1
|
Tang Y, Xu H, Yu R, Lu L, Zhao D, Meng J, Tao J. The SBP-box transcription factor PlSPL2 negatively regulates stem development in herbaceous peony. PLANT CELL REPORTS 2024; 43:275. [PMID: 39511032 DOI: 10.1007/s00299-024-03355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024]
Abstract
KEY MESSAGE The SBP-box transcription factor PlSPL2 silencing in herbaceous peony enhanced stem strength by regulating xylem development, whereas its overexpression in tobacco resulted in weaker stem strength and undeveloped xylem. The strength of plant stems is a critical determinant of lodging resistance of plants, which significantly affects crop yield and cut-flower quality. Squamosa promoter binding (SBP) protein-like (SPL) transcription factors (TFs), participate in multiple regulatory processes, particularly in stem development. In this study, PlSPL2, an orthologous gene of Arabidopsis AtSPL2 in herbaceous peony, was isolated and found to contain a conserved SBP domain featuring two typical Zn-binding sites, as well as a nuclear localization sequence (NLS). Subsequently, transient infection of tobacco leaf epidermal cells using Agrobacterium confirmed the nuclear localization of PISPL2 protein. Additionally, gene expression analyses revealed that PlSPL2 was preferentially expressed in stems, and demonstrated a download trend in expression levels within vascular bundles during stem cell wall development. Furthermore, silencing of PlSPL2 in herbaceous peony enhanced stem strength. The silenced plants exhibited more developed xylems with wider radii and higher numbers of cell layers. Overexpression of PlSPL2 in tobacco, however, resulted in weaker stem strength, accompanied by a narrower radius of the xylem. These findings suggested that PlSPL2 was a negative regulator of herbaceous peony stem development, and its discovery and research could significantly contribute to a deeper understanding of stem growth and development mechanisms.
Collapse
Affiliation(s)
- Yuhan Tang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Huajie Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Renkui Yu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Lili Lu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Daqiu Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jiasong Meng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
2
|
Liu S, An Z, Li Y, Yang R, Lai Z. Genome-Wide Identification of the Cation/Proton Antiporter (CPA) Gene Family and Functional Analysis of AtrNHX8 under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1701. [PMID: 38931134 PMCID: PMC11207833 DOI: 10.3390/plants13121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Amaranthus tricolor is an important vegetable, and its quality is affected by salt stress. Cation/proton antiporters (CPA) contribute to plant development and tolerance to salt stress. In this study, 35 CPA genes were identified from a genome database for A. tricolor, including 9 NHX, 5 KEA, and 21 CPA2 genes. Furthermore, in A. tricolor, the expression levels of most AtrNHX genes were higher at a low salinity level (50 or 100 mM NaCl) than in the control or 200 mM NaCl treatment. Levels of most AtrNHX genes were elevated in the stem. Moreover, AtrNHX8 was homologous to AtNHX4, which is involved in the regulation of sodium homeostasis and salt stress response. After AtrNHX8 overexpression in Arabidopsis thaliana, seed germination was better, and the flowering time was earlier than that of wild-type plants. Additionally, the overexpression of AtrNHX8 in A. thaliana improved salt tolerance. These results reveal the roles of AtrNHX genes under salt stress and provide valuable information on this gene family in amaranth.
Collapse
Affiliation(s)
- Shengcai Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.A.); (Y.L.)
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zixian An
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.A.); (Y.L.)
| | - Yixuan Li
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.A.); (Y.L.)
| | - Rongzhi Yang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.A.); (Y.L.)
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.A.); (Y.L.)
