1
|
Yin M, Kuang W, Wang Q, Wang X, Yuan C, Lin Z, Zhang H, Deng F, Jiang H, Gong P, Zou Z, Hu Z, Wang M. Dual roles and evolutionary implications of P26/poxin in antagonizing intracellular cGAS-STING and extracellular melanization immunity. Nat Commun 2022; 13:6934. [PMID: 36376305 PMCID: PMC9663721 DOI: 10.1038/s41467-022-34761-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
P26, a homolog of the viral-encoded nuclease poxin that neutralizes the cGAS-STING innate immunity, is widely distributed in various invertebrate viruses, lepidopteran insects, and parasitoid wasps. P26/poxin from certain insect viruses also retains protease activity, though its biological role remains unknown. Given that many P26s contain a signal peptide, it is surmised that P26 may possess certain extracellular functions. Here, we report that a secretory baculoviral P26 suppresses melanization, a prominent insect innate immunity against pathogen invasion. P26 targets the cofactor of a prophenoloxidase-activating protease, and its inhibitory function is independent of nuclease activity. The analysis of P26/poxin homologs from different origins suggests that the ability to inhibit the extracellular melanization pathway is limited to P26s with a signal peptide and not shared by the homologs without it. These findings highlight the independent evolution of a single viral suppressor to perform dual roles in modulating immunity during virus-host adaptation.
Collapse
Affiliation(s)
- Mengyi Yin
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Wenhua Kuang
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Qianran Wang
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xi Wang
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chuanfei Yuan
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhe Lin
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huanyu Zhang
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Deng
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Haobo Jiang
- grid.65519.3e0000 0001 0721 7331Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK USA
| | - Peng Gong
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Zou
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhihong Hu
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Manli Wang
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
2
|
Bombyx mori Nucleopolyhedrovirus p26 Is Associated with Viral Late Stage Replication. INSECTS 2021; 12:insects12080707. [PMID: 34442273 PMCID: PMC8396461 DOI: 10.3390/insects12080707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) p26 is conserved among all Lepidoptera baculoviruses that have been completely sequenced thus far, and some baculoviruses even have two copies of p26, which suggested that p26 may play an important role in the virus infection cycle. This study aimed to characterize BmNPV p26. We found that BmNPV p26 transcripts were detectable as early as 3 h post-infection (hpi), and the transcript levels rapidly increased starting from 12 hpi. Western blot analysis using an anti-p26 polyclonal antibody demonstrated that the corresponding protein was also detectable from 6 hpi in BmNPV-infected cell lysates. Immunofluorescence analysis demonstrated that p26 was mainly dispersed in the infected cell cytoplasm, whereas the over-expressed fusion protein EGFP-p26 also accumulated in the nucleus. These results indicated that p26 is an early BmNPV gene and has functions both in the cytoplasm and the nucleus. RNAi-based knockdown of p26 could produce infectious virus and normal-appearing virions but decreased budded virus (BV) production in BmNPV-infected cells at 72 hpi. Moreover, the results of further quantitative PCR (Q-PCR) analysis indicated that the gp64 and p74 transcripts levels decreased significantly. These results indicated that BmNPV p26 may be associated with BmNPV replication during the late infection stage.
