1
|
Mansourizadeh H, Bakhtiarizadeh MR, de Almeida Regitano LC, Bruscadin JJ. Fat-tail allele-specific expression genes may affect fat deposition in tail of sheep. PLoS One 2024; 19:e0316046. [PMID: 39729475 DOI: 10.1371/journal.pone.0316046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
Different sheep breeds show distinct phenotypic plasticity in fat deposition in the tails. The genetic background underlying fat deposition in the tail of sheep is complex, multifactorial, and may involve allele-specific expression (ASE) mechanism to modulate allelic expression. ASE is a common phenomenon in mammals and refers to allelic imbalanced expression modified by cis-regulatory genetic variants that can be observed at heterozygous loci. Therefore, regulatory processes behind the fat-tail formation in sheep may be to some extent explained by cis- regulatory variants, through ASE mechanism, which was investigated in the present study. An RNA-Seq-based variant calling was applied to perform genome-wide survey of ASE genes using 45 samples from seven independent studies comparing the transcriptome of fat-tail tissue between fat- and thin-tailed sheep breeds. Using a rigorous computational pipeline, 115 differential ASE genes were identified, which were narrowed down to four genes (LPL, SOD3, TCP1 and LRPAP1) for being detected in at least two studies. Functional analysis revealed that the ASE genes were mainly involved in fat metabolism. Of these, LPL was of greater importance, as 1) observed in five studies, 2) reported as ASE gene in the previous studies and 3) with a known role in fat deposition. Our findings implied that complex physiological traits, like fat-tail formation, can be better explained by considering various genetic mechanisms, which can be more finely mapped through ASE analyses. The insights gained in this study indicate that biallelic expression may not be a common mechanism in sheep fat-tail development. Hence, allelic imbalance of the fat deposition-related genes can be considered a novel layer of information for future research on genetic improvement and increased efficiency in sheep breeding programs.
Collapse
Affiliation(s)
- Hossein Mansourizadeh
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | | | | | - Jennifer Jessica Bruscadin
- Embrapa Southeast Livestock, São Carlos, Brazil
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| |
Collapse
|
2
|
Yi L, Li Q, Zhu J, Cheng W, Xie Y, Huang Y, Zhao H, Hao M, Wei H, Zhao S. Single-nucleus RNA sequencing and lipidomics reveal characteristics of transcriptional and lipid composition in porcine longissimus dorsi muscle. BMC Genomics 2024; 25:622. [PMID: 38902599 PMCID: PMC11188186 DOI: 10.1186/s12864-024-10488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Global per capita meat consumption continues to rise, especially pork. Meat quality is influenced by the content of intramuscular fat (IMF) as a key factor. The longissimus dorsi muscle of Dahe pigs (DHM, IMF: 7.98% ± 1.96%) and Dahe black pigs (DHBM, IMF: 3.30% ± 0.64%) was studied to explore cellular heterogeneity and differentially expressed genes (DEGs) associated with IMF deposition using single-nucleus RNA sequencing (snRNA-seq). The lipid composition was then analyzed using non-targeted lipidomics. RESULTS A total of seven cell subpopulations were identified, including myocytes, fibroblast/fibro/adipogenic progenitors (FAPs), satellite cells, endothelial cells, macrophages, pericytes, and adipocytes. Among them, FAPs and adipocytes were more focused because they could be associated with lipid deposition. 1623 DEGs in the FAPs subpopulation of DHBM were up-regulated compared with DHM, while 1535 were down-regulated. These DEGs enriched in the glycolysis/gluconeogenesis pathway. 109 DEGs were up-regulated and 806 were down-regulated in the adipocyte subpopulation of DHBM compared with DHM, which were mainly enriched in the PPAR signaling pathway and fatty acid (FA) biosynthesis. The expression level of PPARG, ABP4, LEP, and ACSL1 genes in DHM was higher than that in DHBM. Lipidomics reveals porcine lipid composition characteristics of muscle tissue. A total of 41 lipid classes and 2699 lipid species were identified in DHM and DHBM groups. The top ten relative peak areas of lipid classes in DHM and DHBM were triglyceride (TG), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), diglyceride (DG), cardiolipin (CL), ceramides (Cer), Simple Glc series (Hex1Cer), sphingomyelin (phSM), and phosphatidylinositol (PI). The relative peak areas of 35 lipid species in DHM were lower than DHBM, and 28 lipid species that were higher. There was a significant increase in the TG fatty acyl chains C6:0, C17:0, and C11:4, and a significant decrease in C16:0, C18:1, C18:2, and C22:4 in DHBM (p < 0.05). CONCLUSIONS C16:0 FA may downregulate the expression level of PPARG gene, which leads to the downregulation of fat metabolism-related genes such as ACSL, PLIN2, and FABP4 in DHBM compared with DHM. This may be the reason that the lipid deposition ability of Dahe pigs is stronger than that of Dahe black pigs, which need further investigation.
