1
|
The relevance of late MSA mandibles on the emergence of modern morphology in Northern Africa. Sci Rep 2022; 12:8841. [PMID: 35614148 PMCID: PMC9133045 DOI: 10.1038/s41598-022-12607-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
North Africa is a key area for understanding hominin population movements and the expansion of our species. It is home to the earliest currently known Homo sapiens (Jebel Irhoud) and several late Middle Stone Age (MSA) fossils, notably Kébibat, Contrebandiers 1, Dar-es-Soltane II H5 and El Harhoura. Mostly referred to as “Aterian” they fill a gap in the North African fossil record between Jebel Irhoud and Iberomaurusians. We explore morphological continuity in this region by quantifying mandibular shape using 3D (semi)landmark geometric morphometric methods in a comparative framework of late Early and Middle Pleistocene hominins (n = 15), Neanderthals (n = 27) and H. sapiens (n = 145). We discovered a set of mixed features among late MSA fossils that is in line with an accretion of modern traits through time and an ongoing masticatory gracilization process. In Northern Africa, Aterians display similarities to Iberomaurusians and recent humans in the area as well as to the Tighenif and Thomas Quarry hominins, suggesting a greater time depth for regional continuity than previously assumed. The evidence we lay out for a long-term succession of hominins and humans emphasizes North Africa’s role as source area of the earliest H. sapiens.
Collapse
|
2
|
Sánchez-Martínez LJ, Hernández CL, Rodríguez JN, Dugoujon JM, Novelletto A, Ropero P, Pereira L, Calderón R. Genetic variation patterns of β-thalassemia in Western Andalusia (Spain) reveal a structure of specific mutations within the Iberian Peninsula. Ann Hum Biol 2021; 48:406-417. [PMID: 34727790 DOI: 10.1080/03014460.2021.2000641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Analyses of the genomic variation in the western Mediterranean population are being used to reveal its evolutionary history and to understand the molecular basis of particular diseases. AIM To observe the β-thalassemia mutational spectrum in western Andalusia, Spain, in the context of the Mediterranean. In addition, associations between disease and neutral gene variants within the β-globin gene (HBB) were also evaluated. SUBJECTS AND METHODS This study included 63 unrelated individuals diagnosed with β-thalassemia. In addition, 97 unrelated, healthy subjects of the same territory were also analysed as proxies of the normal genetic background. Allele associations and population genetic structure analyses were performed using different methodologies. RESULTS Data have revealed a rather restricted spectrum of β-thalassemia mutations in the analysed sample. Although the detected variants fit well with the Mediterranean pattern, certain singularities support a structure of some specific β-thalassemia alleles. The IVSI-1 (G > A) shows a strong regionalisation. The spatial correlogram revealed a typically narrow wave structure, presumably linked to genetic isolation and genetic drift. CONCLUSIONS The long history of endemic malaria in the study territory, the rather high consanguinity rates among its autochthonous population, and other demographic features have been used here to understand the western Andalusian β-thalassemia molecular portrait.
Collapse
Affiliation(s)
- Luis J Sánchez-Martínez
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Candela L Hernández
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Juan N Rodríguez
- Servicio de Hematología y Hemoterapia, Hospital Juan Ramón Jiménez, Huelva, Spain
| | - Jean M Dugoujon
- CNRS UMR 5288 Laboratoire d'Anthropologie Moléculaire et d'Imagerie de Synthèse (AMIS), Université Paul Sabatier Toulouse III, Toulouse, France
| | | | - Paloma Ropero
- Servicio de Hematología y Hemoterapia, Hospital Clínico San Carlos, Madrid, Spain
| | - Luisa Pereira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Rosario Calderón
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense, Madrid, Spain
| |
Collapse
|
3
|
First Bronze Age Human Mitogenomes from Calabria (Grotta Della Monaca, Southern Italy). Genes (Basel) 2021; 12:genes12050636. [PMID: 33922908 PMCID: PMC8146030 DOI: 10.3390/genes12050636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/02/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022] Open
Abstract
The Italian peninsula was host to a strong history of migration processes that shaped its genomic variability since prehistoric times. During the Metal Age, Sicily and Southern Italy were the protagonists of intense trade networks and settlements along the Mediterranean. Nonetheless, ancient DNA studies in Southern Italy are, at present, still limited to prehistoric and Roman Apulia. Here, we present the first mitogenomes from a Middle Bronze Age cave burial in Calabria to address this knowledge gap. We adopted a hybridization capture approach, which enabled the recovery of one complete and one partial mitochondrial genome. Phylogenetic analysis assigned these two individuals to the H1e and H5 subhaplogroups, respectively. This preliminary phylogenetic analysis supports affinities with coeval Sicilian populations, along with Linearbandkeramik and Bell Beaker cultures maternal lineages from Central Europe and Iberia. Our work represents a starting point which contributes to the comprehension of migrations and population dynamics in Southern Italy, and highlights this knowledge gap yet to be filled by genomic studies.