Collapse
|
3
|
Inglis PW, Santos LAVM, Craveiro SR, Ribeiro BM, Castro MEB. Mosaic genome evolution and phylogenetics of Chrysodeixis includens nucleopolyhedrovirus (ChinNPV) and virulence of seven new isolates from the Brazilian states of Minas Gerais and Mato Grosso. Arch Virol 2021; 166:125-138. [PMID: 33111162 DOI: 10.1007/s00705-020-04858-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
In a comparative analysis of genome sequences from isolates of the baculovirus Chrysodeixis includens nucleopolyhedrovirus (ChinNPV) from Brazil and Guatemala, we identified a subset of isolates possessing chimeric genomes. We identified six distinct phylogenetically incongruous regions (PIRs) dispersed in the genomes, of between 279 and 3345 bp in length. The individual PIRs possessed high sequence similarity among the affected ChinNPV isolates but varied in coverage in some instances. The donor for four of the PIRs implicated in horizontal gene transfer (HGT) was identified as Trichoplusia ni single nucleopolyhedrovirus (TnSNPV), an alphabaculovirus closely related to ChinNPV, or another unknown but closely related virus. BLAST searches of the other two PIRs returned only ChinNPV sequences, but HGT from an unknown donor baculovirus cannot be excluded. Although Chrysodeixis includens and Trichoplusia ni are frequently co-collected from soybean fields in Brazil, pathogenicity data suggest that natural coinfection of C. includens larvae with ChinNPV and TnSNPV is probably uncommon. Additionally, since the chimeric ChinNPV genomes with tracts of TnSNPV sequence were restricted to a single monophyletic lineage of closely related isolates, a model of progressive restoration of the native DNA sequence by recombination with ChinNPV possessing a fully or partially non-chimeric genome is reasonable. However, multiple independent HGT from TnSNPV to ChinNPV during the evolution of these isolates cannot be excluded. Mortality data suggest that the ChinNPV isolates with chimeric genomes are not significantly different in pathogenicity towards C. includens when compared to most other ChinNPV isolates. Exclusion of the PIRs prior to phylogenetic analysis had a large impact on the topology of part of the maximum-likelihood tree, revealing a homogenous clade of three isolates (IB, IC and ID) from Paraná state in Brazil collected in 2006, together with an isolate from Guatemala collected in 1972 (IA), comprising the lineage uniquely affected by HGT from TnSNPV. The other 10 Brazilian ChinNPV isolates from Paraná, Mato Grosso, and Minas Gerais states showed higher variability, where only three isolates from Paraná state formed a monophyletic group correlating with geographical origin.
Collapse
Affiliation(s)
- Peter W Inglis
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, DF, Brazil.
| | - Luis Arthur V M Santos
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, DF, Brazil
| | - Saluana R Craveiro
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, DF, Brazil
| | - Bergmann M Ribeiro
- Departamento de Biologia Celular, Universidade de Brasília-UnB, Brasília, DF, Brazil
| | - Maria Elita B Castro
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, DF, Brazil
| |
Collapse
|
4
|
Eaglesham JB, McCarty KL, Kranzusch PJ. Structures of diverse poxin cGAMP nucleases reveal a widespread role for cGAS-STING evasion in host-pathogen conflict. eLife 2020; 9:e59753. [PMID: 33191912 PMCID: PMC7688311 DOI: 10.7554/elife.59753] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
DNA viruses in the family Poxviridae encode poxin enzymes that degrade the immune second messenger 2'3'-cGAMP to inhibit cGAS-STING immunity in mammalian cells. The closest homologs of poxin exist in the genomes of insect viruses suggesting a key mechanism of cGAS-STING evasion may have evolved outside of mammalian biology. Here we use a biochemical and structural approach to discover a broad family of 369 poxins encoded in diverse viral and animal genomes and define a prominent role for 2'3'-cGAMP cleavage in metazoan host-pathogen conflict. Structures of insect poxins reveal unexpected homology to flavivirus proteases and enable identification of functional self-cleaving poxins in RNA-virus polyproteins. Our data suggest widespread 2'3'-cGAMP signaling in insect antiviral immunity and explain how a family of cGAS-STING evasion enzymes evolved from viral proteases through gain of secondary nuclease activity. Poxin acquisition by poxviruses demonstrates the importance of environmental connections in shaping evolution of mammalian pathogens.
Collapse
Affiliation(s)
- James B Eaglesham
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Department of Cancer Immunology and Virology, Dana-Farber Cancer InstituteBostonUnited States
- Harvard PhD Program in Virology, Division of Medical Sciences, Harvard UniversityBostonUnited States
| | - Kacie L McCarty
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Department of Cancer Immunology and Virology, Dana-Farber Cancer InstituteBostonUnited States
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Department of Cancer Immunology and Virology, Dana-Farber Cancer InstituteBostonUnited States
- Harvard PhD Program in Virology, Division of Medical Sciences, Harvard UniversityBostonUnited States
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer InstituteBostonUnited States
| |
Collapse
|
5
|
Sosa-Gómez DR, Morgado FS, Corrêa RFT, Silva LA, Ardisson-Araújo DMP, Rodrigues BMP, Oliveira EE, Aguiar RWS, Ribeiro BM. Entomopathogenic Viruses in the Neotropics: Current Status and Recently Discovered Species. NEOTROPICAL ENTOMOLOGY 2020; 49:315-331. [PMID: 32358711 DOI: 10.1007/s13744-020-00770-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
The market for biological control of insect pests in the world and in Brazil has grown in recent years due to the unwanted ecological and human health impacts of chemical insecticides. Therefore, research on biological control agents for pest management has also increased. For instance, insect viruses have been used to protect crops and forests around the world for decades. Among insect viruses, the baculoviruses are the most studied and used viral biocontrol agent. More than 700 species of insects have been found to be naturally infected by baculoviruses, with 90% isolated from lepidopteran insects. In this review, some basic aspects of baculovirus infection in vivo and in vitro infection, gene content, viral replication will be discussed. Furthermore, we provide examples of the use of insect viruses for biological pest control and recently characterized baculoviruses in Brazil.
