1
|
Bass AH. A tale of two males: Behavioral and neural mechanisms of alternative reproductive tactics in midshipman fish. Horm Behav 2024; 161:105507. [PMID: 38479349 DOI: 10.1016/j.yhbeh.2024.105507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 05/04/2024]
Abstract
An amalgam of investigations at the interface of neuroethology and behavioral neuroendocrinology first established the most basic behavioral, neuroanatomical, and neurophysiological characters of vocal-acoustic communication morphs in the plainfin midshipman fish, Porichthys notatus Girard. This foundation has led, in turn, to the repeated demonstration that neuro-behavioral mechanisms driving reproductive-related, vocal-acoustic behaviors can be uncoupled from gonadal state for two adult male phenotypes that follow alternative reproductive tactics (ARTs).
Collapse
Affiliation(s)
- Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
2
|
Vazquez JI, Gascue V, Quintana L, Migliaro A. Understanding daily rhythms in weakly electric fish: the role of melatonin on the electric behavior of Brachyhypopomus gauderio. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:7-18. [PMID: 37002418 DOI: 10.1007/s00359-023-01626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Living organisms display molecular, physiological and behavioral rhythms synchronized with natural environmental cycles. Understanding the interaction between environment, physiology and behavior requires taking into account the complexity of natural habitats and the diversity of behavioral and physiological adaptations. Brachyhypopomus gauderio is characterized by the emission of electric organ discharges (EOD), with a very stable rate modulated by social and environmental cues. The nocturnal arousal in B. gauderio coincides with a melatonin-dependent EOD rate increase. Here, we first show a daily cycle in both the EOD basal rate (EOD-BR) and EOD-BR variability of B. gauderio in nature. We approached the understanding of the role of melatonin in this natural behavior through both behavioral pharmacology and in vitro assays. We report, for the first time in gymnotiformes, a direct effect of melatonin on the pacemaker nucleus (PN) in in vitro preparation. Melatonin treatment lowered EOD-BR in freely moving fish and PN basal rate, while increasing the variability of both. These results show that melatonin plays a key role in modulating the electric behavior of B. gauderio through its effect on rate and variability, both of which must be under a tight temporal regulation to prepare the animal for the challenging nocturnal environment.
Collapse
Affiliation(s)
- Juan I Vazquez
- Dpto de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay
| | - Valentina Gascue
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Laura Quintana
- Dpto de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay
| | - Adriana Migliaro
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
3
|
Common evolutionary origin of acoustic communication in choanate vertebrates. Nat Commun 2022; 13:6089. [PMID: 36284092 PMCID: PMC9596459 DOI: 10.1038/s41467-022-33741-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Acoustic communication, broadly distributed along the vertebrate phylogeny, plays a fundamental role in parental care, mate attraction and various other behaviours. Despite its importance, comparatively less is known about the evolutionary roots of acoustic communication. Phylogenetic comparative analyses can provide insights into the deep time evolutionary origin of acoustic communication, but they are often plagued by missing data from key species. Here we present evidence for 53 species of four major clades (turtles, tuatara, caecilian and lungfish) in the form of vocal recordings and contextual behavioural information accompanying sound production. This and a broad literature-based dataset evidence acoustic abilities in several groups previously considered non-vocal. Critically, phylogenetic analyses encompassing 1800 species of choanate vertebrates reconstructs acoustic communication as a homologous trait, and suggests that it is at least as old as the last common ancestor of all choanate vertebrates, that lived approx. 407 million years before present.
Collapse
|
4
|
Wolff A, Berberian N, Golesorkhi M, Gomez-Pilar J, Zilio F, Northoff G. Intrinsic neural timescales: temporal integration and segregation. Trends Cogn Sci 2022; 26:159-173. [PMID: 34991988 DOI: 10.1016/j.tics.2021.11.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
Abstract
We are continuously bombarded by external inputs of various timescales from the environment. How does the brain process this multitude of timescales? Recent resting state studies show a hierarchy of intrinsic neural timescales (INT) with a shorter duration in unimodal regions (e.g., visual cortex and auditory cortex) and a longer duration in transmodal regions (e.g., default mode network). This unimodal-transmodal hierarchy is present across acquisition modalities [electroencephalogram (EEG)/magnetoencephalogram (MEG) and fMRI] and can be found in different species and during a variety of different task states. Together, this suggests that the hierarchy of INT is central to the temporal integration (combining successive stimuli) and segregation (separating successive stimuli) of external inputs from the environment, leading to temporal segmentation and prediction in perception and cognition.
