1
|
El-Samad LM, El-Ashram S, Kheirallah DA, Abdul-Aziz KK, Toto NA, Mokhamer EHM. Relative gene expression, micronuclei formation, and ultrastructure alterations induced by heavy metal contamination in Pimelia latreillei (Coleoptera: Tenebrionidae) in an urban-industrial area of Alexandria, Egypt. PLoS One 2021; 16:e0253238. [PMID: 34161380 PMCID: PMC8221511 DOI: 10.1371/journal.pone.0253238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/29/2021] [Indexed: 11/23/2022] Open
Abstract
The present research aims to evaluate the impact of industrial processes and anthropogenic activities on the beetle Pimelia latreillei inhabiting the polluted site at Zawya Abd El- Qader, Alexandria, Egypt. Beetles were collected from the vicinity of five factories. The genotoxic effects of environmental exposures to industrial heavy metals were monitored using a broad range of assays, including energy-dispersive X ray microanalysis and X-ray diffraction (SEM and EDX)), qRT-PCR gene expression assay, micronuclei formation, and transmission electron microscope (TEM). Energy dispersive X-ray microanalysis for the soil and testicular tissues of beetles collected from the polluted site revealed a higher percentage of heavy metals than the beetles collected from the reference site (Sidi Kirier, Alexandria, Egypt). To analyze/monitor genotoxicity in P. latreillei sampled from the polluted site, the transcription levels of levels of heat shock proteins (Hsps) and accessory gland seminal fluid protein (AcPC01) in testicular tissues were recorded. The incidence of micronuclei (MN) formation in the testicular cells was also observed. Quantitative RT-PCR (RT-qPCR) analysis was carried out to detect the changes in the gene expression of the aforementioned proteins. Genes encoding heat shock proteins (Hsp60, Hsp70, and Hsp90) were significantly overexpressed (> 2-fold) in specimens sampled from the polluted site; however, AcPC01 gene expression was under-expressed (<1.5-folds). The incidence of MN was significantly increased in specimens sampled from the polluted site. Ultrastructure anomalies (nuclear and cytoplasmic disruption) were also observed in the testicular cells of the beetles sampled from the polluted site compared to those sampled from the unpolluted site. Our results, therefore, advocate a need for adequate measures to reduce increasing environmental pollution in the urban-industrial areas.
Collapse
Affiliation(s)
- Lamia M. El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
- Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Dalia A. Kheirallah
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Karolin K. Abdul-Aziz
- Department of Zoology, Faculty of Science, Damanhour University, El Beheira, Damanhour, Egypt
| | - Noura A. Toto
- Department of Zoology, Faculty of Science, Damanhour University, El Beheira, Damanhour, Egypt
| | - El Hassan M. Mokhamer
- Department of Zoology, Faculty of Science, Damanhour University, El Beheira, Damanhour, Egypt
| |
Collapse
|
2
|
Kheirallah DAM, Ali AM, Osman SE, Shouman AM. Nickel oxide nanoparticles induce genotoxicity and cellular alterations in the ground beetle Blaps polycresta (Coleoptera: Tenebrionidae). Toxicol Ind Health 2021; 37:408-430. [PMID: 34085874 DOI: 10.1177/07482337211000988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nickel nanoparticles (Ni-NPs) have advantageous applications in the industry; however, little is known of their adverse effects on biological tissues. In the present study, the ground beetle Blaps polycresta was employed as a sensitive indicator for nickel oxide nanoparticles (NiO-NPs) toxicity. Adult male beetles were injected with six dose levels of NiO-NPs (0.01, 0.02, 0.03, 0.04, 0.05, and 0.06 mg/g body weight). Mortality was reported daily over 30 days under laboratory conditions to establish an LD50. Nickel was detected in the testicular tissues of the beetles using X-ray analysis and transmission electronic microscopy. Beetles treated with the sublethal dose of 0.02 mg/g were selected to observe molecular, cellular, and subcellular changes. Gene transcripts of HSP70, HSP90, and MT1 were found to be increased >2.5-, 1.5-, and 2-fold, respectively, in the treated group compared with the controls. Decreased gene expression of AcPC01, AcPC02, and AcPC04 (≤1.5-, ≤2-, and < 2.5-fold, respectively, vs. controls) also were reported in the treated group. Under light microscopy, various structural changes were observed in the testicular tissues of the treated beetles. Ultrastructure observations using scanning and transmission electron microscopy showed severe damage to the subcellular organelles as well as deformities of the heads and flagella of the spermatozoa. Therefore, the present study postulated the impact of NiO-NPs in an ecological model.
