulmonary arterial pressure, increasing the transpulmonary gradient and the right ventricular "pressure overload", which may result in right ventricular (RV) dysfunction and failure. Current technological advances in multi-omics approaches, high-throughput sequencing, and computational methods have provided valuable tools in molecular profiling and led to the identification of numerous genetic variants in PAH patients. In this review, we summarized the pathogenesis, classification, and current treatments of the PAH disease. Additionally, we outlined the latest next-generation sequencing technologies and the consequences of common genetic variants underlying PAH susceptibility and disease progression. Finally, we discuss the importance of molecular genetic testing for precision medicine in PAH and the future of genomic medicines, including gene-editing technologies and gene therapies, as emerging alternative approaches to overcome genetic disorders in PAH.
Collapse
Affiliation(s)
| | | | - Lahouaria Hadri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA; (S.F.); (M.B.)
| |
Collapse
|
6
|
The BMP Receptor 2 in Pulmonary Arterial Hypertension: When and Where the Animal Model Matches the Patient. Cells 2020; 9:cells9061422. [PMID: 32521690 PMCID: PMC7348993 DOI: 10.3390/cells9061422] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/30/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Mutations in bone morphogenetic protein receptor type II (BMPR2) are leading to the development of hereditary pulmonary arterial hypertension (PAH). In non-hereditary forms of PAH, perturbations in the transforming growth factor-β (TGF-β)/BMP-axis are believed to cause deficient BMPR2 signaling by changes in receptor expression, the activity of the receptor and/or downstream signaling. To date, BMPR2 expression and its activity in the lungs of patients with non-hereditary PAH is poorly characterized. In recent decades, different animal models have been used to understand the role of BMPR2 signaling in PAH pathophysiology. Specifically, the monocrotaline (MCT) and Sugen-Hypoxia (SuHx) models are extensively used in interventional studies to examine if restoring BMPR2 signaling results in PAH disease reversal. While PAH is assumed to develop in patients over months or years, pulmonary hypertension in experimental animal models develops in days or weeks. It is therefore likely that modifications in BMP and TGF-β signaling in these models do not fully recapitulate those in patients. In order to determine the translational potential of the MCT and SuHx models, we analyzed the BMPR2 expression and activity in the lungs of rats with experimentally induced PAH and compared this to the BMPR2 expression and activity in the lungs of PAH patients. Methods: the BMPR2 expression was analyzed by Western blot analysis and immunofluorescence (IF) microscopy to determine the quantity and localization of the receptor in the lung tissue from normal control subjects and patients with hereditary or idiopathic PAH, as well as in the lungs of control rats and rats with MCT or SuHx-induced PAH. The activation of the BMP pathway was analyzed by determining the level and localization of phosphorylated Smad1/5/8 (pSmad 1/5/8), a downstream mediator of canonical BMPR2 signaling. Results: While BMPR2 and pSmad 1/5/8 expression levels were unaltered in whole lung lysates/homogenates from patients with hereditary and idiopathic PAH, IF analysis showed that BMPR2 and pSmad 1/5/8 levels were markedly decreased in the pulmonary vessels of both PAH patient groups. Whole lung BMPR2 expression was variable in the two PAH rat models, while in both experimental models the expression of BMPR2 in the lung vasculature was increased. However, in the human PAH lungs, the expression of pSmad 1/5/8 was downregulated in the lung vasculature of both experimental models. Conclusion: BMPR2 receptor expression and downstream signaling is reduced in the lung vasculature of patients with idiopathic and hereditary PAH, which cannot be appreciated when using human whole lung lysates. Despite increased BMPR2 expression in the lung vasculature, the MCT and SuHx rat models did develop PAH and impaired downstream BMPR2-Smad signaling similar to our findings in the human lung.