Collapse
Affiliation(s)
- Annemarie Wolff
- Mind, Brain Imaging, and Neuroethics Research Unit, Institute of Mental Health Research, The Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Nareg Berberian
- Mind, Brain Imaging, and Neuroethics Research Unit, Institute of Mental Health Research, The Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Mehrshad Golesorkhi
- Mind, Brain Imaging, and Neuroethics Research Unit, Institute of Mental Health Research, The Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicia, (CIBER-BBN), Madrid, Spain
| | - Federico Zilio
- Department of Philosophy, Sociology, Education, and Applied Psychology, University of Padova, Padua, Italy
| | - Georg Northoff
- Mind, Brain Imaging, and Neuroethics Research Unit, Institute of Mental Health Research, The Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China; Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Golesorkhi M, Gomez-Pilar J, Zilio F, Berberian N, Wolff A, Yagoub MCE, Northoff G. The brain and its time: intrinsic neural timescales are key for input processing. Commun Biol 2021; 4:970. [PMID: 34400800 PMCID: PMC8368044 DOI: 10.1038/s42003-021-02483-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
We process and integrate multiple timescales into one meaningful whole. Recent evidence suggests that the brain displays a complex multiscale temporal organization. Different regions exhibit different timescales as described by the concept of intrinsic neural timescales (INT); however, their function and neural mechanisms remains unclear. We review recent literature on INT and propose that they are key for input processing. Specifically, they are shared across different species, i.e., input sharing. This suggests a role of INT in encoding inputs through matching the inputs' stochastics with the ongoing temporal statistics of the brain's neural activity, i.e., input encoding. Following simulation and empirical data, we point out input integration versus segregation and input sampling as key temporal mechanisms of input processing. This deeply grounds the brain within its environmental and evolutionary context. It carries major implications in understanding mental features and psychiatric disorders, as well as going beyond the brain in integrating timescales into artificial intelligence.
Collapse
Affiliation(s)
- Mehrshad Golesorkhi
- grid.28046.380000 0001 2182 2255School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada ,grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Javier Gomez-Pilar
- grid.5239.d0000 0001 2286 5329Biomedical Engineering Group, University of Valladolid, Valladolid, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Madrid, Spain
| | - Federico Zilio
- grid.5608.b0000 0004 1757 3470Department of Philosophy, Sociology, Education and Applied Psychology, University of Padova, Padua, Italy
| | - Nareg Berberian
- grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Annemarie Wolff
- grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Mustapha C. E. Yagoub
- grid.28046.380000 0001 2182 2255School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada
| | - Georg Northoff
- grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada ,grid.410595.c0000 0001 2230 9154Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China ,grid.13402.340000 0004 1759 700XMental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| |
Collapse
|
6
|
Chagnaud BP, Perelmuter JT, Forlano PM, Bass AH. Gap junction-mediated glycinergic inhibition ensures precise temporal patterning in vocal behavior. eLife 2021; 10:e59390. [PMID: 33721553 PMCID: PMC7963477 DOI: 10.7554/elife.59390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/28/2021] [Indexed: 01/30/2023] Open
Abstract
Precise neuronal firing is especially important for behaviors highly dependent on the correct sequencing and timing of muscle activity patterns, such as acoustic signaling. Acoustic signaling is an important communication modality for vertebrates, including many teleost fishes. Toadfishes are well known to exhibit high temporal fidelity in synchronous motoneuron firing within a hindbrain network directly determining the temporal structure of natural calls. Here, we investigated how these motoneurons maintain synchronous activation. We show that pronounced temporal precision in population-level motoneuronal firing depends on gap junction-mediated, glycinergic inhibition that generates a period of reduced probability of motoneuron activation. Super-resolution microscopy confirms glycinergic release sites formed by a subset of adjacent premotoneurons contacting motoneuron somata and dendrites. In aggregate, the evidence supports the hypothesis that gap junction-mediated, glycinergic inhibition provides a timing mechanism for achieving synchrony and temporal precision in the millisecond range for rapid modulation of acoustic waveforms.