| |
Collapse
|
3
|
Yang R, Huang T, Song W, An Z, Lai Z, Liu S. Identification of WRKY gene family members in amaranth based on a transcriptome database and functional analysis of AtrWRKY42-2 in betalain metabolism. FRONTIERS IN PLANT SCIENCE 2023; 14:1300522. [PMID: 38130485 PMCID: PMC10734031 DOI: 10.3389/fpls.2023.1300522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Introduction WRKY TFs (WRKY transcription factors) contribute to the synthesis of secondary metabolites in plants. Betalains are natural pigments that do not coexist with anthocyanins within the same plant. Amaranthus tricolor ('Suxian No.1') is an important leaf vegetable rich in betalains. However, the WRKY family members in amaranth and their roles in betalain synthesis and metabolism are still unclear. Methods To elucidate the molecular characteristics of the amaranth WRKY gene family and its role in betalain synthesis, WRKY gene family members were screened and identified using amaranth transcriptome data, and their physicochemical properties, conserved domains, phylogenetic relationships, and conserved motifs were analyzed using bioinformatics methods. Results In total, 72 WRKY family members were identified from the amaranth transcriptome. Three WRKY genes involved in betalain synthesis were screened in the phylogenetic analysis of WRKY TFs. RT-qPCR showed that the expression levels of these three genes in red amaranth 'Suxian No.1' were higher than those in green amaranth 'Suxian No.2' and also showed that the expression level of AtrWRKY42 gene short-spliced transcript AtrWRKY42-2 in Amaranth 'Suxian No.1' was higher than that of the complete sequence AtrWRKY42-1, so the short-spliced transcript AtrWRKY42-2 was mainly expressed in 'Suxian No.2' amaranth. Moreover, the total expression levels of AtrWRKY42-1 and AtrWRKY42-2 were down-regulated after GA3 treatment, so AtrWRKY42-2 was identified as a candidate gene. Therefore, the short splice variant AtrWRKY42-2 cDNA sequence, gDNA sequence, and promoter sequence of AtrWRKY42 were cloned, and the PRI 101-AN-AtrWRKY42-2-EGFP vector was constructed to evaluate subcellular localization, revealing that AtrWRKY42-2 is located in the nucleus. The overexpression vector pRI 101-AN-AtrWRKY42-2-EGFP and VIGS (virus-induced gene silencing) vector pTRV2-AtrWRKY42-2 were transferred into leaves of 'Suxian No.1' by an Agrobacterium-mediated method. The results showed that AtrWRKY42-2 overexpression could promote the expression of AtrCYP76AD1 and increase betalain synthesis. A yeast one-hybrid assay demonstrated that AtrWRKY42-2 could bind to the AtrCYP76AD1 promoter to regulate betalain synthesis. Discussion This study lays a foundation for further exploring the function of AtrWRKY42-2 in betalain metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Shengcai Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Song C, Guo Y, Shen W, Yao X, Xu H, Zhao Y, Li R, Lin J. PagUNE12 encodes a basic helix-loop-helix transcription factor that regulates the development of secondary vascular tissue in poplar. PLANT PHYSIOLOGY 2023; 192:1046-1062. [PMID: 36932687 PMCID: PMC10231459 DOI: 10.1093/plphys/kiad152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/30/2023] [Accepted: 02/17/2023] [Indexed: 06/01/2023]
Abstract
Secondary growth in woody plants generates new cells and tissues via the activity of the vascular cambium and drives the radial expansion of stems and roots. It is regulated by a series of endogenous factors, especially transcription factors. Here, we cloned the basic helix-loop-helix (bHLH) transcription factor gene UNFERTILIZED EMBRYO SAC12 (UNE12) from poplar (Populus alba × Populus glandulosa Uyeki) and used biochemical, molecular, and cytological assays to investigate the biological functions and regulatory mechanism of PagUNE12. PagUNE12 mainly localized in the nucleus and possessed transcriptional activation activity. It was widely expressed in vascular tissues, including primary phloem and xylem and secondary phloem and xylem. Poplar plants overexpressing PagUNE12 showed significantly reduced plant height, shorter internodes, and curled leaves compared with wild-type plants. Optical microscopy and transmission electron microscopy revealed that overexpressing PagUNE12 promoted secondary xylem development, with thicker secondary cell walls than wild-type poplar. Fourier transform infrared spectroscopy, confocal Raman microscopy, and 2D Heteronuclear Single Quantum Correlation analysis indicated that these plants also had increased lignin contents, with a lower relative abundance of syringyl lignin units and a higher relative abundance of guaiacyl lignin units. Therefore, overexpressing PagUNE12 promoted secondary xylem development and increased the lignin contents of secondary xylem in poplar, suggesting that this gene could be used to improve wood quality in the future.
Collapse
Affiliation(s)
- Chengwei Song
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- College of Agriculture, Henan University of Science and Technology, Luoyang 471003, China
| | - Yayu Guo
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Weiwei Shen
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Xiaomin Yao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuanyuan Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Ruili Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
5
|
Chen Z, Liao M, Yang Z, Chen W, Wei S, Zou J, Peng Z. Co-expression network analysis of genes and networks associated with wheat pistillody. PeerJ 2022; 10:e13902. [PMID: 36039368 PMCID: PMC9419718 DOI: 10.7717/peerj.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/24/2022] [Indexed: 01/19/2023] Open
Abstract
Crop male sterility has great value in theoretical research and breeding application. HTS-1, whose stamens transformed into pistils or pistil-like structures, is an important male sterility material selecting from Chinese Spring three-pistil (CSTP) wheat. However the molecular mechanism of pistillody development in HTS-1 remains a mystery. RNA-seq data of 11 wheat tissues were obtained from the National Center for Biotechnology Information (NCBI), including the stamens of CSTP and the pistils and pistillodic stamen of HTS-1. The Salmon program was utilized to quantify the gene expression levels of the 11 wheat tissues; and gene quantification results were normalized by transcripts per million (TPM). In total, 58,576 genes were used to construct block-wise network by co-expression networks analysis (WGCNA) R package. We obtained all of modules significantly associated with the 11 wheat tissues. AgriGO V2.0 was used to do Gene Ontology (GO) enrichment analysis; and genes and transcription factors (TFs) in these significant modules about wheat pistillody development were identified from GO enrichment results. Basic local alignment search tool (BLAST) was used to align HTS-1 proteins with the published pistillody-related proteins and TFs. Genes about wheat pistillody development were analyzed and validated by qRT-PCR. The MEturquoise, MEsaddlebrown, MEplum, MEcoral1, MElightsteelblue1, and MEdarkslateblue modules were significantly corelated to pistillodic stamen (correlation p < 0.05). Moreover, 206 genes related to carpel development (GO:0048440) or gynoecium development (GO:0048467) were identified only in the MEturquoise module by Gene Ontology (GO) analysis, and 42 of 206 genes were hub genes in MEturquoise module. qRT-PCR results showed that 38 of the 42 hub genes had highly expressed in pistils and pistillodic stamens than in stamens. A total of 15 pistillody development-related proteins were validated by BLAST. Transcription factors (TFs) were also analyzed in the MEturquoise module, and 618 TFs were identified. In total, 56 TFs from 11 families were considered to regulate the development of pistillodic stamen. The co-expression network showed that six of HB and three of BES1 genes were identified in 42 hub genes. This indicated that TFs played important roles in wheat pistillody development. In addition, there were 11 of ethylene-related genes connected with TFs or hub genes, suggesting the important roles of ethylene-related genes in pistillody development. These results provide important insights into the molecular interactions underlying pistillody development.