Collapse
Affiliation(s)
- D R Sosa-Gómez
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Soja, Londrina, PR, Brasil
| | - F S Morgado
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil
| | - R F T Corrêa
- Depto de Biotecnologia, Univ Federal de Tocantins, Gurupi, TO, Brasil
| | - L A Silva
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil
| | - D M P Ardisson-Araújo
- Depto de Bioquímica e Biologia Molecular, Univ Federal de Santa Maria, Santa Maria, RS, Brasil
| | - B M P Rodrigues
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil
| | - E E Oliveira
- Depto de Entomologia, Univ Federal de Viçosa, Viçosa, MG, Brasil
| | - R W S Aguiar
- Depto de Biotecnologia, Univ Federal de Tocantins, Gurupi, TO, Brasil
| | - B M Ribeiro
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil.
| |
Collapse
|
6
|
Complete Genome Sequences of Seven New Chrysodeixis includens Nucleopolyhedrovirus Isolates from Minas Gerais and Mato Grosso States in Brazil. Microbiol Resour Announc 2020; 9:9/8/e01501-19. [PMID: 32079633 PMCID: PMC7033270 DOI: 10.1128/mra.01501-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We report the complete genomic sequences of seven viral isolates from the soybean looper (Chrysodeixis includens) from midwestern and southeastern Brazil. The genomes range from 138,760 to 139,637 bp in length with a G+C content of 39.2% and 140 open reading frames (ORFs). We report the complete genomic sequences of seven viral isolates from the soybean looper (Chrysodeixis includens) from midwestern and southeastern Brazil. The genomes range from 138,760 to 139,637 bp in length with a G+C content of 39.2% and 140 open reading frames (ORFs).
Collapse
|
7
|
Genome Analysis of a Novel Clade II.b Alphabaculovirus Obtained from Artaxa digramma. Viruses 2019; 11:v11100925. [PMID: 31601038 PMCID: PMC6832367 DOI: 10.3390/v11100925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 11/25/2022] Open
Abstract
Artaxa digramma is a lepidopteran pest distributed throughout southern China, Myanmar, Indonesia, and India. Artaxa digramma nucleopolyhedrovirus (ArdiNPV) is a specific viral pathogen of A. digramma and deemed as a promising biocontrol agent against the pest. In this study, the complete genome sequence of ArdiNPV was determined by deep sequencing. The genome of ArdiNPV contains a double-stranded DNA (dsDNA) of 161,734 bp in length and 39.1% G+C content. Further, 149 hypothetical open reading frames (ORFs) were predicted to encode proteins >50 amino acids in length, covering 83% of the whole genome. Among these ORFs, 38 were baculovirus core genes, 22 were lepidopteran baculovirus conserved genes, and seven were unique to ArdiNPV, respectively. No typical baculoviral homologous regions (hrs) were identified in the genome. ArdiNPV had five multi-copy genes including baculovirus repeated ORFs (bros), calcium/sodium antiporter B (chaB), DNA binding protein (dbp), inhibitor of apoptosis protein (iap), and p26. Interestingly, phylogenetic analyses showed that ArdiNPV belonged to Clade II.b of Group II Alphabaculoviruses, which all contain a second copy of dbp. The genome of ArdiNPV was the closest to Euproctis pseudoconspersa nucleopolyhedrovirus, with 57.4% whole-genome similarity. Therefore, these results suggest that ArdiNPV is a novel baculovirus belonging to a newly identified cluster of Clade II.b Alphabaculoviruses.