Collapse
Affiliation(s)
| | | | - Paul M Forlano
- Department of Biology, Brooklyn College, City University of New YorkBrooklyn, NYUnited States
- Subprograms in Behavioral and Cognitive Neuroscience, Neuroscience, and Ecology, Evolutionary Biology and Behavior, The Graduate Center, City University of New YorkNew York, NYUnited States
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell UniversityIthaca, NYUnited States
| |
Collapse
|
7
|
Johnson ZV, Arrojwala MTS, Aljapur V, Lee T, Lancaster TJ, Lowder MC, Gu K, Stockert JI, Lecesne RL, Moorman JM, Streelman JT, McGrath PT. Automated measurement of long-term bower behaviors in Lake Malawi cichlids using depth sensing and action recognition. Sci Rep 2020; 10:20573. [PMID: 33239639 PMCID: PMC7688978 DOI: 10.1038/s41598-020-77549-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/12/2020] [Indexed: 11/08/2022] Open
Abstract
In the wild, behaviors are often expressed over long time periods in complex and dynamic environments, and many behaviors include direct interaction with the environment itself. However, measuring behavior in naturalistic settings is difficult, and this has limited progress in understanding the mechanisms underlying many naturally evolved behaviors that are critical for survival and reproduction. Here we describe an automated system for measuring long-term bower construction behaviors in Lake Malawi cichlid fishes, in which males use their mouths to sculpt sand into large species-specific structures for courtship and mating. We integrate two orthogonal methods, depth sensing and action recognition, to simultaneously track the developing bower structure and the thousands of individual sand manipulation behaviors performed throughout construction. By registering these two data streams, we show that behaviors can be topographically mapped onto a dynamic 3D sand surface through time. The system runs reliably in multiple species, across many aquariums simultaneously, and for up to weeks at a time. Using this system, we show strong differences in construction behavior and bower form that reflect species differences in nature, and we gain new insights into spatial, temporal, social dimensions of bower construction, feeding, and quivering behaviors. Taken together, our work highlights how low-cost tools can automatically quantify behavior in naturalistic and social environments over long timescales in the lab.
Collapse
Affiliation(s)
- Zachary V Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Vineeth Aljapur
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Tyrone Lee
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Tucker J Lancaster
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Mark C Lowder
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Karen Gu
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Joseph I Stockert
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Rachel L Lecesne
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jean M Moorman
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jeffrey T Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Patrick T McGrath
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Department of Computer Science, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
8
|
Long L, Johnson ZV, Li J, Lancaster TJ, Aljapur V, Streelman JT, McGrath PT. Automatic Classification of Cichlid Behaviors Using 3D Convolutional Residual Networks. iScience 2020; 23:101591. [PMID: 33083750 PMCID: PMC7553349 DOI: 10.1016/j.isci.2020.101591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
Many behaviors that are critical for survival and reproduction are expressed over extended time periods. The ability to inexpensively record and store large volumes of video data creates new opportunities to understand the biological basis of these behaviors and simultaneously creates a need for tools that can automatically quantify behaviors from large video datasets. Here, we demonstrate that 3D Residual Networks can be used to classify an array of complex behaviors in Lake Malawi cichlid fishes. We first apply pixel-based hidden Markov modeling combined with density-based spatiotemporal clustering to identify sand disturbance events. After this, a 3D ResNet, trained on 11,000 manually annotated video clips, accurately (>76%) classifies the sand disturbance events into 10 fish behavior categories, distinguishing between spitting, scooping, fin swipes, and spawning. Furthermore, animal intent can be determined from these clips, as spits and scoops performed during bower construction are classified independently from those during feeding.
Collapse
Affiliation(s)
- Lijiang Long
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Zachary V Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Junyu Li
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tucker J Lancaster
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Vineeth Aljapur
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jeffrey T Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Patrick T McGrath
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.,School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
9
|
Perelmuter JT, Wilson AB, Sisneros JA, Forlano PM. Forebrain Dopamine System Regulates Inner Ear Auditory Sensitivity to Socially Relevant Acoustic Signals. Curr Biol 2019; 29:2190-2198.e3. [PMID: 31204161 DOI: 10.1016/j.cub.2019.05.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/13/2019] [Accepted: 05/20/2019] [Indexed: 01/11/2023]
Abstract
Dopamine is integral to attentional and motivational processes, but studies are largely restricted to the central nervous system. In mammals [1, 2] and fishes [3, 4], central dopaminergic neurons project to the inner ear and could modulate acoustic signals at the earliest stages of processing. Studies in rodents show dopamine inhibits cochlear afferent neurons and protects against noise-induced acoustic injury [5-10]. However, other functions for inner ear dopamine have not been investigated, and the effect of dopamine on peripheral auditory processing in non-mammalians remains unknown [11, 12]. Insights could be gained by studies conducted in the context of intraspecific acoustic communication. We present evidence from a vocal fish linking reproductive-state-dependent changes in auditory sensitivity with seasonal changes in the dopaminergic efferent system in the saccule, their primary organ of hearing. Plainfin midshipman (Porichthys notatus) migrate from deep-water winter habitats to the intertidal zone in the summer to breed. Nesting males produce nocturnal vocalizations to attract females [13]. Both sexes undergo seasonal enhancement of hearing sensitivity at the level of the hair cell [14-16], increasing the likelihood of detecting conspecific signals [17, 18]. Importantly, reproductive females concurrently have reduced dopaminergic input to the saccule [19]. Here, we show that dopamine decreases saccule auditory sensitivity via a D2-like receptor. Saccule D2a receptor expression is reduced in the summer and correlates with sensitivity within and across seasons. We propose that reproductive-state-dependent changes to the dopaminergic efferent system provide a release of inhibition in the saccule, enhancing peripheral encoding of social-acoustic signals.