Collapse
Affiliation(s)
- Zhenyong Chen
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, Sichuan, People’s Republic of China
| | - Mingli Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, Sichuan, People’s Republic of China
| | - Zaijun Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, Sichuan, People’s Republic of China
| | - Weiying Chen
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, Sichuan, People’s Republic of China
| | - Shuhong Wei
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, Sichuan, People’s Republic of China
| | - Jian Zou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, Sichuan, People’s Republic of China
| | - Zhengsong Peng
- School of Agricultural Science, Xichang University, Xichang, Sichuan, People’s Republic of China
| |
Collapse
|
6
|
Guo X, Fu Y, Lee YJ, Chern M, Li M, Cheng M, Dong H, Yuan Z, Gui L, Yin J, Qing H, Zhang C, Pu Z, Liu Y, Li W, Li W, Qi P, Chen G, Jiang Q, Ma J, Chen X, Wei Y, Zheng Y, Wu Y, Liu B, Wang J. The PGS1 basic helix-loop-helix protein regulates Fl3 to impact seed growth and grain yield in cereals. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1311-1326. [PMID: 35315196 PMCID: PMC9241376 DOI: 10.1111/pbi.13809] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 03/11/2022] [Indexed: 05/02/2023]
Abstract
Plant transcription factors (TFs), such as basic helix-loop-helix (bHLH) and AT-rich zinc-binding proteins (PLATZ), play critical roles in regulating the expression of developmental genes in cereals. We identified the bHLH protein TaPGS1 (T. aestivum Positive Regulator of Grain Size 1) specifically expressed in the seeds at 5-20 days post-anthesis in wheat. TaPGS1 was ectopically overexpressed (OE) in wheat and rice, leading to increased grain weight (up to 13.81% in wheat and 18.55% in rice lines) and grain size. Carbohydrate and total protein levels also increased. Scanning electron microscopy results indicated that the starch granules in the endosperm of TaPGS1 OE wheat and rice lines were smaller and tightly embedded in a proteinaceous matrix. Furthermore, TaPGS1 was bound directly to the E-box motif at the promoter of the PLATZ TF genes TaFl3 and OsFl3 and positively regulated their expression in wheat and rice. In rice, the OsFl3 CRISPR/Cas9 knockout lines showed reduced average thousand-grain weight, grain width, and grain length in rice. Our results reveal that TaPGS1 functions as a valuable trait-associated gene for improving cereal grain yield.
Collapse
Affiliation(s)
- Xiaojiang Guo
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Yuxin Fu
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | | | - Mawsheng Chern
- Department of Plant PathologyUniversity of CaliforniaDavisCAUSA
| | - Maolian Li
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Mengping Cheng
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Huixue Dong
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Zhongwei Yuan
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Lixuan Gui
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Hai Qing
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Chengbi Zhang
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Zhien Pu
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yujiao Liu
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Wei Li
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Pengfei Qi
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Guoyue Chen
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Qiantao Jiang
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Jian Ma
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Yuming Wei
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Youliang Zheng
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Bo Liu
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Jirui Wang
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest ChinaSichuan Agricultural UniversityChengduChina
| |
Collapse
|
7
|
Han Y, Zhao Y, Wang H, Zhang Y, Ding Q, Ma L. Identification of ceRNA and candidate genes related to fertility conversion of TCMS line YS3038 in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:190-207. [PMID: 33214039 DOI: 10.1016/j.plaphy.2020.10.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have indicated that noncoding RNAs are important factors in gene functions. To explore the mechanism of male sterility of YS3038, the sterile genes were mapped, and based on previous work, the expression of long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and their target genes was studied. Weighted gene coexpression network analysis (WGCNA) and competitive endogenous RNA (ceRNA) analysis were further performed for differentially expressed noncoding RNAs and target genes. At last, the candidate genes were silenced by barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) to prove their function. The sterile genes were mapped on chromosomes 1B and 6B based on chip mix pool analysis, and one major effect QTL (27.3190% variation) was found based on SSR primers. The WGCNA analysis revealed that the dark turquoise and steel blue modules were highly correlated with anther development and fertility conversion, respectively. The ceRNA analysis showed that a total of 184 RNAs interacted with each other, including 115 mRNAs, 55 microRNAs (miRNAs), eight circRNAs, and six lncRNAs. Finally, the seed setting rate of the plant was significantly decreased after fatty acyl-CoA reductase 5 silencing. This study provides breeders with a new option for the development of thermosensitive cytoplasmic male-sterile (TCMS) wheat lines, which will favor the sustainable development of two-line hybrid wheat.