Collapse
|
7
|
Zeng Q, Yang H, Liu B, Ma Y, Liu Z, Chen Q, Li W, Luo Q, Zhao Z, Zhou Z, Xiong C. Clinical characteristics and survival of Chinese patients diagnosed with pulmonary arterial hypertension who carry BMPR2 or EIF2KAK4 variants. BMC Pulm Med 2020; 20:150. [PMID: 32471403 PMCID: PMC7257189 DOI: 10.1186/s12890-020-01179-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/11/2020] [Indexed: 11/12/2022] Open
Abstract
Background Variants in the gene encoding bone morphogenetic protein receptor type II (BMPR2) are the most common genetic cause of pulmonary arterial hypertension (PAH), whereas biallelic variants in the eukaryotic translation initiation factor 2 alpha kinase 4 gene (EIF2AK4) are described in pulmonary veno-occlusive disease/pulmonary capillary haemangiomatosis (PVOD/PCH). Racial background may influence the clinical characteristics of patients diagnosed with PAH or PVOD/PCH. Here, we compared the clinical characteristics and survival between patients with BMPR2 variants or EIF2AK4 variants in a Chinese population. Methods Heterozygous variants in BMPR2 and homozygous or compound heterozygous biallelic EIF2AK4 variants predicted to be deleterious were identified as potentially causal. Clinical and radiological data were collected and analysed. The primary outcomes were death or lung transplantation. Hazard ratios (HRs) for death or transplantation associated with the presence of BMPR2 or biallelic EIF2AK4 variants were calculated using Cox proportional hazards models to analyse patient survival. Results Two hundred thirty-two patients with PAH were enrolled for genetic testing, and PAH patients with associated conditions were excluded from the study. Forty-five patients with BMPR2 variants and 11 patients with biallelic EIF2AK4 variants were recruited. PAH patients with BMPR2 or biallelic EIF2AK4 variants presented symptoms at the ages of 25.57 ± 10.17 years and 31.6 ± 9.38 years, respectively. The whole group of patients showed female dominance either with BMPR2 variants or biallelic EIF2AK4 variants. Specific radiological abnormalities are more prominent in EIF2AK4 variant carriers but can also be found in some patients with BMPR2 variants. Biallelic EIF2AK4 variant carriers had worse survival than BMPR2 variant carriers (p < 0.0001). Conclusions Clinical pictures of PAH patients with BMPR2 and biallelic EIF2AK4 variants in the Chinese population differ from other populations by a younger age at diagnosis and demonstrate female dominance in the whole patient group. High-resolution chest CT can help assist in differentiating PAH with PVOD/PCH. BMPR2 variants and biallelic EIF2AK4 variants are associated with adverse outcomes, but the survival of patients with biallelic EIF2AK4 variants is dismal.
Collapse
Affiliation(s)
- Qixian Zeng
- State Key Laboratory of Cardiovascular Disease, Center of Pulmonary Vascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, North Lishi Road, Xicheng District, No.167, Beijing, China
| | - Hang Yang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Disease, Diagnostic Laboratory Service, Fuwai Hosptial, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, North Lishi Road, Xicheng District No.167, Beijing, China
| | - Bingyang Liu
- State Key Laboratory of Cardiovascular Disease, Center of Pulmonary Vascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, North Lishi Road, Xicheng District, No.167, Beijing, China
| | - Yanyun Ma
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Disease, Diagnostic Laboratory Service, Fuwai Hosptial, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, North Lishi Road, Xicheng District No.167, Beijing, China
| | - Zhihong Liu
- State Key Laboratory of Cardiovascular Disease, Center of Pulmonary Vascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, North Lishi Road, Xicheng District, No.167, Beijing, China
| | - Qianlong Chen
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Disease, Diagnostic Laboratory Service, Fuwai Hosptial, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, North Lishi Road, Xicheng District No.167, Beijing, China
| | - Wenke Li
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Disease, Diagnostic Laboratory Service, Fuwai Hosptial, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, North Lishi Road, Xicheng District No.167, Beijing, China
| | - Qin Luo
- State Key Laboratory of Cardiovascular Disease, Center of Pulmonary Vascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, North Lishi Road, Xicheng District, No.167, Beijing, China
| | - Zhihui Zhao
- State Key Laboratory of Cardiovascular Disease, Center of Pulmonary Vascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, North Lishi Road, Xicheng District, No.167, Beijing, China
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Disease, Diagnostic Laboratory Service, Fuwai Hosptial, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, North Lishi Road, Xicheng District No.167, Beijing, China.