Collapse
Affiliation(s)
- Jonathan T Perelmuter
- Psychology Subprogram in Behavioral & Cognitive Neuroscience, The Graduate Center, City University of New York, 365 5(th) Avenue, New York, NY 10016, USA; Biology Department, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA.
| | - Anthony B Wilson
- Biology Department, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA; Biology Subprogram in Ecology, Evolutionary Biology and Behavior, The Graduate Center, City University of New York, 365 5(th) Avenue, New York, NY 10016, USA
| | - Joseph A Sisneros
- Psychology Department, University of Washington, Guthrie Hall, Seattle, WA 98195, USA
| | - Paul M Forlano
- Psychology Subprogram in Behavioral & Cognitive Neuroscience, The Graduate Center, City University of New York, 365 5(th) Avenue, New York, NY 10016, USA; Biology Department, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA; Biology Subprogram in Neuroscience, The Graduate Center, City University of New York, 365 5(th) Avenue, New York, NY 10016, USA; Biology Subprogram in Ecology, Evolutionary Biology and Behavior, The Graduate Center, City University of New York, 365 5(th) Avenue, New York, NY 10016, USA.
| |
Collapse
|
10
|
Feng NY, Marchaterre MA, Bass AH. Melatonin receptor expression in vocal, auditory, and neuroendocrine centers of a highly vocal fish, the plainfin midshipman (Porichthys notatus). J Comp Neurol 2019; 527:1362-1377. [PMID: 30620047 DOI: 10.1002/cne.24629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 11/07/2022]
Abstract
Melatonin plays a central role in entraining activity to the day-night cycle in vertebrates. Here, we investigate neuroanatomical substrates of melatonin-dependent vocal-acoustic behavior in the nocturnal and highly vocal teleost fish, the plainfin midshipman (Porichthys notatus). Using in situ hybridization (ISH) and quantitative real-time PCR (qPCR), we assess the mRNA distribution and transcript abundance of melatonin receptor subtype 1B (mel1b), shown to be important for vocalization in midshipman fish and songbirds. ISH shows robust mel1b expression in major nodes of the central vocal and auditory networks in the subpallium, preoptic area (POA), anterior hypothalamus, dorsal thalamus, posterior tuberculum, midbrain torus semicircularis and periaqueductal gray, and hindbrain. Mel1b label is also abundant in secondary targets of the olfactory, visual, and lateral line systems, as well as telencephalic regions that have been compared to the amygdala, extended amygdala, striatum, septum, and hippocampus of tetrapods. Q-PCR corroborates mel1b abundance throughout the brain and shows significant increases in the morning compared with nighttime in tissue samples inclusive of the telencephalon and POA, but remains stable in other brain regions. Plasma melatonin levels show expected increase at night. Our findings support the hypothesis that melatonin's stimulatory effects on vocal-acoustic mechanisms in midshipman is mediated, in part, by melatonin binding in vocal, auditory, and neuroendocrine centers. Together with robust mel1b expression in multiple telencephalic nuclei and sensory systems, the results further indicate an expression pattern comparable to that in birds and mammals that is indicative of melatonin's broad involvement in the modulation of physiology and behavior.
Collapse
Affiliation(s)
- Ni Y Feng
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | | | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York.,Bodega Marine Laboratory, University of California, Davis, Bodega Bay, California
| |
Collapse
|
11
|
McCann KE, Sinkiewicz DM, Rosenhauer AM, Beach LQ, Huhman KL. Transcriptomic Analysis Reveals Sex-Dependent Expression Patterns in the Basolateral Amygdala of Dominant and Subordinate Animals After Acute Social Conflict. Mol Neurobiol 2018; 56:3768-3779. [PMID: 30196395 DOI: 10.1007/s12035-018-1339-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/30/2018] [Indexed: 12/27/2022]
Abstract
The basolateral amygdala (BLA) is a critical nucleus mediating behavioral responses after exposure to acute social conflict. Male and female Syrian hamsters both readily establish a stable dominant-subordinate relationship among same-sex conspecifics, and the goal of the current study was to determine potential underlying genetic mechanisms in the BLA facilitating the establishment of social hierarchy. We sequenced the BLA transcriptomes of dominant, subordinate, and socially neutral males and females, and using de novo assembly techniques and gene network analyses, we compared these transcriptomes across social status within each sex. Our results revealed 499 transcripts that were differentially expressed in the BLA across both males and females and 138 distinct gene networks. Surprisingly, we found that there was virtually no overlap in the transcript changes or in gene network patterns in males and females of the same social status. These results suggest that, although males and females reliably engage in similar social behaviors to establish social dominance, the molecular mechanisms in the BLA by which these statuses are obtained and maintained are distinct.
