1
|
Advancement of Metatranscriptomics towards Productive Agriculture and Sustainable Environment: A Review. Int J Mol Sci 2022; 23:ijms23073737. [PMID: 35409097 PMCID: PMC8998989 DOI: 10.3390/ijms23073737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/19/2022] [Accepted: 03/26/2022] [Indexed: 01/19/2023] Open
Abstract
While chemical fertilisers and pesticides indeed enhance agricultural productivity, their excessive usage has been detrimental to environmental health. In addressing this matter, the use of environmental microbiomes has been greatly favoured as a ‘greener’ alternative to these inorganic chemicals’ application. Challenged by a significant proportion of unidentified microbiomes with unknown ecological functions, advanced high throughput metatranscriptomics is prudent to overcome the technological limitations in unfolding the previously undiscovered functional profiles of the beneficial microbiomes. Under this context, this review begins by summarising (1) the evolution of next-generation sequencing and metatranscriptomics in leveraging the microbiome transcriptome profiles through whole gene expression profiling. Next, the current environmental metatranscriptomics studies are reviewed, with the discussion centred on (2) the emerging application of the beneficial microbiomes in developing fertile soils and (3) the development of disease-suppressive soils as greener alternatives against biotic stress. As sustainable agriculture focuses not only on crop productivity but also long-term environmental sustainability, the second half of the review highlights the metatranscriptomics’ contribution in (4) revolutionising the pollution monitoring systems via specific bioindicators. Overall, growing knowledge on the complex microbiome functional profiles is imperative to unlock the unlimited potential of agricultural microbiome-based practices, which we believe hold the key to productive agriculture and sustainable environment.
Collapse
|
2
|
Afzal M, Shaheen N, Shah SAA, Iqbal A, Scharf ME, Qureshi NA. Saccharification of agricultural lignocellulosic feedstocks by endogenous and symbiotic cellulases from the subterranean termites. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Wu W, Hou Y, Zhang S, Chen Y, Zeng W, Li Z. GC/TOF-MS-Based Metabolomics Reveals Altered Metabolic Profiles in Wood-Feeding Termite Coptotermes formosanus Shiraki Digesting the Weed Mikania micrantha Kunth. INSECTS 2021; 12:927. [PMID: 34680696 PMCID: PMC8537488 DOI: 10.3390/insects12100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022]
Abstract
Effective approaches to exploiting the biomass of the abundant invasive weed Mikania micrantha Kunth are limited. Termites have been a focus of significant attention as mediators of biomass-processing owing to their ability to digest lignocellulose. Here, the GC/TOF-MS approach was employed to assess the effects of a diet composed of M. micrantha leaves on Coptotermes formosanus workers, with the growth performance of these workers also being assessed. The workers increased their dietary intake when fed M. micrantha leaves, with a concomitant gradual increase in mortality rate. A total of 62 differentially abundant metabolites and nine significantly affected pathways were found when comparing termites fed M. micrantha leaves to pinewood. Key metabolites, including carbohydrates, polyols, 4-hydroxyphenylacetic acid, and their related metabolic pathways, suggested that termites can digest and utilize M. micrantha-derived lignocellulose. However, changes in the tryptophan metabolism, tyrosine metabolism, and sphingolipid metabolism suggest an adverse effect of M. micrantha leaves on antioxidant activity and signal transduction in termites. Overall, this study identified the key metabolites and pathways associated with the response of these termites to dietary changes and the effect of M. micrantha on termites.
Collapse
Affiliation(s)
- Wenjing Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (W.W.); (S.Z.); (Y.C.); (W.Z.)
| | - Yahui Hou
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou 510405, China;
| | - Shijun Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (W.W.); (S.Z.); (Y.C.); (W.Z.)
| | - Yong Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (W.W.); (S.Z.); (Y.C.); (W.Z.)
| | - Wenhui Zeng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (W.W.); (S.Z.); (Y.C.); (W.Z.)
| | - Zhiqiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (W.W.); (S.Z.); (Y.C.); (W.Z.)