Collapse
|
8
|
Harrison RL, Rowley DL, Popham HJR. A Novel Alphabaculovirus from the Soybean Looper, Chrysodeixis includens, that Produces Tetrahedral Occlusion Bodies and Encodes Two Copies of he65. Viruses 2019; 11:E579. [PMID: 31247912 PMCID: PMC6669638 DOI: 10.3390/v11070579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 11/29/2022] Open
Abstract
Isolates of the alphabaculovirus species, Chrysodeixis includens nucleopolyhedrovirus, have been identified that produce polyhedral occlusion bodies and infect larvae of the soybean looper, Chrysodeixis includens. In this study, we report the discovery and characterization of a novel C. includens-infecting alphabaculovirus, Chrysodeixis includens nucleopolyhedrovirus #1 (ChinNPV#1), that produces tetrahedral occlusion bodies. In bioassays against C. includens larvae, ChinNPV #1 exhibited a degree of pathogenicity that was similar to that of other ChinNPV isolates, but killed larvae more slowly. The host range of ChinNPV#1 was found to be very narrow, with no indication of infection occurring in larvae of Trichoplusia ni and six other noctuid species. The ChinNPV#1 genome sequence was determined to be 130,540 bp, with 126 open reading frames (ORFs) annotated but containing no homologous repeat (hr) regions. Phylogenetic analysis placed ChinNPV#1 in a clade with other Group II alphabaculoviruses from hosts of lepidopteran subfamily Plusiinae, including Chrysodeixis chalcites nucleopolyhedrovirus and Trichoplusia ni single nucleopolyhedrovirus. A unique feature of the ChinNPV#1 genome was the presence of two full-length copies of the he65 ORF. The results indicate that ChinNPV#1 is related to, but distinct from, other ChinNPV isolates.
Collapse
Affiliation(s)
- Robert L Harrison
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center, USDA Agricultural Research Service, Beltsville, MD 20705, USA.
| | - Daniel L Rowley
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center, USDA Agricultural Research Service, Beltsville, MD 20705, USA
| | | |
Collapse
|
9
|
Trentin LB, Santos ER, Oliveira Junior AG, Sosa-Gómez DR, Ribeiro BM, Ardisson-Araújo DMP. The complete genome of Rachiplusia nu nucleopolyhedrovirus (RanuNPV) and the identification of a baculoviral CPD-photolyase homolog. Virology 2019; 534:64-71. [PMID: 31200103 DOI: 10.1016/j.virol.2019.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 02/08/2023]
Abstract
We described a novel baculovirus isolated from the polyphagous insect pest Rachiplusia nu. The virus presented pyramidal-shaped occlusion bodies (OBs) with singly-embed nucleocapsids and a dose mortality response of 6.9 × 103 OBs/ml to third-instar larvae of R. nu. The virus genome is 128,587 bp long with a G + C content of 37.9% and 134 predicted ORFs. The virus is an alphabaculovirus closely related to Trichoplusia ni single nucleopolyhedrovirus, Chrysodeixis chalcites nucleopolyhedrovirus, and Chrysodeixis includens single nucleopolyhedrovirus and may constitute a new species. Surprisingly, we found co-evolution among the related viruses and their hosts at species level. Besides, auxiliary genes with homologs in other baculoviruses were found, e.g. a CPD-photolyase. The gene seemed to be result of a single event of horizontal transfer from lepidopterans to alphabaculovirus, followed by a transference from alpha to betabaculovirus. The predicted protein appears to be an active enzyme that ensures likely DNA protection from sunlight.
Collapse
Affiliation(s)
- Luana Beló Trentin
- Laboratory of Insect Virology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Ethiane R Santos
- Laboratory of Insect Virology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | | | | | - Bergmann Morais Ribeiro
- Laboratory of Baculovirus, Cell Biology Department, University of Brasilia, Brasilia, DF, 70910-900, Brazil.
| | - Daniel M P Ardisson-Araújo
- Laboratory of Insect Virology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
10
|
Santos ER, Oliveira LB, Peterson L, Sosa-Gómez DR, Ribeiro BM, Ardisson-Araújo DMP. The complete genome sequence of the first hesperiid-infecting alphabaculovirus isolated from the leguminous pest Urbanus proteus (Lepidoptera: Hesperiidae). Virus Res 2018; 249:76-84. [PMID: 29571652 DOI: 10.1016/j.virusres.2018.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
Abstract
Baculoviruses are insect viruses largely used as expression vectors and biopesticides. These viruses can efficiently infect the larval stage of several agricultural pests worldwide causing a lethal disease. In this work, we found a novel baculovirus isolated from the larval stage of Urbanus proteus (L.), the bean leafroller and characterized its complete genome. This is an important pest of several leguminous plants in Brazil and belongs to the butterfly family Hesperiidae, from where no baculovirus genome sequence has been described. This new virus was shown to have the smallest genome among all alphabaculoviruses sequenced to date, with 105,555 bp and 119 putative ORFs. We found ten unique genes, seven bro, and the 38 baculovirus core genes. UrprNPV was found to be related to the Adoxophyes-infecting baculoviruses AdorNPV and AdhoNPV with high genetic distance and a long branch length. Interestingly, few individual core gene-based phylogenies were found to support the relationship of UrprNPV to both AdorNPV and AdhoNPV. Importantly, the increase in number of completely sequenced baculovirus points to a very exciting way to understand baculovirus and its evolution and could potentially help the use of baculovirus as both biopesticides and expression vectors.