Collapse
|
4
|
Hernández CL, Pita G, Cavadas B, López S, Sánchez-Martínez LJ, Dugoujon JM, Novelletto A, Cuesta P, Pereira L, Calderón R. Human Genomic Diversity Where the Mediterranean Joins the Atlantic. Mol Biol Evol 2021; 37:1041-1055. [PMID: 31816048 PMCID: PMC7086172 DOI: 10.1093/molbev/msz288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Throughout the past few years, a lively debate emerged about the timing and magnitude of the human migrations between the Iberian Peninsula and the Maghreb. Several pieces of evidence, including archaeological, anthropological, historical, and genetic data, have pointed to a complex and intermingled evolutionary history in the western Mediterranean area. To study to what extent connections across the Strait of Gibraltar and surrounding areas have shaped the present-day genomic diversity of its populations, we have performed a screening of 2.5 million single-nucleotide polymorphisms in 142 samples from southern Spain, southern Portugal, and Morocco. We built comprehensive data sets of the studied area and we implemented multistep bioinformatic approaches to assess population structure, demographic histories, and admixture dynamics. Both local and global ancestry inference showed an internal substructure in the Iberian Peninsula, mainly linked to a differential African ancestry. Western Iberia, from southern Portugal to Galicia, constituted an independent cluster within Iberia characterized by an enriched African genomic input. Migration time modeling showed recent historic dates for the admixture events occurring both in Iberia and in the North of Africa. However, an integrative vision of both paleogenomic and modern DNA data allowed us to detect chronological transitions and population turnovers that could be the result of transcontinental migrations dating back from Neolithic times. The present contribution aimed to fill the gaps in the modern human genomic record of a key geographic area, where the Mediterranean and the Atlantic come together.
Collapse
Affiliation(s)
- Candela L Hernández
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Guillermo Pita
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Bruno Cavadas
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP-Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| | - Saioa López
- UCL Cancer Institute, London, United Kingdom
| | - Luis J Sánchez-Martínez
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Jean-Michel Dugoujon
- CNRS UMR 5288 Laboratoire d'Anthropologie Moléculaire et d'Imagerie de Synthèse (AMIS), Université Paul Sabatier Toulouse III, Toulouse, France
| | | | - Pedro Cuesta
- Centro de Proceso de Datos, Universidad Complutense, Madrid, Spain
| | - Luisa Pereira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP-Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| | - Rosario Calderón
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense, Madrid, Spain
| |
Collapse
|
5
|
Drosou K, Collin TC, Freeman PJ, Loynes R, Freemont T. The first reported case of the rare mitochondrial haplotype H4a1 in ancient Egypt. Sci Rep 2020; 10:17037. [PMID: 33046824 PMCID: PMC7550590 DOI: 10.1038/s41598-020-74114-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/04/2020] [Indexed: 11/10/2022] Open
Abstract
Takabuti, was a female who lived in ancient Egypt during the 25th Dynasty, c.660 BCE. Her mummified remains were brought to Belfast, Northern Ireland, in 1834 and are currently displayed in the Ulster Museum. To gain insight into Takabuti’s ancestry, we used deep sampling of vertebral bone, under X-ray control, to obtain non-contaminated bone tissue from which we extracted ancient DNA (aDNA) using established protocols. We targeted the maternally inherited mitochondrial DNA (mtDNA), known to be highly informative for human ancestry, and identified 38 single nucleotide variants using next generation sequencing. The specific combination of these SNVs suggests that Takabuti belonged to mitochondrial haplogroup H4a1. Neither H4 nor H4a1 have been reported in ancient Egyptian samples, prior to this study. The modern distribution of H4a1 is rare and sporadic and has been identified in areas including the Canary Islands, southern Iberia and the Lebanon. H4a1 has also been reported in ancient samples from Bell Beaker and Unetice contexts in Germany, as well as Bronze Age Bulgaria. We believe that this is an important finding because first, it adds to the depth of knowledge about the distribution of the H4a1 haplogroup in existing mtDNA, thus creating a baseline for future occurrences of this haplogroup in ancient Egyptian remains. Second, it is of great importance for archaeological sciences, since a predominantly European haplogroup has been identified in an Egyptian individual in Southern Egypt, prior to the Roman and Greek influx (332BCE).