Collapse
Affiliation(s)
- Katharine E McCann
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30303, USA
| | - David M Sinkiewicz
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30303, USA
| | - Anna M Rosenhauer
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30303, USA
| | - Linda Q Beach
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30303, USA
| | - Kim L Huhman
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30303, USA.
| |
Collapse
|
12
|
Pengra I, Marchaterre M, Bass A. FoxP2 Expression in a Highly Vocal Teleost Fish with Comparisons to Tetrapods. BRAIN, BEHAVIOR AND EVOLUTION 2018; 91:82-96. [DOI: 10.1159/000487793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/30/2018] [Indexed: 11/19/2022]
Abstract
Motivated by studies of speech deficits in humans, several studies over the past two decades have investigated the potential role of a forkhead domain transcription factor, FoxP2, in the central control of acoustic signaling/vocalization among vertebrates. Comparative neuroanatomical studies that mainly include mammalian and avian species have mapped the distribution of FoxP2 expression in multiple brain regions that imply a greater functional significance beyond vocalization that might be shared broadly across vertebrate lineages. To date, reports for teleost fish have been limited in number and scope to nonvocal species. Here, we map the neuroanatomical distribution of FoxP2 mRNA expression in a highly vocal teleost, the plainfin midshipman (Porichthys notatus). We report an extensive overlap between FoxP2 expression and vocal, auditory, and steroid-signaling systems with robust expression at multiple sites in the telencephalon, the preoptic area, the diencephalon, and the midbrain. Label was far more restricted in the hindbrain though robust in one region of the reticular formation. A comparison with other teleosts and tetrapods suggests an evolutionarily conserved FoxP2 phenotype important to vocal-acoustic and, more broadly, sensorimotor function among vertebrates.
Collapse
|
13
|
Rosner E, Rohmann KN, Bass AH, Chagnaud BP. Inhibitory and modulatory inputs to the vocal central pattern generator of a teleost fish. J Comp Neurol 2018; 526:1368-1388. [PMID: 29424431 PMCID: PMC5901028 DOI: 10.1002/cne.24411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 12/24/2022]
Abstract
Vocalization is a behavioral feature that is shared among multiple vertebrate lineages, including fish. The temporal patterning of vocal communication signals is set, in part, by central pattern generators (CPGs). Toadfishes are well-established models for CPG coding of vocalization at the hindbrain level. The vocal CPG comprises three topographically separate nuclei: pre-pacemaker, pacemaker, motor. While the connectivity between these nuclei is well understood, their neurochemical profile remains largely unexplored. The highly vocal Gulf toadfish, Opsanus beta, has been the subject of previous behavioral, neuroanatomical and neurophysiological studies. Combining transneuronal neurobiotin-labeling with immunohistochemistry, we map the distribution of inhibitory neurotransmitters and neuromodulators along with gap junctions in the vocal CPG of this species. Dense GABAergic and glycinergic label is found throughout the CPG, with labeled somata immediately adjacent to or within CPG nuclei, including a distinct subset of pacemaker neurons co-labeled with neurobiotin and glycine. Neurobiotin-labeled motor and pacemaker neurons are densely co-labeled with the gap junction protein connexin 35/36, supporting the hypothesis that transneuronal neurobiotin-labeling occurs, at least in part, via gap junction coupling. Serotonergic and catecholaminergic label is also robust within the entire vocal CPG, with additional cholinergic label in pacemaker and prepacemaker nuclei. Likely sources of these putative modulatory inputs are neurons within or immediately adjacent to vocal CPG neurons. Together with prior neurophysiological investigations, the results reveal potential mechanisms for generating multiple classes of social context-dependent vocalizations with widely divergent temporal and spectral properties.