Collapse
Affiliation(s)
- Yucui Han
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yue Zhao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hairong Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiyang Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qin Ding
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Lingjian Ma
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
8
|
Kim DY, Hong MJ, Seo YW. Genome-wide transcript analysis of inflorescence development in wheat. Genome 2019; 62:623-633. [PMID: 31269405 DOI: 10.1139/gen-2018-0200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The process of inflorescence development is directly related to yield components that determine the final grain yield in most cereal crops. Here, microarray analysis was conducted for four different developmental stages of inflorescence to identify genes expressed specifically during inflorescence development. To select inflorescence-specific expressed genes, we conducted meta-analysis using 1245 Affymetrix GeneChip array sets obtained from various development stages, organs, and tissues of members of Poaceae. The early stage of inflorescence development was accompanied by a significant upregulation of a large number of cell differentiation genes, such as those associated with the cell cycle, cell division, DNA repair, and DNA synthesis. Moreover, key regulatory genes, including the MADS-box gene, KNOTTED-1-like homeobox genes, GROWTH-REGULATING FACTOR 1 gene, and the histone methyltransferase gene, were highly expressed in the early inflorescence development stage. In contrast, fewer genes were expressed in the later stage of inflorescence development, and played roles in hormone biosynthesis and meiosis-associated genes. Our work provides novel information regarding the gene regulatory network of cell division, key genes involved in the differentiation of inflorescence in wheat, and regulation mechanism of inflorescence development that are crucial stages for determining final grain number per spike and the yield potential of wheat.
Collapse
Affiliation(s)
- Dae Yeon Kim
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Yong Weon Seo
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
9
|
The Catalase Gene Family in Cotton: Genome-Wide Characterization and Bioinformatics Analysis. Cells 2019; 8:cells8020086. [PMID: 30682777 PMCID: PMC6406514 DOI: 10.3390/cells8020086] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Catalases (CATs), which were coded by the catalase gene family, were a type notably distinguished ROS-metabolizing proteins implicated to perform various physiological functions in plant growth, development and stress responses. However, no systematical study has been performed in cotton. In the present study, we identified 7 and 7 CAT genes in the genome of Gossypium hirsutum L. Additionally, G. barbadense L., respectively. The results of the phylogenetic and synteny analysis showed that the CAT genes were divided into two groups, and whole-genome duplication (WGD) or polyploidy events contributed to the expansion of the GossypiumCAT gene family. Expression patterns analysis showed that the CAT gene family possessed temporal and spatial specificity and was induced by the Verticillium dahliae infection. In addition, we predicted the putative molecular regulatory mechanisms of the CAT gene family. Based on the analysis and preliminary verification results, we hypothesized that the CAT gene family, which might be regulated by transcription factors (TFs), alternative splicing (AS) events and miRNAs at different levels, played roles in cotton development and stress tolerance through modulating the reactive oxygen species (ROS) metabolism. This is the first report on the genome-scale analysis of the cotton CAT gene family, and these data will help further study the roles of CAT genes during stress responses, leading to crop improvement.
Collapse
|
10
|
Singh B, Kukreja S, Goutam U. Milestones achieved in response to drought stress through reverse genetic approaches. F1000Res 2018; 7:1311. [PMID: 30631439 PMCID: PMC6290974 DOI: 10.12688/f1000research.15606.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2018] [Indexed: 01/07/2023] Open
Abstract
Drought stress is the most important abiotic stress that constrains crop production and reduces yield drastically. The germplasm of most of the cultivated crops possesses numerous unknown drought stress tolerant genes. Moreover, there are many reports suggesting that the wild species of most of the modern cultivars have abiotic stress tolerant genes. Due to climate change and population booms, food security has become a global issue. To develop drought tolerant crop varieties knowledge of various genes involved in drought stress is required. Different reverse genetic approaches such as virus-induced gene silencing (VIGS), clustered regularly interspace short palindromic repeat (CRISPR), targeting induced local lesions in genomes (TILLING) and expressed sequence tags (ESTs) have been used extensively to study the functionality of different genes involved in response to drought stress. In this review, we described the contributions of different techniques of functional genomics in the study of drought tolerant genes.