| | - Changming Xiong
- State Key Laboratory of Cardiovascular Disease, Center of Pulmonary Vascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, North Lishi Road, Xicheng District, No.167, Beijing, China.
| |
Collapse
|
8
|
Saygin D, Tabib T, Bittar HET, Valenzi E, Sembrat J, Chan SY, Rojas M, Lafyatis R. Transcriptional profiling of lung cell populations in idiopathic pulmonary arterial hypertension. Pulm Circ 2020; 10:10.1177_2045894020908782. [PMID: 32166015 PMCID: PMC7052475 DOI: 10.1177/2045894020908782] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Despite recent improvements in management of idiopathic pulmonary arterial
hypertension, mortality remains high. Understanding the alterations in the
transcriptome–phenotype of the key lung cells involved could provide insight
into the drivers of pathogenesis. In this study, we examined differential gene
expression of cell types implicated in idiopathic pulmonary arterial
hypertension from lung explants of patients with idiopathic pulmonary arterial
hypertension compared to control lungs. After tissue digestion, we analyzed all
cells from three idiopathic pulmonary arterial hypertension and six control
lungs using droplet-based single cell RNA-sequencing. After dimensional
reduction by t-stochastic neighbor embedding, we compared the transcriptomes of
endothelial cells, pericyte/smooth muscle cells, fibroblasts, and macrophage
clusters, examining differential gene expression and pathways implicated by
analysis of Gene Ontology Enrichment. We found that endothelial cells and
pericyte/smooth muscle cells had the most differentially expressed gene profile
compared to other cell types. Top differentially upregulated genes in
endothelial cells included novel genes: ROBO4, APCDD1, NDST1, MMRN2,
NOTCH4, and DOCK6, as well as previously reported
genes: ENG, ORAI2, TFDP1, KDR, AMOTL2, PDGFB, FGFR1, EDN1, and
NOTCH1. Several transcription factors were also found to be
upregulated in idiopathic pulmonary arterial hypertension endothelial cells
including SOX18, STRA13, LYL1, and ELK, which
have known roles in regulating endothelial cell phenotype. In particular,
SOX18 was implicated through bioinformatics analyses in
regulating the idiopathic pulmonary arterial hypertension endothelial cell
transcriptome. Furthermore, idiopathic pulmonary arterial hypertension
endothelial cells upregulated expression of FAM60A and
HDAC7, potentially affecting epigenetic changes in
idiopathic pulmonary arterial hypertension endothelial cells. Pericyte/smooth
muscle cells expressed genes implicated in regulation of cellular apoptosis and
extracellular matrix organization, and several ligands for genes showing
increased expression in endothelial cells. In conclusion, our study represents
the first detailed look at the transcriptomic landscape across idiopathic
pulmonary arterial hypertension lung cells and provides robust insight into
alterations that occur in vivo in idiopathic pulmonary arterial hypertension
lungs.
Collapse
Affiliation(s)
- Didem Saygin
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Tracy Tabib
- Division of Rheumatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Humberto E T Bittar
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Eleanor Valenzi
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John Sembrat
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Stephen Y Chan
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Robert Lafyatis
- Division of Rheumatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Yokokawa T, Sugimoto K, Kimishima Y, Misaka T, Yoshihisa A, Morisaki H, Yamada O, Nakazato K, Ishida T, Takeishi Y. Pulmonary Hypertension and Hereditary Hemorrhagic Telangiectasia Related to an ACVRL1 Mutation. Intern Med 2020; 59:221-227. [PMID: 31511490 PMCID: PMC7008044 DOI: 10.2169/internalmedicine.3625-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pulmonary hypertension and hereditary hemorrhagic telangiectasia (HHT) have an association mediated by activin A receptor type II-like 1 (ACVRL1) gene pathogenic variants. A 30-year-old woman was previously admitted to a hospital due to lung hemorrhage, and was diagnosed with pulmonary hypertension, but stopped follow-up visits. At 48 years of age, she was admitted to our hospital and was diagnosed with HHT. Genetic testing revealed an ACVRL1 pathogenic variant. After the initiation of pulmonary vasodilator treatment, the patient's mean pulmonary artery pressure started to decrease from 43 mmHg, declining to 37 mmHg when she was 58 years of age. This is the first report describing the 28-year follow-up of an HHT and pulmonary hypertension patient with an ACVRL1 mutation.