Collapse
Affiliation(s)
- Lanlan Yi
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Qiuyan Li
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Junhong Zhu
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Wenjie Cheng
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yuxiao Xie
- College of Biology and Agriculture (College of Food Science and Technology), Zunyi Normal College, Zunyi, 563006, China
| | - Ying Huang
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Hongye Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Meilin Hao
- College of Biology and Agriculture (College of Food Science and Technology), Zunyi Normal College, Zunyi, 563006, China
| | - Hongjiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China.
| | - Sumei Zhao
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
3
|
Montes-de-Oca-García A, Corral-Pérez J, Velázquez-Díaz D, Perez-Bey A, Rebollo-Ramos M, Marín-Galindo A, Gómez-Gallego F, Calderon-Dominguez M, Casals C, Ponce-González JG. Influence of Peroxisome Proliferator-Activated Receptor (PPAR)-gamma Coactivator (PGC)-1 alpha gene rs8192678 polymorphism by gender on different health-related parameters in healthy young adults. Front Physiol 2022; 13:885185. [PMID: 35936915 PMCID: PMC9354774 DOI: 10.3389/fphys.2022.885185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to analyze the influence of the peroxisome proliferator-activated receptor (PPAR)-gamma coactivator (PGC)-1 alpha (PPARGC1A) gene rs8192678 C>T polymorphism on different health-related parameters in male and female young adults. The PPARGC1A gene rs8192678 polymorphism was ascertained by polymerase chain reaction in 74 healthy adults (28 women; 22.72 ± 4.40 years) from Andalusia (Spain). Health-related variables included cardiometabolic risk, anthropometry and body composition, biochemical parameters, insulin sensitivity (QUICKI and HOMA-IR indexes), blood pressure (BP) at rest and after exercise, diet, basal metabolism, physical activity, maximal fat oxidation, and cardiorespiratory fitness. Our results showed differences by PPARGC1A gene rs8192678 C>T polymorphism in body mass (p = 0.002), body mass index (p = 0.024), lean body mass (p = 0.024), body fat (p = 0.032), waist circumference (p = 0.020), and BP recovery ratio (p < 0.001). The recessive model (CC vs. CT/TT) showed similar results but also with differences in basal metabolism (p = 0.045) and total energy expenditure (p = 0.024). A genotype*sex interaction was found in the QUICKI index (p = 0.016), with differences between CC and CT/TT in men (p = 0.049) and between men and women inside the CT/TT group (p = 0.049). Thus, the PPARGC1A gene rs8192678 C>T polymorphism is associated with body composition, basal metabolism, total energy expenditure, and BP recovery, where the CC genotype confers a protective effect. Moreover, our study highlighted sexual dimorphism in the influence of PPARGC1A gene rs8192678 C>T polymorphism on the QUICKI index.