Collapse
Affiliation(s)
- Konstantina Drosou
- KNH Centre for Biomedical Egyptology, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, M13 9PG, UK. .,Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK.
| | - Thomas C Collin
- School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Peter J Freeman
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, M19 9PG, UK
| | - Robert Loynes
- KNH Centre for Biomedical Egyptology, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, M13 9PG, UK
| | - Tony Freemont
- KNH Centre for Biomedical Egyptology, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, M13 9PG, UK
| |
Collapse
|
6
|
Pimenta J, Lopes AM, Carracedo A, Arenas M, Amorim A, Comas D. Spatially explicit analysis reveals complex human genetic gradients in the Iberian Peninsula. Sci Rep 2019; 9:7825. [PMID: 31127131 PMCID: PMC6534591 DOI: 10.1038/s41598-019-44121-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
The Iberian Peninsula is a well-delimited geographic region with a rich and complex human history. However, the causes of its genetic structure and past migratory dynamics are not yet fully understood. In order to shed light on them, here we evaluated the gene flow and genetic structure throughout the Iberian Peninsula with spatially explicit modelling applied to a georeferenced genetic dataset composed of genome-wide SNPs from 746 individuals belonging to 17 different regions of the Peninsula. We found contrasting patterns of genetic structure throughout Iberia. In particular, we identified strong patterns of genetic differentiation caused by relevant barriers to gene flow in northern regions and, on the other hand, a large genetic similarity in central and southern regions. In addition, our results showed a preferential north to south migratory dynamics and suggest a sex-biased dispersal in Mediterranean and southern regions. The estimated genetic patterns did not fit with the geographical relief of the Iberian landscape and they rather seem to follow political and linguistic territorial boundaries.