Collapse
Affiliation(s)
- Ethiane R Santos
- Laboratory of Insect Virology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Lucas B Oliveira
- Laboratory of Insect Virology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Lenen Peterson
- Laboratory of Insect Virology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Bergmann Morais Ribeiro
- Laboratory of Baculovirus, Cell Biology Department, University of Brasilia, Brasília, DF, Brazil
| | - Daniel M P Ardisson-Araújo
- Laboratory of Insect Virology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
11
|
Harrison RL, Mowery JD, Rowley DL, Bauchan GR, Theilmann DA, Rohrmann GF, Erlandson MA. The complete genome sequence of a third distinct baculovirus isolated from the true armyworm, Mythimna unipuncta, contains two copies of the lef-7 gene. Virus Genes 2017; 54:297-310. [PMID: 29204787 DOI: 10.1007/s11262-017-1525-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
Abstract
A baculovirus isolate from a USDA Forest Service collection was characterized by electron microscopy and analysis of its genome sequence. The isolate, formerly referred to as Pseudoletia (Mythimna) sp. nucleopolyhedrovirus #7 (MyspNPV#7), was determined by barcoding PCR to derive from the host species Mythimna unipuncta (true armyworm) and was renamed Mythimna unipuncta nucleopolyhedrovirus #7 (MyunNPV#7). The occlusion bodies (OBs) and virions exhibited a size and morphology typical for OBs produced by the species of genus Alphabaculovirus, with occlusion-derived virions consisting of 2-5 nucleocapsids within a single envelope. The MyunNPV#7 genome was determined to be 148,482 bp with a 48.58% G+C nucleotide distribution. A total of 159 ORFs of 150 bp or larger were annotated in the genome sequence, including the 38 core genes of family Baculoviridae. The genome contained six homologous repeat regions (hrs) consisting of multiple copies of a 34-bp imperfect palindrome. Phylogenetic inference from concatenated baculovirus core gene amino acid sequence alignments placed MyunNPV#7 with group II alphabaculoviruses isolated from other armyworm and cutworm host species of lepidopteran family Noctuidae. MyunNPV#7 could be distinguished from other viruses in this group on the basis of differences in gene content and order. Pairwise nucleotide distances suggested that MyunNPV#7 represents a distinct species in Alphabaculovirus. The MyunNPV#7 genome was found to contain two copies of the late expression factor-7 (lef-7) gene, a feature not reported for any other baculovirus genome to date. Both copies of lef-7 encoded an F-box domain, which is required for the function of LEF-7 in baculovirus DNA replication.