Collapse
Affiliation(s)
- Adrián Montes-de-Oca-García
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cádiz, Spain
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta Del Mar University Hospital, University of Cadiz, Cádiz, Spain
| | - Juan Corral-Pérez
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cádiz, Spain
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta Del Mar University Hospital, University of Cadiz, Cádiz, Spain
| | - Daniel Velázquez-Díaz
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cádiz, Spain
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta Del Mar University Hospital, University of Cadiz, Cádiz, Spain
- Department of Psychology, Brain Aging and Cognitive Health Laboratory, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alejandro Perez-Bey
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta Del Mar University Hospital, University of Cadiz, Cádiz, Spain
- Department of Physical Education, GALENO Research Group, Faculty of Education Sciences, University of Cadiz, Cádiz, Spain
| | - María Rebollo-Ramos
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cádiz, Spain
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta Del Mar University Hospital, University of Cadiz, Cádiz, Spain
| | - Alberto Marín-Galindo
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cádiz, Spain
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta Del Mar University Hospital, University of Cadiz, Cádiz, Spain
| | - Félix Gómez-Gallego
- Faculty of Health Sciences, International University of La Rioja, Logroño, Spain
| | - Maria Calderon-Dominguez
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta Del Mar University Hospital, University of Cadiz, Cádiz, Spain
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, Cádiz, Spain
| | - Cristina Casals
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cádiz, Spain
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta Del Mar University Hospital, University of Cadiz, Cádiz, Spain
- *Correspondence: Cristina Casals,
| | - Jesús G. Ponce-González
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cádiz, Spain
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta Del Mar University Hospital, University of Cadiz, Cádiz, Spain
| |
Collapse
|
4
|
Jin M, Fei X, Li T, Lu Z, Chu M, Di R, He X, Wang X, Wei C. Transcriptome study digs out BMP2 involved in adipogenesis in sheep tails. BMC Genomics 2022; 23:457. [PMID: 35725366 PMCID: PMC9210821 DOI: 10.1186/s12864-022-08657-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
Background Hu sheep and Tibetan sheep in China are characterized by fat tails and thin tails, respectively. Several transcriptomes have been conducted in different sheep breeds to identify the differentially expressed genes (DEGs) underlying this trait. However, these studies identified different DEGs in different sheep breeds. Results Hence, RNA sequencing was performed on Hu sheep and Tibetan sheep. We obtained a total of 45.57 and 43.82 million sequencing reads, respectively. Two libraries mapped reads from 36.93 and 38.55 million reads after alignment to the reference sequences. 2108 DEGs were identified, including 1247 downregulated and 861 upregulated DEGs. GO and KEGG analyses of all DEGs demonstrated that pathways were enriched in the regulation of lipolysis in adipocytes and terms related to the chemokine signalling pathway, lysosomes, and glycosaminoglycan degradation. Eight genes were selected for validation by RT–qPCR. In addition, the transfection of BMP2 overexpression into preadipocytes resulted in increased PPAR-γ expression and expression. BMP2 potentially induces adipogenesis through LOX in preadipocytes. The number of lipid drops in BMP2 overexpression detected by oil red O staining was also greater than that in the negative control. Conclusion In summary, these results showed that significant genes (BMP2, HOXA11, PPP1CC and LPIN1) are involved in the regulation of adipogenesis metabolism and suggested novel insights into metabolic molecules in sheep fat tails. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08657-8.
Collapse
Affiliation(s)
- Meilin Jin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaojuan Fei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Taotao Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Mingxing Chu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Di
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangyu Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Caihong Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
5
|
Analysis of long intergenic non-coding RNAs transcriptomic profiling in skeletal muscle growth during porcine embryonic development. Sci Rep 2021; 11:15240. [PMID: 34315913 PMCID: PMC8316452 DOI: 10.1038/s41598-021-94014-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/05/2021] [Indexed: 11/08/2022] Open
Abstract
Skeletal muscle growth plays a critical role during porcine muscle development stages. Genome-wide transcriptome analysis reveals that long intergenic non-coding RNAs (lincRNAs) are implicated as crucial regulator involving in epigenetic regulation. However, comprehensive analysis of lincRNAs in embryonic muscle development stages remain still elusive. Here, we investigated the transcriptome profiles of Duroc embryonic muscle tissues from days 33, 65, and 90 of gestation using RNA-seq, and 228 putative lincRNAs were identified. Moreover, these lincRNAs exhibit the characteristics of shorter transcripts length, longer exons, less exon numbers and lower expression level compared with protein-coding transcripts. Expression profile analysis showed that a total of 120 lincRNAs and 2638 mRNAs were differentially expressed. In addition, we also performed quantitative trait locus (QTL) mapping analysis for differentially expressed lincRNAs (DE lincRNAs), 113 of 120 DE lincRNAs were localized on 2200 QTLs, we observed many QTLs involved in growth and meat quality traits. Furthermore, we predicted potential target genes of DE lincRNAs in cis or trans regulation. Gene ontology and pathway analysis reveals that potential targets of DE lincRNAs mostly were enriched in the processes and pathways related to tissue development, MAPK signaling pathway, Wnt signaling pathway, TGF-beta signaling pathway and insulin signaling pathway, which involved in skeletal muscle physiological functions. Based on cluster analysis, co-expression network analysis of DE lincRNAs and their potential target genes indicated that DE lincRNAs highly regulated protein-coding genes associated with skeletal muscle development. In this study, many of the DE lincRNAs may play essential roles in pig muscle growth and muscle mass. Our study provides crucial information for further exploring the molecular mechanisms of lincRNAs during skeletal muscle development.
