1
|
Parisot N, Ribeiro Lopes M, Peignier S, Baa-Puyoulet P, Charles H, Calevro F, Callaerts P. Annotation of transcription factors, chromatin-associated factors, and basal transcription machinery in the pea aphid, Acyrthosiphon pisum, and development of the ATFdb database, a resource for studies of transcriptional regulation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104217. [PMID: 39579797 DOI: 10.1016/j.ibmb.2024.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/15/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
The pea aphid, Acyrthosiphon pisum, is an emerging model system in functional and comparative genomics, in part due to the availability of new genomic approaches and the different sequencing and annotation efforts that the community has dedicated to this important crop pest insect. The pea aphid is also used as a model to study fascinating biological traits of aphids, such as their extensive polyphenisms, their bacteriocyte-confined nutritional symbiosis, or their adaptation to the highly unbalanced diet represented by phloem sap. To get insights into the molecular basis of all these processes, it is important to have an appropriate annotation of transcription factors (TFs), which would enable the reconstruction/inference of gene regulatory networks in aphids. Using the latest version of the A. pisum genome assembly and annotation, which represents the first chromosome-level pea aphid genome, we annotated the complete repertoire of A. pisum TFs and complemented this information by annotating genes encoding chromatin-associated and basal transcription machinery proteins. These annotations were done combining information from the model Drosophila melanogaster, for which we also provide a revisited list of these proteins, and de novo prediction. The comparison between the two model systems allowed the identification of major losses or expansions in each genome, while a deeper analysis was made of ZNF TFs (with certain families expanded in the pea aphid), and the Hox gene cluster (showing reorganization in gene position in the pea aphid compared to D. melanogaster). All annotations are available to the community through the Aphid Transcription Factors database (ATFdb), consolidating the various annotations we generated. ATFdb serves as a valuable resource for gene regulation studies in aphids.
Collapse
Affiliation(s)
- Nicolas Parisot
- INSA Lyon, INRAE, BF2I, UMR0203, F-69621, Villeurbanne, France.
| | | | - Sergio Peignier
- INSA Lyon, INRAE, BF2I, UMR0203, F-69621, Villeurbanne, France
| | | | - Hubert Charles
- INSA Lyon, INRAE, BF2I, UMR0203, F-69621, Villeurbanne, France
| | | | - Patrick Callaerts
- KU Leuven, University of Leuven, Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, B-3000, Leuven, Belgium.
| |
Collapse
|
2
|
Stuart SH, Ahmed ACC, Kilikevicius L, Robinson GE. Effects of microRNA-305 knockdown on brain gene expression associated with division of labor in honey bee colonies (Apis mellifera). J Exp Biol 2024; 227:jeb246785. [PMID: 38517067 PMCID: PMC11112348 DOI: 10.1242/jeb.246785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Division of labor in honey bee colonies is based on the behavioral maturation of adult workers that involves a transition from working in the hive to foraging. This behavioral maturation is associated with distinct task-related transcriptomic profiles in the brain and abdominal fat body that are related to multiple regulatory factors including juvenile hormone (JH) and queen mandibular pheromone (QMP). A prominent physiological feature associated with behavioral maturation is a loss of abdominal lipid mass as bees transition to foraging. We used transcriptomic and physiological analyses to study whether microRNAs (miRNAs) are involved in the regulation of division of labor. We first identified two miRNAs that showed patterns of expression associated with behavioral maturation, ame-miR-305-5p and ame-miR-375-3p. We then downregulated the expression of these two miRNAs with sequence-specific antagomirs. Neither ame-miR-305-5p nor ame-miR-375-3p knockdown in the abdomen affected abdominal lipid mass on their own. Similarly, knockdown of ame-miR-305-5p in combination with JH or QMP also did not affect lipid mass. By contrast, ame-miR-305-5p knockdown in the abdomen caused substantial changes in gene expression in the brain. Brain gene expression changes included genes encoding transcription factors previously implicated in behavioral maturation. The results of these functional genomic experiments extend previous correlative associations of microRNAs with honey bee division of labor and point to specific roles for ame-miR-305-5p.
Collapse
Affiliation(s)
- Sarai H. Stuart
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Amy C. Cash Ahmed
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Laura Kilikevicius
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Gene E. Robinson
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Chen Y, Li H, Yi TC, Shen J, Zhang J. Notch Signaling in Insect Development: A Simple Pathway with Diverse Functions. Int J Mol Sci 2023; 24:14028. [PMID: 37762331 PMCID: PMC10530718 DOI: 10.3390/ijms241814028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Notch signaling is an evolutionarily conserved pathway which functions between adjacent cells to establish their distinct identities. Despite operating in a simple mechanism, Notch signaling plays remarkably diverse roles in development to regulate cell fate determination, organ growth and tissue patterning. While initially discovered and characterized in the model insect Drosophila melanogaster, recent studies across various insect species have revealed the broad involvement of Notch signaling in shaping insect tissues. This review focuses on providing a comprehensive picture regarding the roles of the Notch pathway in insect development. The roles of Notch in the formation and patterning of the insect embryo, wing, leg, ovary and several specific structures, as well as in physiological responses, are summarized. These results are discussed within the developmental context, aiming to deepen our understanding of the diversified functions of the Notch signaling pathway in different insect species.