| |
Collapse
|
4
|
Crystal structure of a homotrimeric verrucomicrobial exo- β-1,4-mannosidase active in the hindgut of the wood-feeding termite Reticulitermes flavipes. JOURNAL OF STRUCTURAL BIOLOGY-X 2021; 5:100048. [PMID: 34195602 PMCID: PMC8233224 DOI: 10.1016/j.yjsbx.2021.100048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022]
Abstract
First structure of a glycoside hydrolase from a bacterial symbiont isolated from the digestive tract of the notorious termite pest Reticulitermes flavipes. First example of a GH5 glycoside hydrolase that features a GH42-type homotrimeric structure. High exo-type specificity for the terminal ®-1,4-mannosidic linkages in mannooligosaccharides and unsubstituted®-mannans. Verrucomicrobial gut symbiont with high potential for hemicellulose degradation.
The termite Reticulitermes flavipes causes extensive damage due to the high efficiency and broad specificity of the ligno- and hemicellulolytic enzyme systems produced by its symbionts. Thus, the R. flavipes gut microbiome is expected to constitute an excellent source of enzymes that can be used for the degradation and valorization of plant biomass. The symbiont Opitutaceae bacterium strain TAV5 belongs to the phylum Verrucomicrobia and thrives in the hindgut of R. flavipes. The sequence of the gene with the locus tag opit5_10225 in the Opitutaceae bacterium strain TAV5 genome has been classified as a member of glycoside hydrolase family 5 (GH5), and provisionally annotated as an endo-β-mannanase. We characterized biochemically and structurally the opit5_10225 gene product, and show that the enzyme, Op5Man5, is an exo-β-1,4-mannosidase [EC 3.2.1.25] that is highly specific for β-1,4-mannosidic bonds in mannooligosaccharides and ivory nut mannan. The structure of Op5Man5 was phased using electron cryo-microscopy and further determined and refined at 2.2 Å resolution using X-ray crystallography. Op5Man5 features a 200-kDa large homotrimer composed of three modular monomers. Despite insignificant sequence similarity, the structure of the monomer, and homotrimeric assembly are similar to that of the GH42-family β-galactosidases and the GH164-family exo-β-1,4-mannosidase Bs164 from Bacteroides salyersiae. To the best of our knowledge Op5Man5 is the first structure of a glycoside hydrolase from a bacterial symbiont isolated from the R. flavipes digestive tract, as well as the first example of a GH5 glycoside hydrolase with a GH42 β-galactosidase-type homotrimeric structure.
Collapse
Key Words
- 4-mannosidase
- CAZy, Carbohydrate-Active enZymes database
- CMC, carboxymethyl cellulose
- Crystal structure
- DP, degree of polymerization
- EDTA, ethylenediaminetetraacetic acid
- ESI-MS, electrospray ionization mass spectrometry
- Electron cryo-microscopy
- Exo-β-1
- Fuc, fucopyranoside
- GH, glycoside hydrolase
- Gal, galactopyranoside
- Glc, glucopyranoside
- GlcNAc, N-acetyl glucosamine
- Glycosyl hydrolase family 5
- HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
- HPAEC-PAD, High Performance Anion Exchange Chromatography and Pulsed Amperometric Detection
- IPTG, β-D-1-thiogalactopyranoside
- LBG, locust bean gum
- MOS, mannooligosaccharides
- MWCO, molecular weight cut-off
- Man, mannopyranoside
- Op5Man5, exo-β-1,4-mannosidase from Opitutaceae bacterium strain TAV5
- Opitutaceae
- Reticulitermes flavipes
- SDS-PAGE, sodium dodecyl sulfate–polyacrylamide gel electrophoresis
- SEC, size-exclusion chromatography
- TCEP, tris (2-carboxyethyl) phosphine hydrochloride
- TLC, thin-layer chromatography
- Termite hindgut
- Verrucomicrobia
- Xyl, xylopyranoside
- cryo-EM, electron cryo-microscopy
- pNP, p-nitrophenyl
Collapse
|
5
|
Scharf ME, Peterson BF. A Century of Synergy in Termite Symbiosis Research: Linking the Past with New Genomic Insights. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:23-43. [PMID: 33417825 DOI: 10.1146/annurev-ento-022420-074746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Termites have long been studied for their symbiotic associations with gut microbes. In the late nineteenth century, this relationship was poorly understood and captured the interest of parasitologists such as Joseph Leidy; this research led to that of twentieth-century biologists and entomologists including Cleveland, Hungate, Trager, and Lüscher. Early insights came via microscopy, organismal, and defaunation studies, which led to descriptions of microbes present, descriptions of the roles of symbionts in lignocellulose digestion, and early insights into energy gas utilization by the host termite. Focus then progressed to culture-dependent microbiology and biochemical studies of host-symbiont complementarity, which revealed specific microhabitat requirements for symbionts and noncellulosic mechanisms of symbiosis (e.g., N2 fixation). Today, knowledge on termite symbiosis has accrued exponentially thanks to omic technologies that reveal symbiont identities, functions, and interdependence, as well as intricacies of host-symbiont complementarity. Moving forward, the merging of classical twentieth-century approaches with evolving omic tools should provide even deeper insights into host-symbiont interplay.