Collapse
Affiliation(s)
- Baljeet Singh
- Biotechnology, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sarvjeet Kukreja
- Department of Botany, Ch. MRM Memorial College, Sriganganagar, Rajasthan, 335804, India
| | - Umesh Goutam
- Biotechnology, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
11
|
Identification of Wheat Inflorescence Development-Related Genes Using a Comparative Transcriptomics Approach. Int J Genomics 2018; 2018:6897032. [PMID: 29581960 PMCID: PMC5822904 DOI: 10.1155/2018/6897032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/26/2017] [Accepted: 12/03/2017] [Indexed: 12/14/2022] Open
Abstract
Inflorescence represents the highly specialized plant tissue producing the grains. Although key genes regulating flower initiation and development are conserved, the mechanism regulating fertility is still not well explained. To identify genes and gene network underlying inflorescence morphology and fertility of bread wheat, expressed sequence tags (ESTs) from different tissues were analyzed using a comparative transcriptomics approach. Based on statistical comparison of EST frequencies of individual genes in EST pools representing different tissues and verification with RT-PCR and RNA-seq data, 170 genes of 59 gene sets predominantly expressed in the inflorescence were obtained. Nearly one-third of the gene sets displayed differentiated expression profiles in terms of their subgenome orthologs. The identified genes, most of which were predominantly expressed in anthers, encode proteins involved in wheat floral identity determination, anther and pollen development, pollen-pistil interaction, and others. Particularly, 25 annotated gene sets are associated with pollen wall formation, of which 18 encode enzymes or proteins participating in lipid metabolic pathway, including fatty acid ω-hydroxylation, alkane and fatty alcohol biosynthesis, and glycerophospholipid metabolism. We showed that the comparative transcriptomics approach was effective in identifying genes for reproductive development and found that lipid metabolism was particularly active in wheat anthers.
Collapse
|
12
|
Borrill P, Harrington SA, Uauy C. Genome-Wide Sequence and Expression Analysis of the NAC Transcription Factor Family in Polyploid Wheat. G3 (BETHESDA, MD.) 2017; 7:3019-3029. [PMID: 28698232 PMCID: PMC5592928 DOI: 10.1534/g3.117.043679] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/07/2017] [Indexed: 11/18/2022]
Abstract
Many important genes in agriculture correspond to transcription factors (TFs) that regulate a wide range of pathways from flowering to responses to disease and abiotic stresses. In this study, we identified 5776 TFs in hexaploid wheat (Triticum aestivum) and classified them into gene families. We further investigated the NAC family exploring the phylogeny, C-terminal domain (CTD) conservation, and expression profiles across 308 RNA-seq samples. Phylogenetic trees of NAC domains indicated that wheat NACs divided into eight groups similar to rice (Oryza sativa) and barley (Hordeum vulgare). CTD motifs were frequently conserved between wheat, rice, and barley within phylogenetic groups; however, this conservation was not maintained across phylogenetic groups. Three homeologous copies were present for 58% of NACs, whereas evidence of single homeolog gene loss was found for 33% of NACs. We explored gene expression patterns across a wide range of developmental stages, tissues, and abiotic stresses. We found that more phylogenetically related NACs shared more similar expression patterns compared to more distant NACs. However, within each phylogenetic group there were clades with diverse expression profiles. We carried out a coexpression analysis on all wheat genes and identified 37 modules of coexpressed genes of which 23 contained NACs. Using gene ontology (GO) term enrichment, we obtained putative functions for NACs within coexpressed modules including responses to heat and abiotic stress and responses to water: these NACs may represent targets for breeding or biotechnological applications. This study provides a framework and data for hypothesis generation for future studies on NAC TFs in wheat.
Collapse
Affiliation(s)
- Philippa Borrill
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, UK
| | | | - Cristobal Uauy
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|
13
|
Guo XJ, Wang JR. Global identification, structural analysis and expression characterization of bHLH transcription factors in wheat. BMC PLANT BIOLOGY 2017; 17:90. [PMID: 28558686 PMCID: PMC5450219 DOI: 10.1186/s12870-017-1038-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/15/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Basic helix-loop-helix (bHLH) transcription factors (TFs), which are widely distributed in eukaryotic organisms, play crucial roles in plant development. However, no comprehensive analysis of the bHLH family in wheat (Triticum aestivum L.) has been undertaken previously. RESULTS In this study, 225 bHLH TFs predicted from wheat using genomic and RNA sequencing data were subjected to identification, classification, phylogenetic reconstruction, conserved motif characterization, chromosomal distribution determination and expression pattern analysis. One basic region, two helix regions and one loop region were found to be conserved in wheat bHLH TFs. The bHLH proteins could be separated into four categories based on sequences in their basic regions. Neighbor-joining-based phylogenetic analysis of conserved bHLH domains from wheat, Arabidopsis and rice identified 26 subfamilies of bHLH TFs, of which 23 were found in wheat. A total of 82 wheat bHLH genes had orthologs in Arabidopsis (27 TFs), rice (28 TFs) and both of them (27 TFs). Seven tissue-specific bHLH TF clusters were identified according to their expression patterns in endosperm, aleurone, seedlings, heading-stage spikes, flag leaves, shoots and roots. Expression levels of six endosperm-specifically expressed TFs measured by qPCR and RNA-seq showed a good correlation. CONCLUSION The 225 bHLH transcription factors identified from wheat could be classed into 23 subfamilies, and those members from the same subfamily with similar sequence motifs generally have similar expression patterns.