Collapse
Affiliation(s)
- Tetsuro Yokokawa
- Department of Cardiovascular Medicine, Fukushima Medical University, Japan
- Department of Pulmonary Hypertension, Fukushima Medical University, Japan
| | - Koichi Sugimoto
- Department of Cardiovascular Medicine, Fukushima Medical University, Japan
- Department of Pulmonary Hypertension, Fukushima Medical University, Japan
| | - Yusuke Kimishima
- Department of Cardiovascular Medicine, Fukushima Medical University, Japan
| | - Tomofumi Misaka
- Department of Cardiovascular Medicine, Fukushima Medical University, Japan
- Department of Advanced Cardiac Therapeutics, Fukushima Medical University, Japan
| | - Akiomi Yoshihisa
- Department of Cardiovascular Medicine, Fukushima Medical University, Japan
- Department of Advanced Cardiac Therapeutics, Fukushima Medical University, Japan
| | - Hiroko Morisaki
- Department of Medical Genetics, Sakakibara Heart Institute, Japan
| | - Osamu Yamada
- Department of Pathology, National Cerebral and Cardiovascular Center, Japan
| | - Kazuhiko Nakazato
- Department of Cardiovascular Medicine, Fukushima Medical University, Japan
| | - Takafumi Ishida
- Department of Cardiovascular Medicine, Fukushima Medical University, Japan
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine, Fukushima Medical University, Japan
| |
Collapse
|
10
|
Abstract
OBJECTIVES The aim of this study was to evaluate the variant frequency of pulmonary arterial hypertension-related genes and provide theoretical basis for genetic screening of patients with pulmonary arterial hypertension further. METHODS Ten genes associated with pulmonary arterial hypertension were sequenced in 7 cases of idiopathic pulmonary arterial hypertension and 34 cases of congenital heart disease (CHD) associated with pulmonary arterial hypertension by next-generation high-throughput sequencing. Function prediction and gene variant amino acid conservation were carried out by bioinformatics software. Family study was performed on the patients with the variant. RESULTS A new bone morphogenetic protein receptor type 2(BMPR2) variant (c.344T>C, p. F115S) was discovered in a girl who was diagnosed with idiopathic pulmonary arterial hypertension. Her second aunt and third aunt carried the same variant and were confirmed as patients with pulmonary arterial hypertension as well. No variants or single nucleotide polymorphisms were found in other pulmonary arterial hypertension-associated genes. CONCLUSIONS BMPR2 variant is the most common variant of pulmonary arterial hypertension. Genetic screening of BMPR2 variant and family survey in patients with pulmonary arterial hypertension is suggested for the sake of definite cause and better treatment.
Collapse
|
11
|
Ormiston ML, Godoy RS, Chaudhary KR, Stewart DJ. The Janus Faces of Bone Morphogenetic Protein 9 in Pulmonary Arterial Hypertension. Circ Res 2019; 124:822-824. [DOI: 10.1161/circresaha.119.314753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mark L. Ormiston
- From the Departments of Biomedical and Molecular Sciences, Medicine and Surgery, Queen’s University, Kingston, Ontario, Canada (M.L.O.)
| | - Rafael Soares Godoy
- Ottawa Hospital Research Institute, Sinclair Centre for Regenerative Medicine and the University of Ottawa, Ontario, Canada (R.S.G., K.R.C., D.J.S.)
| | - Ketul R. Chaudhary
- Ottawa Hospital Research Institute, Sinclair Centre for Regenerative Medicine and the University of Ottawa, Ontario, Canada (R.S.G., K.R.C., D.J.S.)