Collapse
Affiliation(s)
- João Pimenta
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Institute of Evolutionary Biology (CSIC-UPF). Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
- Faculty of Sciences, University of Porto, Porto, Portugal
- Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
| | - Alexandra M Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Angel Carracedo
- Instituto de Ciencias Forenses, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Grupo de Medicina Xenómica, CIBERER, Santiago de Compostela, Spain
| | - Miguel Arenas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
- Biomedical Research Center (CINBIO), University of Vigo, 36310, Vigo, Spain
| | - António Amorim
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - David Comas
- Institute of Evolutionary Biology (CSIC-UPF). Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
7
|
Badache H, Boussetta S, Elgaaeid AB, Cherni L, El-khil HK. Investigation of the genetic structure of Kabyle and Chaouia Algerian populations through the polymorphism of Alu insertion markers. Ann Hum Biol 2019; 46:150-159. [DOI: 10.1080/03014460.2019.1588994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hocine Badache
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
| | - Amel Benammar Elgaaeid
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
| | - Lotfi Cherni
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
- Higher Institute of Biotechnology, University of Monastir, Tunisia
| | - Houssein Khodjet El-khil
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
- Higher Institute of Biotechnology, University of Monastir, Tunisia
- Department of Biomedical Sciences, College of Health Sciences Qatar University, Doha, Qatar
| |
Collapse
|
8
|
Hernández CL, Dugoujon JM, Sánchez-Martínez LJ, Cuesta P, Novelletto A, Calderón R. Paternal lineages in southern Iberia provide time frames for gene flow from mainland Europe and the Mediterranean world. Ann Hum Biol 2019; 46:63-76. [PMID: 30822152 DOI: 10.1080/03014460.2019.1587507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The geography of southern Iberia and an abundant archaeological record of human occupation are ideal conditions for a full understanding of scenarios of genetic history in the area. Recent advances in the phylogeography of Y-chromosome lineages offer the opportunity to set upper bounds for the appearance of different genetic components. AIM To provide a global knowledge on the Y haplogroups observed in Andalusia with their Y microsatellite variation. Preferential attention is given to the vehement debate about the age, origin and expansion of R1b-M269 clade and sub-lineages. SUBJECT AND METHODS Four hundred and fourteen male DNA samples from western and eastern autochthonous Andalusians were genotyped for a set of Y-SNPs and Y-STRs. Gene diversity, potential population genetic structures and coalescent times were assessed. RESULTS Most of the analysed samples belong to the European haplogroup R1b1a1a2-M269, whereas haplogroups E, J, I, G and T show lower frequencies. A phylogenetic dissection of the R1b-M269 was performed and younger time frames than those previously reported in the literature were obtained for its sub-lineages. CONCLUSION The particular Andalusian R1b-M269 assemblage confirms the shallow topology of the clade. Moreover, the sharing of lineages with the rest of Europe indicates the impact in Iberia of an amount of pre-existing diversity, with the possible exception of R1b-DF27. Lineages such as J2-M172 and G-M201 highlight the importance of maritime travels of early farmers who reached the Iberian Peninsula.
Collapse
Affiliation(s)
- Candela L Hernández
- a Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología , Universidad Complutense , Madrid , Spain
| | - Jean-Michel Dugoujon
- b CNRS UMR 5288 Laboratoire d'Anthropologie Moléculaire et d'Imagerie de Synthèse (AMIS) , Université Paul Sabatier Toulouse III , Toulouse , France
| | - Luis J Sánchez-Martínez
- a Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología , Universidad Complutense , Madrid , Spain
| | - Pedro Cuesta
- c Centro de Proceso de Datos , Universidad Complutense , Madrid , Spain
| | | | - Rosario Calderón
- a Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología , Universidad Complutense , Madrid , Spain
| |
Collapse
|
9
|
Mitochondrial DNA variability of the Polish population. Eur J Hum Genet 2019; 27:1304-1314. [PMID: 30903113 PMCID: PMC6777467 DOI: 10.1038/s41431-019-0381-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 01/24/2023] Open
Abstract
The aim of the present study was to define the mtDNA variability of Polish population and to visualize the genetic relations between Poles. For the first time, the study of Polish population was conducted on such a large number of individuals (5852) representing administrative units of both levels of local administration in Poland (voivodeships and counties). Additionally, clustering was used as a method of population subdivision. Performed genetic analysis, included FST, MDS plot, AMOVA and SAMOVA. Haplogroups were classified and their geographical distribution was visualized using surface interpolation maps. Results of the present study showed that Poles are characterized by the main West Eurasian mtDNA haplogroups. Furthermore, the level of differentiation within the Polish population was quite low but the existing genetic differences could be explained well with geographic distances. This may lead to a conclusion that Poles can be considered as genetically homogenous but with slight differences, highlighted at the regional level. Some patterns of variability were observed and could be explained by the history of demographic processes in Poland such as resettlements and migrations of women or relatively weaker urbanisation and higher rural population retention of some regions.