Collapse
Affiliation(s)
- Xiao-Jiang Guo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Ji-Rui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
14
|
Chen ZY, Guo XJ, Chen ZX, Chen WY, Wang JR. Identification and positional distribution analysis of transcription factor binding sites for genes from the wheat fl-cDNA sequences. Biosci Biotechnol Biochem 2017; 81:1125-1135. [PMID: 28485207 DOI: 10.1080/09168451.2017.1295803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The binding sites of transcription factors (TFs) in upstream DNA regions are called transcription factor binding sites (TFBSs). TFBSs are important elements for regulating gene expression. To date, there have been few studies on the profiles of TFBSs in plants. In total, 4,873 sequences with 5' upstream regions from 8530 wheat fl-cDNA sequences were used to predict TFBSs. We found 4572 TFBSs for the MADS TF family, which was twice as many as for bHLH (1951), B3 (1951), HB superfamily (1914), ERF (1820), and AP2/ERF (1725) TFs, and was approximately four times higher than the remaining TFBS types. The percentage of TFBSs and TF members showed a distinct distribution in different tissues. Overall, the distribution of TFBSs in the upstream regions of wheat fl-cDNA sequences had significant difference. Meanwhile, high frequencies of some types of TFBSs were found in specific regions in the upstream sequences. Both TFs and fl-cDNA with TFBSs predicted in the same tissues exhibited specific distribution preferences for regulating gene expression. The tissue-specific analysis of TFs and fl-cDNA with TFBSs provides useful information for functional research, and can be used to identify relationships between tissue-specific TFs and fl-cDNA with TFBSs. Moreover, the positional distribution of TFBSs indicates that some types of wheat TFBS have different positional distribution preferences in the upstream regions of genes.
Collapse
Affiliation(s)
- Zhen-Yong Chen
- a Triticeae Research Institute , Sichuan Agricultural University , Chengdu , China.,b College of Life Science , China West Normal University , Nanchong , China
| | - Xiao-Jiang Guo
- a Triticeae Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Zhong-Xu Chen
- a Triticeae Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Wei-Ying Chen
- b College of Life Science , China West Normal University , Nanchong , China
| | - Ji-Rui Wang
- a Triticeae Research Institute , Sichuan Agricultural University , Chengdu , China
| |
Collapse
|
15
|
Ragupathy R, Ravichandran S, Mahdi MSR, Huang D, Reimer E, Domaratzki M, Cloutier S. Deep sequencing of wheat sRNA transcriptome reveals distinct temporal expression pattern of miRNAs in response to heat, light and UV. Sci Rep 2016; 6:39373. [PMID: 28004741 PMCID: PMC5177929 DOI: 10.1038/srep39373] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 11/15/2016] [Indexed: 01/30/2023] Open
Abstract
Understanding of plant adaptation to abiotic stresses has implications in plant breeding, especially in the context of climate change. MicroRNAs (miRNAs) and short interfering RNAs play a crucial role in gene regulation. Here, wheat plants were exposed to one of the following stresses: continuous light, heat or ultraviolet radiations over five consecutive days and leaf tissues from three biological replicates were harvested at 0, 1, 2, 3, 7 and 10 days after treatment (DAT). A total of 72 small RNA libraries were sequenced on the Illumina platform generating ~524 million reads corresponding to ~129 million distinct tags from which 232 conserved miRNAs were identified. The expression levels of 1, 2 and 79 miRNAs were affected by ultraviolet radiation, continuous light and heat, respectively. Approximately 55% of the differentially expressed miRNAs were downregulated at 0 and 1 DAT including miR398, miR528 and miR156 that control mRNAs involved in activation of signal transduction pathways and flowering. Other putative targets included histone variants and methyltransferases. These results suggest a temporal miRNA-guided post-transcriptional regulation that enables wheat to respond to abiotic stresses, particularly heat. Designing novel wheat breeding strategies such as regulatory gene-based marker assisted selection depends on accurate identification of stress induced miRNAs.