| | - Duncan J. Stewart
- Ottawa Hospital Research Institute, Sinclair Centre for Regenerative Medicine and the University of Ottawa, Ontario, Canada (R.S.G., K.R.C., D.J.S.)
| |
Collapse
|
12
|
Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults. Proc Natl Acad Sci U S A 2018; 115:E12353-E12362. [PMID: 30482864 PMCID: PMC6310811 DOI: 10.1073/pnas.1809700115] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lower respiratory tract infections (LRTIs) are the leading cause of infectious disease-related deaths worldwide yet remain challenging to diagnose because of limitations in existing microbiologic tests. In critically ill patients, noninfectious respiratory syndromes that resemble LRTIs further complicate diagnosis and confound targeted treatment. To address this, we developed a metagenomic sequencing-based approach that simultaneously interrogates three core elements of acute airway infections: the pathogen, airway microbiome, and host response. We studied this approach in a prospective cohort of critically ill patients with acute respiratory failure and found that combining pathogen, microbiome, and host gene expression metrics achieved accurate LRTI diagnosis and identified etiologic pathogens in patients with clinically identified infections but otherwise negative testing. Lower respiratory tract infections (LRTIs) lead to more deaths each year than any other infectious disease category. Despite this, etiologic LRTI pathogens are infrequently identified due to limitations of existing microbiologic tests. In critically ill patients, noninfectious inflammatory syndromes resembling LRTIs further complicate diagnosis. To address the need for improved LRTI diagnostics, we performed metagenomic next-generation sequencing (mNGS) on tracheal aspirates from 92 adults with acute respiratory failure and simultaneously assessed pathogens, the airway microbiome, and the host transcriptome. To differentiate pathogens from respiratory commensals, we developed a rules-based model (RBM) and logistic regression model (LRM) in a derivation cohort of 20 patients with LRTIs or noninfectious acute respiratory illnesses. When tested in an independent validation cohort of 24 patients, both models achieved accuracies of 95.5%. We next developed pathogen, microbiome diversity, and host gene expression metrics to identify LRTI-positive patients and differentiate them from critically ill controls with noninfectious acute respiratory illnesses. When tested in the validation cohort, the pathogen metric performed with an area under the receiver-operating curve (AUC) of 0.96 (95% CI, 0.86–1.00), the diversity metric with an AUC of 0.80 (95% CI, 0.63–0.98), and the host transcriptional classifier with an AUC of 0.88 (95% CI, 0.75–1.00). Combining these achieved a negative predictive value of 100%. This study suggests that a single streamlined protocol offering an integrated genomic portrait of pathogen, microbiome, and host transcriptome may hold promise as a tool for LRTI diagnosis.
Collapse
|
13
|
Gomez-Puerto MC, Iyengar PV, García de Vinuesa A, Ten Dijke P, Sanchez-Duffhues G. Bone morphogenetic protein receptor signal transduction in human disease. J Pathol 2018; 247:9-20. [PMID: 30246251 PMCID: PMC6587955 DOI: 10.1002/path.5170] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/03/2018] [Accepted: 09/13/2018] [Indexed: 12/23/2022]
Abstract
Bone morphogenetic proteins (BMPs) are secreted cytokines that were initially discovered on the basis of their ability to induce bone. Several decades of research have now established that these proteins function in a large variety of physiopathological processes. There are about 15 BMP family members, which signal via three transmembrane type II receptors and four transmembrane type I receptors. Mechanistically, BMP binding leads to phosphorylation of the type I receptor by the type II receptor. This activated heteromeric complex triggers intracellular signaling that is initiated by phosphorylation of receptor‐regulated SMAD1, 5, and 8 (also termed R‐SMADs). Activated R‐SMADs form heteromeric complexes with SMAD4, which engage in specific transcriptional responses. There is convergence along the signaling pathway and, besides the canonical SMAD pathway, BMP‐receptor activation can also induce non‐SMAD signaling. Each step in the pathway is fine‐tuned by positive and negative regulation and crosstalk with other signaling pathways. For example, ligand bioavailability for the receptor can be regulated by ligand‐binding proteins that sequester the ligand from interacting with receptors. Accessory co‐receptors, also known as BMP type III receptors, lack intrinsic enzymatic activity but enhance BMP signaling by presenting ligands to receptors. In this review, we discuss the role of BMP receptor signaling and how corruption of this pathway contributes to cardiovascular and musculoskeletal diseases and cancer. We describe pharmacological tools to interrogate the function of BMP receptor signaling in specific biological processes and focus on how these agents can be used as drugs to inhibit or activate the function of the receptor, thereby normalizing dysregulated BMP signaling. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Maria Catalina Gomez-Puerto
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Prasanna Vasudevan Iyengar
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Amaya García de Vinuesa
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
Noia G, Maltese PE, Zampino G, D'Errico M, Cammalleri V, Convertini P, Marceddu G, Mueller M, Guerri G, Bertelli M. Cystic Hygroma: A Preliminary Genetic Study and a Short Review from the Literature. Lymphat Res Biol 2018; 17:30-39. [PMID: 30475086 DOI: 10.1089/lrb.2017.0084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The objective of this study is to examine the hypothesis that cystic hygroma (CH) with normal karyotype can manifest as a Mendelian inherited trait, and that a genetic similitude with hereditary lymphedema exists. To reach this goal, we investigated the prevalence of genetic variants in angiogenesis and lymphangiogenesis genes in a cohort of euploid fetuses with CH that almost resolved before delivery. A short review of cases from literature is also reported. METHODS AND RESULTS Five fetuses were screened using a next-generation sequencing approach by targeting 33 genes known to be associated with vascular and lymphatic malformations. The genetic evaluation revealed two novel variants in KDR and KRIT1 genes. CONCLUSION A review of the literature to date revealed that an association exists between CH and hereditary lymphedema and, similar to lymphedema, CH can be inherited in autosomal recessive and autosomal dominant manner, with the latter most likely associated with a better prognosis. About KDR and KRIT1 genes, no other similar associations are reported in the literature and caution is needed in their interpretation. In conclusion, we thought that a genetic test for the outcome of familial CH could be of enormous prognostic value.
Collapse
Affiliation(s)
- Giuseppe Noia
- 1 Hospice Perinatale Centro per le Cure Palliative prenatali Santa Madre Teresa di Calcutta, Policlinico A. Gemelli-Centro Studi per la Tutela della Madre e del Concepito-Università Cattolica del Sacro Cuore-Roma, Roma, Italy
| | | | - Giuseppe Zampino
- 3 Centro Malattie Rare e Difetti Congeniti, Polo Scienza della Salute della Donna e del Bambino, Fondazione Policlinico Universitario A. Gemelli, Roma, Italy
| | - Marco D'Errico
- 4 Divisione di Ostetricia e Ginecologia, Ospedale "Cristo Re," Roma, Italy
| | - Vittoria Cammalleri
- 1 Hospice Perinatale Centro per le Cure Palliative prenatali Santa Madre Teresa di Calcutta, Policlinico A. Gemelli-Centro Studi per la Tutela della Madre e del Concepito-Università Cattolica del Sacro Cuore-Roma, Roma, Italy
| | | | | | | | | | - Matteo Bertelli
- 2 Magi's Lab, Rovereto, Italy.,5 Magi Euregio, Bolzano, Italy
| |
Collapse
|
15
|
Vorselaars VMM, Hosman AE, Westermann CJJ, Snijder RJ, Mager JJ, Goumans MJ, Post MC. Pulmonary Arterial Hypertension and Hereditary Haemorrhagic Telangiectasia. Int J Mol Sci 2018; 19:ijms19103203. [PMID: 30336550 PMCID: PMC6213989 DOI: 10.3390/ijms19103203] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022] Open
Abstract
Hereditary haemorrhagic telangiectasia (HHT) is an autosomal dominant inherited disease characterised by multisystemic vascular dysplasia. Heritable pulmonary arterial hypertension (HPAH) is a rare but severe complication of HHT. Both diseases can be the result of genetic mutations in ACVLR1 and ENG encoding for proteins involved in the transforming growth factor-beta (TGF-β) superfamily, a signalling pathway that is essential for angiogenesis. Changes within this pathway can lead to both the proliferative vasculopathy of HPAH and arteriovenous malformations seen in HHT. Clinical signs of the disease combination may not be specific but early diagnosis is important for appropriate treatment. This review describes the molecular mechanism and management of HPAH and HHT.