Collapse
Affiliation(s)
- Michael E Scharf
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Brittany F Peterson
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois 62026, USA;
| |
Collapse
|
6
|
Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes. Sci Rep 2020; 10:3864. [PMID: 32123275 PMCID: PMC7052144 DOI: 10.1038/s41598-020-60850-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/24/2019] [Indexed: 11/08/2022] Open
Abstract
In this study, we used shotgun metagenomic sequencing to characterise the microbial metabolic potential for lignocellulose transformation in the gut of two colonies of Argentine higher termite species with different feeding habits, Cortaritermes fulviceps and Nasutitermes aquilinus. Our goal was to assess the microbial community compositions and metabolic capacity, and to identify genes involved in lignocellulose degradation. Individuals from both termite species contained the same five dominant bacterial phyla (Spirochaetes, Firmicutes, Proteobacteria, Fibrobacteres and Bacteroidetes) although with different relative abundances. However, detected functional capacity varied, with C. fulviceps (a grass-wood-feeder) gut microbiome samples containing more genes related to amino acid metabolism, whereas N. aquilinus (a wood-feeder) gut microbiome samples were enriched in genes involved in carbohydrate metabolism and cellulose degradation. The C. fulviceps gut microbiome was enriched specifically in genes coding for debranching- and oligosaccharide-degrading enzymes. These findings suggest an association between the primary food source and the predicted categories of the enzymes present in the gut microbiomes of each species. To further investigate the termite microbiomes as sources of biotechnologically relevant glycosyl hydrolases, a putative GH10 endo-β-1,4-xylanase, Xyl10E, was cloned and expressed in Escherichia coli. Functional analysis of the recombinant metagenome-derived enzyme showed high specificity towards beechwood xylan (288.1 IU/mg), with the optimum activity at 50 °C and a pH-activity range from 5 to 10. These characteristics suggest that Xy110E may be a promising candidate for further development in lignocellulose deconstruction applications.
Collapse
|
7
|
Marynowska M, Goux X, Sillam-Dussès D, Rouland-Lefèvre C, Roisin Y, Delfosse P, Calusinska M. Optimization of a metatranscriptomic approach to study the lignocellulolytic potential of the higher termite gut microbiome. BMC Genomics 2017; 18:681. [PMID: 28863779 PMCID: PMC5580439 DOI: 10.1186/s12864-017-4076-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022] Open
Abstract
Background Thanks to specific adaptations developed over millions of years, the efficiency of lignin, cellulose and hemicellulose decomposition of higher termite symbiotic system exceeds that of many other lignocellulose utilizing environments. Especially, the examination of its symbiotic microbes should reveal interesting carbohydrate-active enzymes, which are of primary interest for the industry. Previous metatranscriptomic reports (high-throughput mRNA sequencing) highlight the high representation and overexpression of cellulose and hemicelluloses degrading genes in the termite hindgut digestomes, indicating the potential of this technology in search for new enzymes. Nevertheless, several factors associated with the material sampling and library preparation steps make the metatranscriptomic studies of termite gut prokaryotic symbionts challenging. Methods In this study, we first examined the influence of the sampling strategy, including the whole termite gut and luminal fluid, on the diversity and the metatranscriptomic profiles of the higher termite gut symbiotic bacteria. Secondly, we evaluated different commercially available kits combined in two library preparative pipelines for the best bacterial mRNA enrichment strategy. Results We showed that the sampling strategy did not significantly impact the generated results, both in terms of the representation of the microbes and their transcriptomic profiles. Nevertheless collecting luminal fluid reduces the co-amplification of unwanted RNA species of host origin. Furthermore, for the four studied higher termite species, the library preparative pipeline employing Ribo-Zero Gold rRNA Removal Kit “Epidemiology” in combination with Poly(A) Purist MAG