Collapse
Affiliation(s)
- Elisabeth Rosner
- Department Biologie II, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152, Germany.,Graduate School of Systemic Neurosciences Munich, Planegg-Martinsried, 82152, Germany
| | - Kevin N Rohmann
- Department of Neurobiology and Behavior, W239/233 Mudd Hall Cornell University, Ithaca, New York, 14853
| | - Andrew H Bass
- Department of Neurobiology and Behavior, W239/233 Mudd Hall Cornell University, Ithaca, New York, 14853
| | - Boris P Chagnaud
- Department Biologie II, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
14
|
Smith GT, Proffitt MR, Smith AR, Rusch DB. Genes linked to species diversity in a sexually dimorphic communication signal in electric fish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:93-112. [PMID: 29058069 DOI: 10.1007/s00359-017-1223-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/17/2017] [Accepted: 09/25/2017] [Indexed: 02/06/2023]
Abstract
Sexually dimorphic behaviors are often regulated by androgens and estrogens. Steroid receptors and metabolism are control points for evolutionary changes in sexual dimorphism. Electric communication signals of South American knifefishes are a model for understanding the evolution and physiology of sexually dimorphic behavior. These signals are regulated by gonadal steroids and controlled by a simple neural circuit. Sexual dimorphism of the signals varies across species. We used transcriptomics to examine mechanisms for sex differences in electric organ discharges (EODs) of two closely related species, Apteronotus leptorhynchus and Apteronotus albifrons, with reversed sexual dimorphism in their EODs. The pacemaker nucleus (Pn), which controls EOD frequency (EODf), expressed transcripts for steroid receptors and metabolizing enzymes, including androgen receptors, estrogen receptors, aromatase, and 5α-reductase. The Pn expressed mRNA for ion channels likely to regulate the high-frequency activity of Pn neurons and for neuromodulator and neurotransmitter receptors that may regulate EOD modulations used in aggression and courtship. Expression of several ion channel genes, including those for Kir3.1 inward-rectifying potassium channels and sodium channel β1 subunits, was sex-biased or correlated with EODf in ways consistent with EODf sex differences. Our findings provide a basis for future studies to characterize neurogenomic mechanisms by which sex differences evolve.
Collapse
Affiliation(s)
- G Troy Smith
- Department of Biology, Indiana University, Jordan Hall, 1001 E. 3rd St., Bloomington, IN, 47405, USA. .,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA.
| | - Melissa R Proffitt
- Department of Biology, Indiana University, Jordan Hall, 1001 E. 3rd St., Bloomington, IN, 47405, USA.,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA
| | - Adam R Smith
- Department of Biology, Indiana University, Jordan Hall, 1001 E. 3rd St., Bloomington, IN, 47405, USA.,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA
| | - Douglas B Rusch
- Department of Biology, Indiana University, Jordan Hall, 1001 E. 3rd St., Bloomington, IN, 47405, USA.,Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
15
|
De novo assembly, annotation, and characterization of the whole brain transcriptome of male and female Syrian hamsters. Sci Rep 2017; 7:40472. [PMID: 28071753 PMCID: PMC5223125 DOI: 10.1038/srep40472] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/06/2016] [Indexed: 01/11/2023] Open
Abstract
Hamsters are an ideal animal model for a variety of biomedical research areas such as cancer, virology, circadian rhythms, and behavioural neuroscience. The use of hamsters has declined, however, most likely due to the dearth of genetic tools available for these animals. Our laboratory uses hamsters to study acute social stress, and we are beginning to investigate the genetic mechanisms subserving defeat-induced behavioural change. We have been limited, however, by the lack of genetic resources available for hamsters. In this study, we sequenced the brain transcriptome of male and female Syrian hamsters to generate the necessary resources to continue our research. We completed a de novo assembly and after assembly optimization, there were 113,329 transcripts representing 14,530 unique genes. This study is the first to characterize transcript expression in both female and male hamster brains and offers invaluable information to promote understanding of a host of important biomedical research questions for which hamsters are an excellent model.
Collapse
|
16
|
Nugent BM, Stiver KA, Alonzo SH, Hofmann HA. Neuroendocrine profiles associated with discrete behavioural variation in
Symphodus ocellatus
, a species with male alternative reproductive tactics. Mol Ecol 2016; 25:5212-5227. [DOI: 10.1111/mec.13828] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 08/15/2016] [Accepted: 08/23/2016] [Indexed: 12/21/2022]
Affiliation(s)
- B. M. Nugent
- Department of Ecology and Evolutionary Biology Yale University 165 Prospect St. New Haven CT 06520 USA
- Department of Integrative Biology Center for Computational Biology and Bioinformatics The University of Texas at Austin 2415 Speedway Austin TX 78712 USA
| | - K. A. Stiver
- Department of Ecology and Evolutionary Biology Yale University 165 Prospect St. New Haven CT 06520 USA
- Department of Psychology Southern Connecticut State University 501 Crescent St. New Haven CT 06515 USA
| | - S. H. Alonzo
- Department of Ecology and Evolutionary Biology Yale University 165 Prospect St. New Haven CT 06520 USA
- Department of Ecology and Evolutionary Biology University of California Santa Cruz 1156 High St. Santa Cruz CA 95064 USA
| | - H. A. Hofmann
- Department of Integrative Biology Center for Computational Biology and Bioinformatics The University of Texas at Austin 2415 Speedway Austin TX 78712 USA
| |
Collapse
|
17
|