Collapse
Affiliation(s)
- Raja Ragupathy
- Plant Science Department, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sridhar Ravichandran
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada
| | | | - Douglas Huang
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada
| | - Elsa Reimer
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, Manitoba, Canada
| | - Michael Domaratzki
- Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sylvie Cloutier
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada
| |
Collapse
|
16
|
Gahlaut V, Jaiswal V, Kumar A, Gupta PK. Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2019-2042. [PMID: 27738714 DOI: 10.1007/s00122-016-2794-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 09/15/2016] [Indexed: 05/26/2023]
Abstract
TFs involved in drought tolerance in plants may be utilized in future for developing drought tolerant cultivars of wheat and some other crops. Plants have developed a fairly complex stress response system to deal with drought and other abiotic stresses. These response systems often make use of transcription factors (TFs); a gene encoding a specific TF together with -its target genes constitute a regulon, and take part in signal transduction to activate/silence genes involved in response to drought. Since, five specific families of TFs (out of >80 known families of TFs) have gained widespread attention on account of their significant role in drought tolerance in plants, TFs and regulons belonging to these five multi-gene families (AP2/EREBP, bZIP, MYB/MYC, NAC and WRKY) have been described and their role in improving drought tolerance discussed in this brief review. These TFs often undergo reversible phosphorylation to perform their function, and are also involved in complex networks. Therefore, some details about reversible phosphorylation of TFs by different protein kinases/phosphatases and the co-regulatory networks, which involve either only TFs or TFs with miRNAs, have also been discussed. Literature on transgenics involving genes encoding TFs and that on QTLs and markers associated with TF genes involved in drought tolerance has also been reviewed. Throughout the review, there is a major emphasis on wheat as an important crop, although examples from the model cereal rice (sometimes maize also), and the model plant Arabidopsis have also been used. This knowledge base may eventually allow the use of TF genes for development of drought tolerant cultivars, particularly in wheat.
Collapse
Affiliation(s)
- Vijay Gahlaut
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | - Vandana Jaiswal
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
- Plant Molecular Biology and Genetic Engineering, CSIR-National Botanical Research Institute, Lucknow, India
| | - Anuj Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
- Advance Centre for Computational and Applied Biotechnology, Uttarakhand Council for Biotechnology, Dehradun, India
| | | |
Collapse
|
17
|
Zhao P, Liu P, Yuan G, Jia J, Li X, Qi D, Chen S, Ma T, Liu G, Cheng L. New Insights on Drought Stress Response by Global Investigation of Gene Expression Changes in Sheepgrass (Leymus chinensis). FRONTIERS IN PLANT SCIENCE 2016; 7:954. [PMID: 27446180 PMCID: PMC4928129 DOI: 10.3389/fpls.2016.00954] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/15/2016] [Indexed: 05/09/2023]
Abstract
Water is a critical environmental factor that restricts the geographic distribution of plants. Sheepgrass [Leymus chinensis, (Trin.) Tzvel] is an important forage grass in the Eurasia Steppe and a close germplasm for wheat and barley. This native grass adapts well to adverse environments such as cold, salinity, alkalinity and drought, and it can survive when the soil moisture may be less than 6% in dry seasons. However, little is known about how sheepgrass tolerates water stress at the molecular level. Here, drought stress experiment and RNA-sequencing (RNA-seq) was performed in three pools of RNA samples (control, drought stress, and rewatering). We found that sheepgrass seedlings could still survive when the soil water content (SWC) was reduced to 14.09%. Differentially expressed genes (DEGs) analysis showed that 7320 genes exhibited significant responses to drought stress. Of these DEGs, 2671 presented opposite expression trends before and after rewatering. Furthermore, ~680 putative sheepgrass-specific water responsive genes were revealed that can be studied deeply. Gene ontology (GO) annotation revealed that stress-associated genes were activated extensively by drought treatment. Interestingly, cold stress-related genes were up-regulated greatly after drought stress. The DEGs of MAPK and calcium signal pathways, plant hormone ABA, jasmonate, ethylene, brassinosteroid signal pathways, cold response CBF pathway participated coordinatively in sheepgrass drought stress response. In addition, we identified 288 putative transcription factors (TFs) involved in drought response, among them, the WRKY, NAC, AP2/ERF, bHLH, bZIP, and MYB families were enriched, and might play crucial and significant roles in drought stress response of sheepgrass. Our research provided new and valuable information for understanding the mechanism of drought tolerance in sheepgrass. Moreover, the identification of genes involved in drought response can facilitate the genetic improvement of crops by molecular breeding.