Collapse
|
10
|
Zalloua P, Collins CJ, Gosling A, Biagini SA, Costa B, Kardailsky O, Nigro L, Khalil W, Calafell F, Matisoo-Smith E. Ancient DNA of Phoenician remains indicates discontinuity in the settlement history of Ibiza. Sci Rep 2018; 8:17567. [PMID: 30514893 PMCID: PMC6279797 DOI: 10.1038/s41598-018-35667-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022] Open
Abstract
Ibiza was permanently settled around the 7th century BCE by founders arriving from west Phoenicia. The founding population grew significantly and reached its height during the 4th century BCE. We obtained nine complete mitochondrial genomes from skeletal remains from two Punic necropoli in Ibiza and a Bronze Age site from Formentara. We also obtained low coverage (0.47X average depth) of the genome of one individual, directly dated to 361-178 cal BCE, from the Cas Molí site on Ibiza. We analysed and compared ancient DNA results with 18 new mitochondrial genomes from modern Ibizans to determine the ancestry of the founders of Ibiza. The mitochondrial results indicate a predominantly recent European maternal ancestry for the current Ibizan population while the whole genome data suggest a significant Eastern Mediterranean component. Our mitochondrial results suggest a genetic discontinuity between the early Phoenician settlers and the island's modern inhabitants. Our data, while limited, suggest that the Eastern or North African influence in the Punic population of Ibiza was primarily male dominated.
Collapse
Affiliation(s)
- Pierre Zalloua
- School of Medicine, Lebanese American University, Byblos, Lebanon.
| | - Catherine J Collins
- Department of Anatomy, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Anna Gosling
- Department of Anatomy, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Simone Andrea Biagini
- Department de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Benjamí Costa
- Museu Arqueològic d'Eivissa i Formentera, Universitat de Barcelona, Illes Balears, Spain
| | - Olga Kardailsky
- Department of Anatomy, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Lorenzo Nigro
- Facoltà di Lettere e Filosofia, Università di Roma, La Sapienza, Rome, Italy
| | - Wissam Khalil
- Department of Arts and Archaeology, Lebanese University, Beirut, Lebanon
| | - Francesc Calafell
- Department de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | | |
Collapse
|
11
|
De Angelis F, Scorrano G, Martínez-Labarga C, Scano G, Macciardi F, Rickards O. Mitochondrial variability in the Mediterranean area: a complex stage for human migrations. Ann Hum Biol 2018; 45:5-19. [PMID: 29382277 DOI: 10.1080/03014460.2017.1416172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CONTEXT The Mediterranean area has always played a significant role in human dispersal due to the large number of migratory events contributing to shape the cultural features and the genetic pool of its populations. OBJECTIVE This paper aims to review and diachronically describe the mitogenome variability in the Mediterranean population and the main demic diffusions that occurred in this area over time. METHODS Frequency distributions of the leading mitochondrial haplogroups have been geographically and chronologically evaluated. The variability of U5b and K lineages has been focussed to broaden the knowledge of their genetic histories. RESULTS The mitochondrial genetic makeup of Palaeolithic hunter-gatherers is poorly defined within the extant Mediterranean populations, since only a few traces of their genetic contribution are still detectable. The Neolithic lineages are more represented, suggesting that the Neolithic revolution had a marked effect on the peopling of the Mediterranean area. The largest effect, however, was provided by historical migrations. CONCLUSION Although the mitogenome variability has been widely used to try and clarify the evolution of the Mediterranean genetic makeup throughout almost 50 000 years, it is necessary to collect whole genome data on both extinct and extant populations from this area to fully reconstruct and interpret the impact of multiple migratory waves and their cultural and genetic consequences on the structure of the Mediterranean populations.