Collapse
Affiliation(s)
- Robert L Harrison
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center, USDA Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Joseph D Mowery
- Electron and Confocal Microscopy Unit, Beltsville Agricultural Research Center, USDA Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Daniel L Rowley
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center, USDA Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Gary R Bauchan
- Electron and Confocal Microscopy Unit, Beltsville Agricultural Research Center, USDA Agricultural Research Service, Beltsville, MD, 20705, USA
| | - David A Theilmann
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada
| | - George F Rohrmann
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331-3804, USA
| | - Martin A Erlandson
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| |
Collapse
|
12
|
Castro MEB, Melo FL, Tagliari M, Inglis PW, Craveiro SR, Ribeiro ZMA, Ribeiro BM, Báo SN. The genome sequence of Condylorrhiza vestigialis NPV, a novel baculovirus for the control of the Alamo moth on Populus spp. in Brazil. J Invertebr Pathol 2017; 148:152-161. [PMID: 28669710 DOI: 10.1016/j.jip.2017.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022]
Abstract
Condylorrhiza vestigialis (Lepidoptera: Cambridae), commonly known as the Brazilian poplar moth or Alamo moth, is a serious defoliating pest of poplar, a crop of great economic importance for the production of wood, fiber, biofuel and other biomaterials as well as its significant ecological and environmental value. The complete genome sequence of a new alphabaculovirus isolated from C. vestigialis was determined and analyzed. Condylorrhiza vestigialis nucleopolyhedrovirus (CoveNPV) has a circular double-stranded DNA genome of 125,767bp with a GC content of 42.9%. One hundred and thirty-eight putative open reading frames were identified and annotated in the CoveNPV genome, including 38 core genes and 9 bros. Four homologous regions (hrs), a feature common to most baculoviruses, and 19 perfect and imperfect direct repeats (drs) were found. Phylogenetic analysis confirmed that CoveNPV is a Group I Alphabaculovirus and is most closely related to Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) and Choristoneura fumiferana DEF multiple nucleopolyhedrovirus CfDEFMNPV. The gp37 gene was not detected in the CoveNPV genome, although this gene is found in many NPVs. Two other common NPV genes, chitinase (v-chiA) and cathepsin (v-cath), that are responsible for host insect liquefaction and melanization, were also absent, where phylogenetic analysis suggests that the loss these genes occurred in the common ancestor of AgMNPV, CfDEFMNPV and CoveNPV, with subsequent reacquisition of these genes by CfDEFMNPV. The molecular biology and genetics of CoveNPV was formerly very little known and our expectation is that the findings presented here should accelerate research on this baculovirus, which will facilitate the use of CoveNPV in integrated pest management programs in Poplar crops.
Collapse
Affiliation(s)
| | - Fernando L Melo
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | - Marina Tagliari
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil; Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | - Peter W Inglis
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Saluana R Craveiro
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil; Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | | | - Bergmann M Ribeiro
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | - Sônia N Báo
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| |
Collapse
|
13
|
Complete Genome Sequences of Six Chrysodeixis includens Nucleopolyhedrovirus Isolates from Brazil and Guatemala. GENOME ANNOUNCEMENTS 2016; 4:4/6/e01192-16. [PMID: 27932639 PMCID: PMC5146431 DOI: 10.1128/genomea.01192-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The baculovirus, Chrysodeixis (formerly Pseudoplusia) includens nucleopolyhedrovirus (ChinNPV), is a new Alphabaculovirus pathogenic to Chrysodeixis includens. Here, we report the complete genome sequences of six ChinNPV isolates. The availability of these genome sequences will provide information on ChinNPV molecular genetics, promoting understanding of its pathogenicity, diversity, and evolution.
Collapse
|
14
|
Noune C, Hauxwell C. Comparative Analysis of HaSNPV-AC53 and Derived Strains. Viruses 2016; 8:E280. [PMID: 27809232 PMCID: PMC5127010 DOI: 10.3390/v8110280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 12/22/2022] Open
Abstract
Complete genome sequences of two Australian isolates of H. armigera single nucleopolyhedrovirus (HaSNPV) and nine strains isolated by plaque selection in tissue culture identified multiple polymorphisms in tissue culture-derived strains compared to the consensus sequence of the parent isolate. Nine open reading frames (ORFs) in all tissue culture-derived strains contained changes in nucleotide sequences that resulted in changes in predicted amino acid sequence compared to the parent isolate. Of these, changes in predicted amino acid sequence of six ORFs were identical in all nine derived strains. Comparison of sequences and maximum likelihood estimation (MLE) of specific ORFs and whole genome sequences were used to compare the isolates and derived strains to published sequence data from other HaSNPV isolates. The Australian isolates and derived strains had greater sequence similarity to New World SNPV isolates from H. zea than to Old World isolates from H. armigera, but with characteristics associated with both. Three distinct geographic clusters within HaSNPV genome sequences were identified: Australia/Americas, Europe/Africa/India, and China. Comparison of sequences and fragmentation of ORFs suggest that geographic movement and passage in vitro result in distinct patterns of baculovirus strain selection and evolution.