Forlano PM, Maruska KP, Sisneros JA, Bass AH. Hormone-Dependent Plasticity of Auditory Systems in Fishes. HEARING AND HORMONES 2016. [DOI: 10.1007/978-3-319-26597-1_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Faber-Hammond J, Samanta MP, Whitchurch EA, Manning D, Sisneros JA, Coffin AB. Saccular Transcriptome Profiles of the Seasonal Breeding Plainfin Midshipman Fish (Porichthys notatus), a Teleost with Divergent Sexual Phenotypes. PLoS One 2015; 10:e0142814. [PMID: 26560106 PMCID: PMC4641692 DOI: 10.1371/journal.pone.0142814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/27/2015] [Indexed: 11/18/2022] Open
Abstract
Acoustic communication is essential for the reproductive success of the plainfin midshipman fish (Porichthys notatus). During the breeding season, type I males use acoustic cues to advertise nest location to potential mates, creating an audible signal that attracts reproductive females. Type II (sneaker) males also likely use this social acoustic signal to find breeding pairs from which to steal fertilizations. Estrogen-induced changes in the auditory system of breeding females are thought to enhance neural encoding of the advertisement call, and recent anatomical data suggest the saccule (the main auditory end organ) as one possible target for this seasonal modulation. Here we describe saccular transcriptomes from all three sexual phenotypes (females, type I and II males) collected during the breeding season as a first step in understanding the mechanisms underlying sexual phenotype-specific and seasonal differences in auditory function. We used RNA-Seq on the Ion Torrent platform to create a combined transcriptome dataset containing over 79,000 assembled transcripts representing almost 9,000 unique annotated genes. These identified genes include several with known inner ear function and multiple steroid hormone receptors. Transcripts most closely matched to published genomes of nile tilapia and large yellow croaker, inconsistent with the phylogenetic relationship between these species but consistent with the importance of acoustic communication in their life-history strategies. We then compared the RNA-Seq results from the saccules of reproductive females with a separate transcriptome from the non-reproductive female phenotype and found over 700 differentially expressed transcripts, including members of the Wnt and Notch signaling pathways that mediate cell proliferation and hair cell addition in the inner ear. These data constitute a valuable resource for furthering our understanding of the molecular basis for peripheral auditory function as well as a range of future midshipman and cross-species comparative studies of the auditory periphery.
Collapse
Affiliation(s)
- Joshua Faber-Hammond
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States of America
| | | | - Elizabeth A. Whitchurch
- Department of Biological Sciences, Humboldt State University, Arcata, CA, United States of America
| | - Dustin Manning
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States of America
| | - Joseph A. Sisneros
- Department of Psychology, University of Washington, Seattle, WA, United States of America
| | - Allison B. Coffin
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States of America
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, United States of America
- * E-mail:
| |
Collapse
|
19
|
Fergus DJ, Feng NY, Bass AH. Gene expression underlying enhanced, steroid-dependent auditory sensitivity of hair cell epithelium in a vocal fish. BMC Genomics 2015; 16:782. [PMID: 26466782 PMCID: PMC4607102 DOI: 10.1186/s12864-015-1940-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Successful animal communication depends on a receiver's ability to detect a sender's signal. Exemplars of adaptive sender-receiver coupling include acoustic communication, often important in the context of seasonal reproduction. During the reproductive summer season, both male and female midshipman fish (Porichthys notatus) exhibit similar increases in the steroid-dependent frequency sensitivity of the saccule, the main auditory division of the inner ear. This form of auditory plasticity enhances detection of the higher frequency components of the multi-harmonic, long-duration advertisement calls produced repetitively by males during summer nights of peak vocal and spawning activity. The molecular basis of this seasonal auditory plasticity has not been fully resolved. Here, we utilize an unbiased transcriptomic RNA sequencing approach to identify differentially expressed transcripts within the saccule's hair cell epithelium of reproductive summer and non-reproductive winter fish. RESULTS We assembled 74,027 unique transcripts from our saccular epithelial sequence reads. Of these, 6.4 % and 3.0 % were upregulated in the reproductive and non-reproductive saccular epithelium, respectively. Gene ontology (GO) term enrichment analyses of the differentially expressed transcripts showed that the reproductive saccular epithelium was transcriptionally, translationally, and metabolically more active than the non-reproductive epithelium. Furthermore, the expression of a specific suite of candidate genes, including ion channels and components of steroid-signaling pathways, was upregulated in the reproductive compared to the non-reproductive saccular epithelium. We found reported auditory functions for 14 candidate genes upregulated in the reproductive midshipman saccular epithelium, 8 of which are enriched in mouse hair cells, validating their hair cell-specific functions across vertebrates. CONCLUSIONS We identified a suite of differentially expressed genes belonging to neurotransmission and steroid-signaling pathways, consistent with previous work showing the importance of these characters in regulating hair cell auditory sensitivity in midshipman fish and, more broadly, vertebrates. The results were also consistent with auditory hair cells being generally more physiologically active when animals are in a reproductive state, a time of enhanced sensory-motor coupling between the auditory periphery and the upper harmonics of vocalizations. Together with several new candidate genes, our results identify discrete patterns of gene expression linked to frequency- and steroid-dependent plasticity of hair cell auditory sensitivity.