Collapse
Affiliation(s)
- Flavio De Angelis
- a Centre of Molecular Anthropology for Ancient DNA Studies , University of Rome "Tor Vergata" , Rome , Italy
| | - Gabriele Scorrano
- a Centre of Molecular Anthropology for Ancient DNA Studies , University of Rome "Tor Vergata" , Rome , Italy
| | - Cristina Martínez-Labarga
- a Centre of Molecular Anthropology for Ancient DNA Studies , University of Rome "Tor Vergata" , Rome , Italy
| | - Giuseppina Scano
- a Centre of Molecular Anthropology for Ancient DNA Studies , University of Rome "Tor Vergata" , Rome , Italy
| | - Fabio Macciardi
- b Laboratory of Molecular Psychiatry, Department of Psychiatry and Human Behavior , University of California , Irvine , CA , USA
| | - Olga Rickards
- a Centre of Molecular Anthropology for Ancient DNA Studies , University of Rome "Tor Vergata" , Rome , Italy
| |
Collapse
|
12
|
Messina F, Finocchio A, Akar N, Loutradis A, Michalodimitrakis EI, Brdicka R, Jodice C, Novelletto A. Enlarging the gene-geography of Europe and the Mediterranean area to STR loci of common forensic use: longitudinal and latitudinal frequency gradients. Ann Hum Biol 2018; 45:77-85. [PMID: 29382282 DOI: 10.1080/03014460.2017.1409365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tetranucleotide Short Tandem Repeats (STRs) for human identification and common use in forensic cases have recently been used to address the population genetics of the North-Eastern Mediterranean area. However, to gain confidence in the inferences made using STRs, this kind of analysis should be challenged with changes in three main aspects of the data, i.e. the sizes of the samples, their distance across space and the genetic background from which they are drawn. AIM To test the resilience of the gradients previously detected in the North-Eastern Mediterranean to the enlargement of the surveyed area and population set, using revised data. SUBJECTS AND METHODS STR genotype profiles were obtained from a publicly available database (PopAffilietor databank) and a dataset was assembled including >7000 subjects from the Arabian Peninsula to Scandinavia, genotyped at eight loci. Spatial principal component analysis (sPCA) was applied and the frequency maps of the nine alleles which contributed most strongly to sPC1 were examined in detail. RESULTS By far the greatest part of diversity was summarised by a single spatial principal component (sPC1), oriented along a SouthEast-to-NorthWest axis. The alleles with the top 5% squared loadings were TH01(9.3), D19S433(14), TH01(6), D19S433(15.2), FGA(20), FGA(24), D3S1358(14), FGA(21) and D2S1338(19). These results confirm a clinal pattern over the whole range for at least four loci (TH01, D19S433, FGA, D3S1358). CONCLUSIONS Four of the eight STR loci (or even alleles) considered here can reproducibly capture continental arrangements of diversity. This would, in principle, allow for the exploitation of forensic data to clarify important aspects in the formation of local gene pools.
Collapse
Affiliation(s)
- Francesco Messina
- a Department of Biology , University of Rome Tor Vergata , Rome , Italy
| | - Andrea Finocchio
- a Department of Biology , University of Rome Tor Vergata , Rome , Italy
| | - Nejat Akar
- b Pediatrics Department , TOBB-Economy and Technology University Hospital , Ankara , Turkey
| | | | | | - Radim Brdicka
- e Institute of Hematology and Blood Transfusion , Praha , Czech Republic
| | - Carla Jodice
- a Department of Biology , University of Rome Tor Vergata , Rome , Italy
| | - Andrea Novelletto
- a Department of Biology , University of Rome Tor Vergata , Rome , Italy
| |
Collapse
|
13
|
Font-Porterias N, Solé-Morata N, Serra-Vidal G, Bekada A, Fadhlaoui-Zid K, Zalloua P, Calafell F, Comas D. The genetic landscape of Mediterranean North African populations through complete mtDNA sequences. Ann Hum Biol 2018; 45:98-104. [DOI: 10.1080/03014460.2017.1413133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Neus Font-Porterias
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Neus Solé-Morata
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Gerard Serra-Vidal
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Asmahan Bekada
- Département de Biotechnologie, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 (Ahmad Ben Bella), Oran, Algeria
| | - Karima Fadhlaoui-Zid
- Laboratoire de Génetique, Immunologie et Pathologies Humaines, Faculté des Sciences de Tunis, Campus Univesritaire El Manar II, Université El Manar, Tunis, Tunisia
| | - Pierre Zalloua
- School of Medicine, The Lebanese American University, Chouran, Beirut, Lebanon
| | - Francesc Calafell
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - David Comas
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|