kit resulted in a more efficient rRNA and poly-A-mRNAdepletion (up to 98.44% rRNA removed) than the pipeline utilizing MICROBExpress and MICROBEnrich kits. High correlation of both Ribo-Zero and MICROBExpresse depleted gene expression profiles with total non-depleted RNA-seq data has been shown for all studied samples, indicating no systematic skewing of the studied pipelines. Conclusions We have extensively evaluated the impact of the sampling strategy and library preparation steps on the metatranscriptomic profiles of the higher termite gut symbiotic bacteria. The presented methodological approach has great potential to enhance metatranscriptomic studies of the higher termite intestinal flora and to unravel novel carbohydrate-active enzymes. Electronic supplementary material The online version of this article (10.1186/s12864-017-4076-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martyna Marynowska
- Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422, Belvaux, Luxembourg
| | - Xavier Goux
- Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422, Belvaux, Luxembourg
| | - David Sillam-Dussès
- Institute of Research for Development - Sorbonne Universités, Institute of Ecology and Environmental Sciences - Paris, U242, 32 avenue Henri Varagnat, F-93140, Bondy, France.,University Paris 13 - Sorbonne Paris Cité, Laboratory of Experimental and Comparative Ethology, EA4443, 99 avenue Jean-Baptiste Clément, F-93430, Villetaneuse, France
| | - Corinne Rouland-Lefèvre
- Institute of Research for Development - Sorbonne Universités, Institute of Ecology and Environmental Sciences - Paris, U242, 32 avenue Henri Varagnat, F-93140, Bondy, France
| | - Yves Roisin
- Université Libre de Bruxelles, 50 Avenue F.D. Roosevelt, B-1050, Brussels, Belgium
| | - Philippe Delfosse
- Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422, Belvaux, Luxembourg
| | - Magdalena Calusinska
- Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422, Belvaux, Luxembourg.
| |
Collapse
|
8
|
Peterson BF, Scharf ME. Metatranscriptome analysis reveals bacterial symbiont contributions to lower termite physiology and potential immune functions. BMC Genomics 2016; 17:772. [PMID: 27716053 PMCID: PMC5045658 DOI: 10.1186/s12864-016-3126-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/26/2016] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Symbioses throughout the animal kingdom are known to extend physiological and ecological capabilities to hosts. Insect-microbe associations are extremely common and are often related to novel niche exploitation, fitness advantages, and even speciation events. These phenomena include expansions in host diet, detoxification of insecticides and toxins, and increased defense against pathogens. However, dissecting the contributions of individual groups of symbionts at the molecular level is often underexplored due to methodological and analytical limitations. Termites are one of the best studied systems for physiological collaborations between host and symbiota; however, most work in lower termites (those with bacterial and protist symbionts) focuses on the eukaryotic members of this symbiotic consortium. Here we present a metatranscriptomic analysis which provides novel insights into bacterial contributions to the holobiont of the eastern subterranean termite, Reticulitermes flavipes, in the presence and absence of a fungal pathogen. RESULTS Using a customized ribodepletion strategy, a metatranscriptome assembly was obtained representing the host termite as well as bacterial and protist symbiota. Sequence data provide new insights into biosynthesis, catabolism, and transport of major organic molecules and ions by the gut consortium, and corroborate previous findings suggesting that bacteria play direct roles in nitrogen fixation, amino acid biosynthesis, and lignocellulose digestion. With regard to fungal pathogen challenge, a total of 563 differentially expressed candidate host and symbiont contigs were identified (162 up- and 401 downregulated; α/FDR = 0.05) including an upregulated bacterial amidohydrolase. CONCLUSIONS This study presents the most complete bacterial metatranscriptome from a lower termite and provides a framework on which to build a more complete model of termite-symbiont interactions including, but not limited to, digestion and pathogen defense.