Collapse
|
6
|
Bruscadin JJ, de Souza MM, de Oliveira KS, Rocha MIP, Afonso J, Cardoso TF, Zerlotini A, Coutinho LL, Niciura SCM, de Almeida Regitano LC. Muscle allele-specific expression QTLs may affect meat quality traits in Bos indicus. Sci Rep 2021; 11:7321. [PMID: 33795794 PMCID: PMC8016890 DOI: 10.1038/s41598-021-86782-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/17/2021] [Indexed: 02/01/2023] Open
Abstract
Single nucleotide polymorphisms (SNPs) located in transcript sequences showing allele-specific expression (ASE SNPs) were previously identified in the Longissimus thoracis muscle of a Nelore (Bos indicus) population consisting of 190 steers. Given that the allele-specific expression pattern may result from cis-regulatory SNPs, called allele-specific expression quantitative trait loci (aseQTLs), in this study, we searched for aseQTLs in a window of 1 Mb upstream and downstream from each ASE SNP. After this initial analysis, aiming to investigate variants with a potential regulatory role, we further screened our aseQTL data for sequence similarity with transcription factor binding sites and microRNA (miRNA) binding sites. These aseQTLs were overlapped with methylation data from reduced representation bisulfite sequencing (RRBS) obtained from 12 animals of the same population. We identified 1134 aseQTLs associated with 126 different ASE SNPs. For 215 aseQTLs, one allele potentially affected the affinity of a muscle-expressed transcription factor to its binding site. 162 aseQTLs were predicted to affect 149 miRNA binding sites, from which 114 miRNAs were expressed in muscle. Also, 16 aseQTLs were methylated in our population. Integration of aseQTL with GWAS data revealed enrichment for traits such as meat tenderness, ribeye area, and intramuscular fat . To our knowledge, this is the first report of aseQTLs identification in bovine muscle. Our findings indicate that various cis-regulatory and epigenetic mechanisms can affect multiple variants to modulate the allelic expression. Some of the potential regulatory variants described here were associated with the expression pattern of genes related to interesting phenotypes for livestock. Thus, these variants might be useful for the comprehension of the genetic control of these phenotypes.
Collapse
Affiliation(s)
- Jennifer Jessica Bruscadin
- grid.411247.50000 0001 2163 588XPost-Graduation Program of Evolutionary Genetics and Molecular Biology, Center of Biological Sciences and Health, Federal University of São Carlos, São Carlos, SP Brazil
| | - Marcela Maria de Souza
- grid.34421.300000 0004 1936 7312Post-Doctoral Fellow, Department of Animal Science, Iowa State University, Ames, IA USA
| | - Karina Santos de Oliveira
- grid.411247.50000 0001 2163 588XPost-Graduation Program of Evolutionary Genetics and Molecular Biology, Center of Biological Sciences and Health, Federal University of São Carlos, São Carlos, SP Brazil
| | - Marina Ibelli Pereira Rocha
- grid.411247.50000 0001 2163 588XPost-Graduation Program of Evolutionary Genetics and Molecular Biology, Center of Biological Sciences and Health, Federal University of São Carlos, São Carlos, SP Brazil
| | - Juliana Afonso
- grid.11899.380000 0004 1937 0722Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, SP Brazil
| | - Tainã Figueiredo Cardoso
- grid.460200.00000 0004 0541 873XEmbrapa Pecuária Sudeste, P. O. Box 339, São Carlos, SP 13564-230 Brazil
| | - Adhemar Zerlotini
- grid.460200.00000 0004 0541 873XEmbrapa Informática Agropecuária, Campinas, SP Brazil
| | - Luiz Lehmann Coutinho
- grid.11899.380000 0004 1937 0722Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, SP Brazil
| | | | | |
Collapse
|
7
|
Lin Y, Tang Q, Li Y, He M, Jin L, Ma J, Wang X, Long K, Huang Z, Li X, Gu Y, Li M. Genomic analyses provide insights into breed-of-origin effects from purebreds on three-way crossbred pigs. PeerJ 2019; 7:e8009. [PMID: 31737448 PMCID: PMC6855203 DOI: 10.7717/peerj.8009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/07/2019] [Indexed: 11/20/2022] Open
Abstract
Crossbreeding is widely used aimed at improving crossbred performance for poultry and livestock. Alleles that are specific to different purebreds will yield a large number of heterozygous single-nucleotide polymorphisms (SNPs) in crossbred individuals, which are supposed to have the power to alter gene function or regulate gene expression. For pork production, a classic three-way crossbreeding system of Duroc × (Landrace × Yorkshire) (DLY) is generally used to produce terminal crossbred pigs with stable and prominent performance. Nonetheless, little is known about the breed-of-origin effects from purebreds on DLY pigs. In this study, we first estimated the distribution of heterozygous SNPs in three kinds of three-way crossbred pigs via whole genome sequencing data originated from three purebreds. The result suggested that DLY is a more effective strategy for three-way crossbreeding as it could yield more stably inherited heterozygous SNPs. We then sequenced a DLY pig family and identified 95, 79, 132 and 42 allele-specific expression (ASE) genes in adipose, heart, liver and skeletal muscle, respectively. Principal component analysis and unrestricted clustering analyses revealed the tissue-specific pattern of ASE genes, indicating the potential roles of ASE genes for development of DLY pigs. In summary, our findings provided a lot of candidate SNP markers and ASE genes for DLY three-way crossbreeding system, which may be valuable for pig breeding and production in the future.