Collapse
Affiliation(s)
| | - Anna E Hosman
- Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands.
| | | | - Repke J Snijder
- Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands.
| | - Johannes J Mager
- Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands.
| | - Marie-Jose Goumans
- Department of Molecular Cell Biology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands.
| | - Marco C Post
- Department of Cardiology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands.
| |
Collapse
|
16
|
Pousada G, Lupo V, Cástro-Sánchez S, Álvarez-Satta M, Sánchez-Monteagudo A, Baloira A, Espinós C, Valverde D. Molecular and functional characterization of the BMPR2 gene in Pulmonary Arterial Hypertension. Sci Rep 2017; 7:1923. [PMID: 28507310 PMCID: PMC5432510 DOI: 10.1038/s41598-017-02074-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/05/2017] [Indexed: 11/09/2022] Open
Abstract
Pulmonary arterial hypertension is a progressive disease that causes the obstruction of precapillary pulmonary arteries and a sustained increase in pulmonary vascular resistance. The aim was to analyze functionally the variants found in the BMPR2 gene and to establish a genotype-phenotype correlation. mRNA expression studies were performed using pSPL3 vector, studies of subcellular localization were performed using pEGFP-N1 vector and luciferase assays were performed using pGL3-Basic vector. We have identified 30 variants in the BMPR2 gene in 27 of 55 patients. In 16 patients we detected pathogenic mutations. Minigene assays revealed that 6 variants (synonymous, missense) result in splicing defect. By immunofluorescence assay, we observed that 4 mutations affect the protein localization. Finally, 4 mutations located in the 5'UTR region showed a decreased transcriptional activity in luciferase assays. Genotype-phenotype correlation, revealed that patients with pathogenic mutations have a more severe phenotype (sPaP p = 0.042, 6MWT p = 0.041), a lower age at diagnosis (p = 0.040) and seemed to have worse response to phosphodiesterase-5-inhibitors (p = 0.010). Our study confirms that in vitro expression analysis is a suitable approach in order to investigate the phenotypic consequences of the nucleotide variants, especially in cases where the involved genes have a pattern of expression in tissues of difficult access.
Collapse
Affiliation(s)
- Guillermo Pousada
- Dep. Biochemistry, Genetics and Immunology. Faculty of Biology, University of Vigo, As Lagoas Marcosende S/N, 36310, Vigo, Spain.,Grupo de Investigación Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Vincenzo Lupo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012, Valencia, Spain
| | - Sheila Cástro-Sánchez
- Dep. Biochemistry, Genetics and Immunology. Faculty of Biology, University of Vigo, As Lagoas Marcosende S/N, 36310, Vigo, Spain.,Grupo de Investigación Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - María Álvarez-Satta
- Dep. Biochemistry, Genetics and Immunology. Faculty of Biology, University of Vigo, As Lagoas Marcosende S/N, 36310, Vigo, Spain.,Grupo de Investigación Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Ana Sánchez-Monteagudo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012, Valencia, Spain
| | - Adolfo Baloira
- Neumology Service, Complexo Hospitalario Universitario de Pontevedra, 36071, Pontevedra, Spain
| | - Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012, Valencia, Spain
| | - Diana Valverde
- Dep. Biochemistry, Genetics and Immunology. Faculty of Biology, University of Vigo, As Lagoas Marcosende S/N, 36310, Vigo, Spain. .,Grupo de Investigación Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain.