Collapse
Affiliation(s)
- Pincang Zhao
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of SciencesBeijing, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Panpan Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of SciencesBeijing, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Guangxiao Yuan
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of SciencesBeijing, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Junting Jia
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of SciencesBeijing, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Xiaoxia Li
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of SciencesBeijing, China
| | - Dongmei Qi
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of SciencesBeijing, China
| | - Shuangyan Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of SciencesBeijing, China
| | - Tian Ma
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of SciencesBeijing, China
| | - Gongshe Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of SciencesBeijing, China
| | - Liqin Cheng
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of SciencesBeijing, China
| |
Collapse
|
18
|
Rahman H, Ramanathan V, Nallathambi J, Duraialagaraja S, Muthurajan R. Over-expression of a NAC 67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice. BMC Biotechnol 2016; 16 Suppl 1:35. [PMID: 27213684 PMCID: PMC4896240 DOI: 10.1186/s12896-016-0261-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background NAC proteins (NAM (No apical meristem), ATAF (Arabidopsis transcription activation factor) and CUC (cup-shaped cotyledon)) are plant-specific transcription factors reported to be involved in regulating growth, development and stress responses. Salinity responsive transcriptome profiling in a set of contrasting finger millet genotypes through RNA-sequencing resulted in the identification of a NAC homolog (EcNAC 67) exhibiting differential salinity responsive expression pattern. Methods Full length cDNA of EcNAC67 was isolated, characterized and validated for its role in abiotic stress tolerance through agrobacterium mediated genetic transformation in a rice cultivar ASD16. Results Bioinformatics analysis of putative NAC transcription factor (TF) isolated from a salinity tolerant finger millet showed its genetic relatedness to NAC67 family TFs in related cereals. Putative transgenic lines of rice over-expressing EcNAC67 were generated through Agrobacterium mediated transformation and presence/integration of transgene was confirmed through PCR and southern hybridization analysis. Transgenic rice plants harboring EcNAC67 showed enhanced tolerance against drought and salinity under greenhouse conditions. Transgenic rice plants were found to possess higher root and shoot biomass during stress and showed better revival ability upon relief from salinity stress. Upon drought stress, transgenic lines were found to maintain higher relative water content and lesser reduction in grain yield when compared to non-transgenic ASD16 plants. Drought induced spikelet sterility was found to be much lower in the transgenic lines than the non-transgenic ASD16. Conclusion Results revealed the significant role of EcNAC67 in modulating responses against dehydration stress in rice. No detectable abnormalities in the phenotypic traits were observed in the transgenic plants under normal growth conditions. Results indicate that EcNAC67 can be used as a novel source for engineering tolerance against drought and salinity stress in rice and other crop plants. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0261-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hifzur Rahman
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Valarmathi Ramanathan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Jagedeeshselvam Nallathambi
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Sudhakar Duraialagaraja
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India.
| |
Collapse
|
19
|
Lin G, Chai J, Yuan S, Mai C, Cai L, Murphy RW, Zhou W, Luo J. VennPainter: A Tool for the Comparison and Identification of Candidate Genes Based on Venn Diagrams. PLoS One 2016; 11:e0154315. [PMID: 27120465 PMCID: PMC4847855 DOI: 10.1371/journal.pone.0154315] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 04/12/2016] [Indexed: 12/21/2022] Open
Abstract
VennPainter is a program for depicting unique and shared sets of genes lists and generating Venn diagrams, by using the Qt C++ framework. The software produces Classic Venn, Edwards’ Venn and Nested Venn diagrams and allows for eight sets in a graph mode and 31 sets in data processing mode only. In comparison, previous programs produce Classic Venn and Edwards’ Venn diagrams and allow for a maximum of six sets. The software incorporates user-friendly features and works in Windows, Linux and Mac OS. Its graphical interface does not require a user to have programing skills. Users can modify diagram content for up to eight datasets because of the Scalable Vector Graphics output. VennPainter can provide output results in vertical, horizontal and matrix formats, which facilitates sharing datasets as required for further identification of candidate genes. Users can obtain gene lists from shared sets by clicking the numbers on the diagram. Thus, VennPainter is an easy-to-use, highly efficient, cross-platform and powerful program that provides a more comprehensive tool for identifying candidate genes and visualizing the relationships among genes or gene families in comparative analysis.
Collapse
Affiliation(s)
- Guoliang Lin
- Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, China
- State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, 650091, Yunnan, China
| | - Jing Chai
- Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, China
- State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, 650091, Yunnan, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650000, China
| | - Shuo Yuan
- School of Software, Yunnan University, Kunming, 650091, Yunnan, China
| | - Chao Mai
- School of Software, Yunnan University, Kunming, 650091, Yunnan, China
| | - Li Cai
- School of Software, Yunnan University, Kunming, 650091, Yunnan, China
- School of Computer and Science, Fudan University, Shanghai, 200433, China
| | - Robert W. Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, M5S 2C6, Canada
| | - Wei Zhou
- School of Software, Yunnan University, Kunming, 650091, Yunnan, China
- * E-mail: (WZ); (JL)
| | - Jing Luo
- Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, China
- State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, 650091, Yunnan, China
- * E-mail: (WZ); (JL)
| |
Collapse
|
20
|
Big Data in Plant Science: Resources and Data Mining Tools for Plant Genomics and Proteomics. Methods Mol Biol 2016; 1415:533-47. [PMID: 27115651 DOI: 10.1007/978-1-4939-3572-7_27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In modern plant biology, progress is increasingly defined by the scientists' ability to gather and analyze data sets of high volume and complexity, otherwise known as "big data". Arguably, the largest increase in the volume of plant data sets over the last decade is a consequence of the application of the next-generation sequencing and mass-spectrometry technologies to the study of experimental model and crop plants. The increase in quantity and complexity of biological data brings challenges, mostly associated with data acquisition, processing, and sharing within the scientific community. Nonetheless, big data in plant science create unique opportunities in advancing our understanding of complex biological processes at a level of accuracy without precedence, and establish a base for the plant systems biology. In this chapter, we summarize the major drivers of big data in plant science and big data initiatives in life sciences with a focus on the scope and impact of iPlant, a representative cyberinfrastructure platform for plant science.
Collapse
|