Collapse
Affiliation(s)
- Daniel J Fergus
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA. .,Current Address: North Carolina Museum of Natural Sciences, Genomics and Microbiology, Raleigh, NC, 27601, USA.
| | - Ni Y Feng
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
20
|
Ghahramani ZN, Timothy M, Kaur G, Gorbonosov M, Chernenko A, Forlano PM. Catecholaminergic Fiber Innervation of the Vocal Motor System Is Intrasexually Dimorphic in a Teleost with Alternative Reproductive Tactics. BRAIN, BEHAVIOR AND EVOLUTION 2015; 86:131-44. [PMID: 26355302 DOI: 10.1159/000438720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/13/2015] [Indexed: 01/10/2023]
Abstract
Catecholamines, which include the neurotransmitters dopamine and noradrenaline, are known modulators of sensorimotor function, reproduction, and sexually motivated behaviors across vertebrates, including vocal-acoustic communication. Recently, we demonstrated robust catecholaminergic (CA) innervation throughout the vocal motor system in the plainfin midshipman fish Porichthys notatus, a seasonal breeding marine teleost that produces vocal signals for social communication. There are 2 distinct male reproductive morphs in this species: type I males establish nests and court females with a long-duration advertisement call, while type II males sneak spawn to steal fertilizations from type I males. Like females, type II males can only produce brief, agonistic, grunt type vocalizations. Here, we tested the hypothesis that intrasexual differences in the number of CA neurons and their fiber innervation patterns throughout the vocal motor pathway may provide neural substrates underlying divergence in reproductive behavior between morphs. We employed immunofluorescence (-ir) histochemistry to measure tyrosine hydroxylase (TH; a rate-limiting enzyme in catecholamine synthesis) neuron numbers in several forebrain and hindbrain nuclei as well as TH-ir fiber innervation throughout the vocal pathway in type I and type II males collected from nests during the summer reproductive season. After controlling for differences in body size, only one group of CA neurons displayed an unequivocal difference between male morphs: the extraventricular vagal-associated TH-ir neurons, located just lateral to the dimorphic vocal motor nucleus (VMN), were significantly greater in number in type II males. In addition, type II males exhibited greater TH-ir fiber density within the VMN and greater numbers of TH-ir varicosities with putative contacts on vocal motor neurons. This strong inverse relationship between the predominant vocal morphotype and the CA innervation of vocal motor neurons suggests that catecholamines may function to inhibit vocal output in midshipman. These findings support catecholamines as direct modulators of vocal behavior, and differential CA input appears reflective of social and reproductive behavioral divergence between male midshipman morphs.
Collapse
|
21
|
Albersheim-Carter J, Blubaum A, Ballagh IH, Missaghi K, Siuda ER, McMurray G, Bass AH, Dubuc R, Kelley DB, Schmidt MF, Wilson RJA, Gray PA. Testing the evolutionary conservation of vocal motoneurons in vertebrates. Respir Physiol Neurobiol 2015; 224:2-10. [PMID: 26160673 DOI: 10.1016/j.resp.2015.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/23/2015] [Accepted: 06/29/2015] [Indexed: 11/15/2022]
Abstract
Medullary motoneurons drive vocalization in many vertebrate lineages including fish, amphibians, birds, and mammals. The developmental history of vocal motoneuron populations in each of these lineages remains largely unknown. The highly conserved transcription factor Paired-like Homeobox 2b (Phox2b) is presumed to be expressed in all vertebrate hindbrain branchial motoneurons, including laryngeal motoneurons essential for vocalization in humans. We used immunohistochemistry and in situ hybridization to examine Phox2b protein and mRNA expression in caudal hindbrain and rostral spinal cord motoneuron populations in seven species across five chordate classes. Phox2b was present in motoneurons dedicated to sound production in mice and frogs (bullfrog, African clawed frog), but not those in bird (zebra finch) or bony fish (midshipman, channel catfish). Overall, the pattern of caudal medullary motoneuron Phox2b expression was conserved across vertebrates and similar to expression in sea lamprey. These observations suggest that motoneurons dedicated to sound production in vertebrates are not derived from a single developmentally or evolutionarily conserved progenitor pool.
Collapse
Affiliation(s)
- Jacob Albersheim-Carter
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aleksandar Blubaum
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Irene H Ballagh
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Kianoush Missaghi
- Department of Exercise Science, Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada; Department of Neuroscience, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Edward R Siuda
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - George McMurray
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Réjean Dubuc
- Department of Exercise Science, Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada; Department of Neuroscience, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Darcy B Kelley
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Marc F Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard J A Wilson
- Hotchkiss Brain Institute and ACH Research Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Paul A Gray
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|