| |
Collapse
|
17
|
BMP type II receptor as a therapeutic target in pulmonary arterial hypertension. Cell Mol Life Sci 2017; 74:2979-2995. [PMID: 28447104 PMCID: PMC5501910 DOI: 10.1007/s00018-017-2510-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/09/2017] [Accepted: 03/17/2017] [Indexed: 12/30/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disease characterized by a progressive elevation in mean pulmonary arterial pressure. This occurs due to abnormal remodeling of small peripheral lung vasculature resulting in progressive occlusion of the artery lumen that eventually causes right heart failure and death. The most common cause of PAH is inactivating mutations in the gene encoding a bone morphogenetic protein type II receptor (BMPRII). Current therapeutic options for PAH are limited and focused mainly on reversal of pulmonary vasoconstriction and proliferation of vascular cells. Although these treatments can relieve disease symptoms, PAH remains a progressive lethal disease. Emerging data suggest that restoration of BMPRII signaling in PAH is a promising alternative that could prevent and reverse pulmonary vascular remodeling. Here we will focus on recent advances in rescuing BMPRII expression, function or signaling to prevent and reverse pulmonary vascular remodeling in PAH and its feasibility for clinical translation. Furthermore, we summarize the role of described miRNAs that directly target the BMPR2 gene in blood vessels. We discuss the therapeutic potential and the limitations of promising new approaches to restore BMPRII signaling in PAH patients. Different mutations in BMPR2 and environmental/genetic factors make PAH a heterogeneous disease and it is thus likely that the best approach will be patient-tailored therapies.
Collapse
|
18
|
Guignabert C, Bailly S, Humbert M. Restoring BMPRII functions in pulmonary arterial hypertension: opportunities, challenges and limitations. Expert Opin Ther Targets 2016; 21:181-190. [DOI: 10.1080/14728222.2017.1275567] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Christophe Guignabert
- INSERM UMR_S 999, Le Plessis-Robinson, France
- Univ. Paris-Sud, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Sabine Bailly
- INSERM U1036, Grenoble, France
- Laboratoire Biologie du Cancer et de l’Infection, Commissariat à l’Énergie Atomique et aux Energies Alternatives, Biosciences and Biotechnology Institute of Grenoble, Grenoble, France
- Université Grenoble-Alpes, Grenoble, France
| | - Marc Humbert
- INSERM UMR_S 999, Le Plessis-Robinson, France
- Univ. Paris-Sud, Université Paris-Saclay, Kremlin-Bicêtre, France
- AP-HP, Service de Pneumologie, Centre de Référence de l’Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital de Bicêtre, France
| |
Collapse
|
19
|
Complex inheritance in Pulmonary Arterial Hypertension patients with several mutations. Sci Rep 2016; 6:33570. [PMID: 27630060 PMCID: PMC5024326 DOI: 10.1038/srep33570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/25/2016] [Indexed: 12/21/2022] Open
Abstract
Pulmonary Arterial Hypertension (PAH) is a rare and progressive disease with low incidence and prevalence, and elevated mortality. PAH is characterized by increased mean pulmonary artery pressure. The aim of this study was to analyse patients with combined mutations in BMPR2, ACVRL1, ENG and KCNA5 genes and to establish a genotype-phenotype correlation. Major genes were analysed by polymerase chain reaction (PCR) and direct sequencing. Genotype-phenotype correlation was performed. Fifty-seven (28 idiopathic PAH, 29 associated PAH group I) were included. Several mutations in different genes, classified as pathogenic by in silico analysis, were present in 26% of PAH patients. The most commonly involved gene was BMPR2 (12 patients) followed by ENG gene (9 patients). ACVRL1 and KCNA5 genes showed very low incidence of mutations (5 and 1 patients, respectively). Genotype-phenotype correlation showed statistically significant differences for gender (p = 0.045), age at diagnosis (p = 0.035), pulmonary vascular resistance (p = 0.030), cardiac index (p = 0.035) and absence of response to treatment (p = 0.011). PAH is consequence of a heterogeneous constellation of genetic arrangements. Patients with several pathogenic mutations seem to display a more severe phenotype.
Collapse
|