Collapse
Affiliation(s)
- Brittany F Peterson
- Department of Entomology, Purdue University, 901 W. State St, West Lafayette, IN, 47907-2089, USA. .,Present address: Center for Insect Science, University of Arizona, 1007 E. Lowell St, Tucson, AZ, 85721, USA.
| | - Michael E Scharf
- Department of Entomology, Purdue University, 901 W. State St, West Lafayette, IN, 47907-2089, USA
| |
Collapse
|
9
|
Sandoval-Mojica AF, Scharf ME. GUT GENES ASSOCIATED WITH THE PERITROPHIC MATRIX IN Reticulitermes flavipes (Blattodea: Rhinotermitidae): IDENTIFICATION AND CHARACTERIZATION. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 92:127-142. [PMID: 27087028 DOI: 10.1002/arch.21325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The peritrophic matrix (PM) is an acellular structure that lines the gut of most insects. It is an attractive target for pest management strategies because of its close involvement in digestive processes and role as a barrier against pathogens and toxins. The purpose of this study was to identify and characterize the genes that translate for principal components of the Reticulitermes flavipes PM. Genes encoding a gut chitin synthase (CHS), two proteins with peritrophin-A domains, and a chitin deacetylase were identified from an R. flavipes symbiont-free gut cDNA library, a pyrosequencing study of termite lignocellulose digestion, and a metatranscriptomic analysis of R. flavipes fed on agricultural biomass. Quantitative expression analysis of the identified genes, in the termite digestive tract, revealed that the transcripts coding for a CHS (RfCHSB) and the proteins with peritrophin-A domains (RfPPAD1 and RfPPAD2) were predominantly expressed in the midgut, suggesting an association with the PM. The peritrophin identity of the RfPPAD2 gene was confirmed by immunodetection of its translated peptide in the midgut and PM. The discovery and characterization of PM components of R. flavipes provides a basis for further investigation of the viability of this structure as a target for candidate termiticides.
Collapse
Affiliation(s)
| | - Michael E Scharf
- Department of Entomology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
10
|
Karl ZJ, Scharf ME. EFFECTS OF FIVE DIVERSE LIGNOCELLULOSIC DIETS ON DIGESTIVE ENZYME BIOCHEMISTRY IN THE TERMITE Reticulitermes flavipes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 90:89-103. [PMID: 25980379 DOI: 10.1002/arch.21246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Termites have recently drawn much attention as models for biomass processing, mainly due to their lignocellulose digestion capabilities and mutualisms with cellulolytic gut symbionts. This research used the lower termite Reticulitermes flavipes to investigate gut enzyme activity changes in response to feeding on five diverse lignocellulosic diets (cellulose filter paper [FP], pine wood [PW], beech wood xylan [X], corn stover [CS], and soybean residue [SB]). Our objectives were to compare whole-gut digestive enzyme activity and host versus symbiont contributions to enzyme activity after feeding on these diets. Our hypothesis was that enzyme activities would vary among diets as an adaptive mechanism enabling termites and symbiota to optimally utilize variable resources. Results support our "diet-adaptation" hypothesis and further indicate that, in most cases, host contributions are greater than those of symbionts with respect to the enzymes and activities studied. The results obtained thus provide indications as to which types of transcriptomic resources, termite or symbiont, are most relevant for developing recombinant enzyme cocktails tailored to specific feedstocks. With regard to the agricultural feedstocks tested (CS and SB), our results suggest endoglucanase and exoglucanase (cellobiohydrolase) activities are most relevant for CS breakdown; whereas endoglucanase and xylosidase activities are relevant for SB breakdown. However, other unexplored activities than those tested may also be important for breakdown of these two feedstocks. These findings provide new protein-level insights into diet adaptation by termites, and also complement host-symbiont metatranscriptomic studies that have been completed for R. flavipes after FP, PW, CS, and SB feeding.
Collapse
Affiliation(s)
- Zachary J Karl
- Department of Entomology, Purdue University, West Lafayette, Indiana, USA
| | - Michael E Scharf
- Department of Entomology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|