Collapse
Affiliation(s)
- Yu Lin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mengnan He
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xun Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xuewei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yiren Gu
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Analysis of allele-specific expression of seven candidate genes involved in lipid metabolism in pig skeletal muscle and fat tissues reveals allelic imbalance of ACACA, LEP, SCD, and TNF. J Appl Genet 2019; 60:97-101. [PMID: 30684136 PMCID: PMC6373405 DOI: 10.1007/s13353-019-00485-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
Analysis of allele-specific expression may help to elucidate the genetic architecture of complex traits including fat deposition in pigs. Here, we used pyrosequencing to investigate the allele proportions of candidate genes (ACACA, ADIPOR1, FASN, LEP, ME1, SCD, and TNF) involved in regulation of lipid metabolism in two fat deposits (subcutaneous and visceral fat) and longissimus dorsi muscle of pigs representing Polish Large White, Polish Landrace, Duroc, and Pietrain breeds. We detected differential allelic expression of ACACA, LEP, SCD, and TNF in all tissues analyzed. To search for putative cis-regulatory elements involved in allele-specific expression, we quantified the methylation level within CpG islands located in 5′-flanking regions of ACACA and SCD. Comparison between samples showing markedly disproportionate allelic expression and control groups with similar levels of both alleles did not reveal significant differences. We also assessed the association of rs321308225 (c.*195C>A) an SNP located in the 3′UTR of ACACA with its allelic expression in Polish Landrace pigs, but it was not significant. We conclude that allelic imbalance occurs frequently in regard to genes involved in regulation of lipid deposition in pigs, and further studies are necessary to identify cis-regulatory elements affecting ACACA, LEP, SCD, and TNF expression in porcine fat tissues and skeletal muscle.
Collapse
|
9
|
Stachecka J, Nowacka-Woszuk J, Kolodziejski PA, Szczerbal I. The importance of the nuclear positioning of the PPARG gene for its expression during porcine in vitro adipogenesis. Chromosome Res 2019; 27:271-284. [PMID: 30656515 PMCID: PMC6733831 DOI: 10.1007/s10577-019-09604-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 01/27/2023]
Abstract
Proper expression of the PPARG gene, which encodes a key transcription factor of adipogenesis, is indispensable in the formation of mature adipocytes. The positioning of a gene within the nuclear space has been implicated in gene regulation. We here report on the significance of the PPARG gene’s nuclear positioning for its activity during in vitro adipogenesis in the pig. We used an established system of differentiation of mesenchymal stem cells derived from bone marrow and adipose tissue into adipocytes. The differentiation process was carried out for 7 days, and the cells were examined using the 3D DNA/immuno-FISH and RNA/DNA-FISH approaches. PPARG transcript level was measured using real-time PCR, and PPARγ activity was detected with colorimetric assay. Changes in the nuclear location of the PPARG gene were observed when we compared undifferentiated mesenchymal stem cells with mature adipocytes. The gene moved from the nuclear periphery to the nuclear center as its transcriptional activity increased. The RNA/DNA-FISH approach shows that differences in primary transcript production correlated with the allele’s nuclear positioning. Transcriptionally active alleles preferentially occupy the central part of the nucleus, while inactive alleles are found on the nuclear periphery. We also show that transcription of PPARG begins with one allele, but that both alleles are active in later stages of differentiation. Our results provide evidence that functionally distinct alleles of the PPARG gene are positioned in different parts of the cell nucleus. This confirms the importance of nuclear architecture to the regulation of PPARG gene transcription, and thus to the fate of the adipose cell.
Collapse
Affiliation(s)
- Joanna Stachecka
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Joanna Nowacka-Woszuk
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Pawel A Kolodziejski
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wolynska 35, 60-637, Poznan, Poland
| | - Izabela Szczerbal
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| |
Collapse
|