Collapse
Affiliation(s)
| | - Awatef Mohamed Ali
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Salah Eldein Osman
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Amal Mohamed Shouman
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
García-Reina A, Rodríguez-García MJ, Galián J. Validation of reference genes for quantitative real-time PCR in tiger beetles across sexes, body parts, sexual maturity and immune challenge. Sci Rep 2018; 8:10743. [PMID: 30013149 PMCID: PMC6048105 DOI: 10.1038/s41598-018-28978-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 07/03/2018] [Indexed: 11/17/2022] Open
Abstract
Reference genes are frequently used as normalizers for expression studies despite not being previously verified to present suitable stabilities. Considering the interest that tiger beetles have generated in the past years, resulting in a variety of studies, it is crucial to dispose of a validated reference gene panel for expression studies. Nine candidate genes were tested in Cicindela campestris and Calomera littoralis across several conditions and their transcription levels were assessed with geNorm, NormFinder, BestKeeper and ΔCTmethod algorithms. Results showed high stabilities across sexes, immune challenge and gonad developmental stages for all genes tested, while body parts comparison presented less constant expression values. Only two genes are sufficient to perform a proper normalization for most of the conditions tested, except for the body parts comparison in C. littoralis, which requires the use of at least three reference genes. On the whole, no universal gene is found to be suitable for all situations, but according to the acceptable range of values, NADH, B-t, Vatpase and ArgKin seem to present the most constant expression stability, indicating their suitability as reference genes in most of the conditions. This is the first report evaluating the stability of housekeeping genes in adephagan beetles.
Collapse
Affiliation(s)
- Andrés García-Reina
- University of Murcia, Department of Zoology and Physical Anthropology, Faculty of Veterinary, Campus Mare Nostrum, E-30100, Murcia, Spain.
| | - María Juliana Rodríguez-García
- University of Murcia, Department of Zoology and Physical Anthropology, Faculty of Veterinary, Campus Mare Nostrum, E-30100, Murcia, Spain
| | - José Galián
- University of Murcia, Department of Zoology and Physical Anthropology, Faculty of Veterinary, Campus Mare Nostrum, E-30100, Murcia, Spain
| |
Collapse
|
4
|
Weber M, Wunderer J, Lengerer B, Pjeta R, Rodrigues M, Schärer L, Ladurner P, Ramm SA. A targeted in situ hybridization screen identifies putative seminal fluid proteins in a simultaneously hermaphroditic flatworm. BMC Evol Biol 2018; 18:81. [PMID: 29848299 PMCID: PMC5977470 DOI: 10.1186/s12862-018-1187-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/30/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Along with sperm, in many taxa ejaculates also contain large numbers of seminal fluid proteins (SFPs). SFPs and sperm are transferred to the mating partner, where they are thought to play key roles in mediating post-mating sexual selection. They modulate the partner's behavior and physiology in ways that influence the reproductive success of both partners, thus potentially leading to sexual conflict. Despite the presumed general functional and evolutionary significance of SFPs, their identification and characterization has to date focused on just a few animal groups, predominantly insects and mammals. Moreover, until now seminal fluid profiling has mainly focused on species with separate sexes. Here we report a comprehensive screen for putative SFPs in the simultaneously hermaphroditic flatworm Macrostomum lignano. RESULTS Based on existing transcriptomic data, we selected 150 transcripts known to be (a) predominantly expressed in the tail region of the worms, where the seminal fluid-producing prostate gland cells are located, and (b) differentially expressed in social environments differing in sperm competition level, strongly implying that they represent a phenotypically plastic aspect of male reproductive allocation in this species. For these SFP candidates, we then performed whole-mount in situ hybridization (ISH) experiments to characterize tissue-specific expression. In total, we identified 98 transcripts that exhibited prostate-specific expression, 76 of which we found to be expressed exclusively in the prostate gland cells; additional sites of expression for the remaining 22 included the testis or other gland cells. Bioinformatics analyses of the prostate-limited candidates revealed that at least 64 are predicted to be secretory proteins, making these especially strong candidates to be SFPs that are transferred during copulation. CONCLUSIONS Our study represents a first comprehensive analysis using a combination of transcriptomic and ISH screen data to identify SFPs based on transcript expression in seminal fluid-producing tissues. We thereby extend the range of taxa for which seminal fluid has been characterized to a flatworm species with a sequenced genome and for which several methods such as antibody staining, transgenesis and RNA interference have been established. Our data provide a basis for testing the functional and evolutionary significance of SFPs.