Collapse
|
15
|
Ardisson-Araújo DMP, Pereira BT, Melo FL, Ribeiro BM, Báo SN, de A Zanotto PM, Moscardi F, Kitajima EW, Sosa-Gomez DR, Wolff JLC. A betabaculovirus encoding a gp64 homolog. BMC Genomics 2016; 17:94. [PMID: 26847652 PMCID: PMC4741009 DOI: 10.1186/s12864-016-2408-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/20/2016] [Indexed: 11/23/2022] Open
Abstract
Background A betabaculovirus (DisaGV) was isolated from Diatraea saccharalis (Lepidoptera: Crambidae), one of the most important insect pests of the sugarcane and other monocot cultures in Brazil. Results The complete genome sequence of DisaGV was determined using the 454-pyrosequencing method. The genome was 98,392 bp long, which makes it the smallest lepidopteran-infecting baculovirus sequenced to date. It had a G + C content of 29.7 % encoding 125 putative open reading frames (ORF). All the 37 baculovirus core genes and a set of 19 betabaculovirus-specific genes were found. A group of 13 putative genes was not found in any other baculovirus genome sequenced so far. A phylogenetic analysis indicated that DisaGV is a member of Betabaculovirus genus and that it is a sister group to a cluster formed by ChocGV, ErelGV, PiraGV isolates, ClanGV, CaLGV, CpGV, CrleGV, AdorGV, PhopGV and EpapGV. Surprisingly, we found in the DisaGV genome a G protein-coupled receptor related to lepidopteran and other insect virus genes and a gp64 homolog, which is likely a product of horizontal gene transfer from Group 1 alphabaculoviruses. Conclusion DisaGV represents a distinct lineage of the genus Betabaculovirus. It is closely related to the CpGV-related group and presents the smallest genome in size so far. Remarkably, we found a homolog of gp64, which was reported solely in group 1 alphabaculovirus genomes so far. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2408-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel M P Ardisson-Araújo
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil.
| | - Bruna T Pereira
- Programa de Pós-graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, São Paulo, Brazil.
| | - Fernando L Melo
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil.
| | - Bergmann M Ribeiro
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil.
| | - Sônia N Báo
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil.
| | - Paolo M de A Zanotto
- Laboratório de Evolução Molecular e Bioinformática (LEMB-ICB), Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Flávio Moscardi
- Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa de Soja, Londrina, Paraná PR, Brazil
| | - Elliot W Kitajima
- NAP/MEPA, Departamento de Fitopatologia e Nematologia, ESALQ, Universidade de São Paulo, Piracicaba, SP, Brazil.
| | - Daniel R Sosa-Gomez
- Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa de Soja, Londrina, Paraná PR, Brazil.
| | - José L C Wolff
- Laboratório de Biologia Molecular e Virologia, Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Presbiteriana Mackenzie, São Paulo, SP, Brazil.
| |
Collapse
|
16
|
Haase S, Sciocco-Cap A, Romanowski V. Baculovirus insecticides in Latin America: historical overview, current status and future perspectives. Viruses 2015; 7:2230-67. [PMID: 25941826 PMCID: PMC4452904 DOI: 10.3390/v7052230] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/25/2015] [Accepted: 04/23/2015] [Indexed: 11/16/2022] Open
Abstract
Baculoviruses are known to regulate many insect populations in nature. Their host-specificity is very high, usually restricted to a single or a few closely related insect species. They are amongst the safest pesticides, with no or negligible effects on non-target organisms, including beneficial insects, vertebrates and plants. Baculovirus-based pesticides are compatible with integrated pest management strategies and the expansion of their application will significantly reduce the risks associated with the use of synthetic chemical insecticides. Several successful baculovirus-based pest control programs have taken place in Latin American countries. Sustainable agriculture (a trend promoted by state authorities in most Latin American countries) will benefit from the wider use of registered viral pesticides and new viral products that are in the process of registration and others in the applied research pipeline. The success of baculovirus-based control programs depends upon collaborative efforts among government and research institutions, growers associations, and private companies, which realize the importance of using strategies that protect human health and the environment at large. Initiatives to develop new regulations that promote the use of this type of ecological alternatives tailored to different local conditions and farming systems are underway.
Collapse
Affiliation(s)
- Santiago Haase
- Instituto de Biotecnología y Biología Molecular (IBBM), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata 1900, Argentina.
| | - Alicia Sciocco-Cap
- Instituto de Microbiología y Zoología Agrícola (IMYZA), Instituto Nacional de Tecnología Agropecuaria (INTA), Castelar 1712, Argentina.
| | - Víctor Romanowski
- Instituto de Biotecnología y Biología Molecular (IBBM), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata 1900, Argentina.
| |
Collapse
|