Collapse
Affiliation(s)
- Michael Weber
- Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - Julia Wunderer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Birgit Lengerer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Robert Pjeta
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Marcelo Rodrigues
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
- Current address: School of Natural and Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne, England NE1 7RU UK
| | - Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Steven A. Ramm
- Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| |
Collapse
|
5
|
Characterisation and expression analysis of UBC9 and UBS27 genes in developing gonads of cicindelids (Coleoptera: Cicindelidae). Comp Biochem Physiol B Biochem Mol Biol 2016; 202:75-82. [PMID: 27524263 DOI: 10.1016/j.cbpb.2016.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 08/03/2016] [Accepted: 08/09/2016] [Indexed: 11/22/2022]
Abstract
Ubiquitin and small ubiquitin-like modifiers (SUMO) are post-translational modifiers essential in a variety of cellular processes, including gametogenesis. SUMO-conjugating enzyme (UBC9) and the ubiquitin ribosomal fusion protein UBS27 have been characterised in several model species. However, their expression in coleopteran remains unstudied. In this study, UBC9 and UBS27 genes have been characterised in the tiger beetle Cicindela campestris for the first time. Bioinformatic analysis showed that the Cc-UBC9 gene encoded a 159 amino acid protein with a predicted molecular weight of 18.18kDa, and the Cc-UBS27 gene encoded a 156 amino acid protein with a predicted molecular weight of 17.71kDa. Selection analyses carried out in several cicindelid species revealed that both genes were affected by purifying selection. Real time quantitative PCR analysis demonstrated that Cc-UBC9 and Cc-UBS27 were expressed in different tissues. The highest expression on both genes was found in the ovary and testis, and there were differential expression levels between immature and mature stages of testis development. The expression patterns of Cc-UBC9 and Cc-UBS27 suggest that these genes play important roles in gametogenesis in C. campestris. This information is relevant to better understand the reproductive process in cicindelids and the function of ubiquitin and small ubiquitin-related modifier genes in the Coleoptera.
Collapse
|
6
|
Rodríguez-García MJ, García-Reina A, Machado V, Galián J. Identification, structural characterisation and expression analysis of a defensin gene from the tiger beetle Calomera littoralis (Coleoptera: Cicindelidae). Gene 2016; 589:56-62. [PMID: 27210512 DOI: 10.1016/j.gene.2016.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/22/2016] [Accepted: 05/18/2016] [Indexed: 12/22/2022]
Abstract
In this study, a defensin gene (Clit-Def) has been characterised in the tiger beetle Calomera littoralis for the first time. Bioinformatic analysis showed that the gene has an open reading frame of 246bp that contains a 46 amino acid mature peptide. The phylogenetic analysis showed a high variability in the coleopteran defensins analysed. The Clit-Def mature peptide has the features to be involved in the antimicrobial function: a predicted cationic isoelectric point of 8.94, six cysteine residues that form three disulfide bonds, and the typical cysteine-stabilized α-helix β-sheet (CSαβ) structural fold. Real time quantitative PCR analysis showed that Clit-Def was upregulated in the different body parts analysed after infection with lipopolysaccharides of Escherichia coli, and also indicated that has an expression peak at 12h post infection. The expression patterns of Clit-Def suggest that this gene plays important roles in the humoral system in the adephagan beetle Calomera littoralis.
Collapse
Affiliation(s)
- María Juliana Rodríguez-García
- University of Murcia, Department of Zoology and Physical Anthropology, Faculty of Veterinary, Campus Mare Nostrum, E-30100 Murcia, Spain.
| | - Andrés García-Reina
- University of Murcia, Department of Zoology and Physical Anthropology, Faculty of Veterinary, Campus Mare Nostrum, E-30100 Murcia, Spain
| | - Vilmar Machado
- University of Murcia, Department of Zoology and Physical Anthropology, Faculty of Veterinary, Campus Mare Nostrum, E-30100 Murcia, Spain
| | - José Galián
- University of Murcia, Department of Zoology and Physical Anthropology, Faculty of Veterinary, Campus Mare Nostrum, E-30100 Murcia, Spain
| |
Collapse
|