Collapse
Affiliation(s)
- Yao Chen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Haomiao Li
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Tian-Ci Yi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Junzheng Zhang
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| |
Collapse
|
4
|
Feng M, Swevers L, Sun J. Hemocyte Clusters Defined by scRNA-Seq in Bombyx mori: In Silico Analysis of Predicted Marker Genes and Implications for Potential Functional Roles. Front Immunol 2022; 13:852702. [PMID: 35281044 PMCID: PMC8914287 DOI: 10.3389/fimmu.2022.852702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Within the hemolymph, insect hemocytes constitute a heterogeneous population of macrophage-like cells that play important roles in innate immunity, homeostasis and development. Classification of hemocytes in different subtypes by size, morphology and biochemical or immunological markers has been difficult and only in Drosophila extensive genetic analysis allowed the construction of a coherent picture of hemocyte differentiation from pro-hemocytes to granulocytes, crystal cells and plasmatocytes. However, the advent of high-throughput single cell technologies, such as single cell RNA sequencing (scRNA-seq), is bound to have a high impact on the study of hemocytes subtypes and their phenotypes in other insects for which a sophisticated genetic toolbox is not available. Instead of averaging gene expression across all cells as occurs in bulk-RNA-seq, scRNA-seq allows high-throughput and specific visualization of the differentiation status of individual cells. With scRNA-seq, interesting cell types can be identified in heterogeneous populations and direct analysis of rare cell types is possible. Next to its ability to profile the transcriptomes of individual cells in tissue samples, scRNA-seq can be used to propose marker genes that are characteristic of different hemocyte subtypes and predict their functions. In this perspective, the identities of the different marker genes that were identified by scRNA-seq analysis to define 13 distinct cell clusters of hemocytes in larvae of the silkworm, Bombyx mori, are discussed in detail. The analysis confirms the broad division of hemocytes in granulocytes, plasmatocytes, oenocytoids and perhaps spherulocytes but also reveals considerable complexity at the molecular level and highly specialized functions. In addition, predicted hemocyte marker genes in Bombyx generally show only limited convergence with the genes that are considered characteristic for hemocyte subtypes in Drosophila.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Ranz JM, González PM, Su RN, Bedford SJ, Abreu-Goodger C, Markow T. Multiscale analysis of the randomization limits of the chromosomal gene organization between Lepidoptera and Diptera. Proc Biol Sci 2022; 289:20212183. [PMID: 35042416 PMCID: PMC8767184 DOI: 10.1098/rspb.2021.2183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/13/2021] [Indexed: 11/12/2022] Open
Abstract
How chromosome gene organization and gene content evolve among distantly related and structurally malleable genomes remains unresolved. This is particularly the case when considering different insect orders. We have compared the highly contiguous genome assemblies of the lepidopteran Danaus plexippus and the dipteran Drosophila melanogaster, which shared a common ancestor around 290 Ma. The gene content of 23 out of 30 D. plexippus chromosomes was significantly associated with one or two of the six chromosomal elements of the Drosophila genome, denoting common ancestry. Despite the phylogenetic distance, 9.6% of the 1-to-1 orthologues still reside within the same ancestral genome neighbourhood. Furthermore, the comparison D. plexippus-Bombyx mori indicated that the rates of chromosome repatterning are lower in Lepidoptera than in Diptera, although still within the same order of magnitude. Concordantly, 14 developmental gene clusters showed a higher tendency to retain full or partial clustering in D. plexippus, further supporting that the physical association between the SuperHox and NK clusters existed in the ancestral bilaterian. Our results illuminate the scope and limits of the evolution of the gene organization and content of the ancestral chromosomes to the Lepidoptera and Diptera while helping reconstruct portions of the genome in their most recent common ancestor.
Collapse
Affiliation(s)
- José M. Ranz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine CA 92647, USA
| | - Pablo M. González
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato GTO 36824, México
| | - Ryan N. Su
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine CA 92647, USA
| | - Sarah J. Bedford
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine CA 92647, USA
| | - Cei Abreu-Goodger
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato GTO 36824, México
| | - Therese Markow
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato GTO 36824, México
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Leask M, Lovegrove M, Walker A, Duncan E, Dearden P. Evolution and genomic organization of the insect sHSP gene cluster and coordinate regulation in phenotypic plasticity. BMC Ecol Evol 2021; 21:154. [PMID: 34348652 PMCID: PMC8336396 DOI: 10.1186/s12862-021-01885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/28/2021] [Indexed: 11/10/2022] Open
Abstract
Background Conserved syntenic gene complexes are rare in Arthropods and likely only retained due to functional constraint. Numerous sHSPs have been identified in the genomes of insects, some of which are located clustered in close proximity. Previous phylogenetic analyses of these clustered sHSP have been limited to a small number of holometabolous insect species and have not determined the pattern of evolution of the clustered sHSP genes (sHSP-C) in insect or Arthropod lineages. Results Using eight genomes from representative insect orders and three non-insect arthropod genomes we have identified that a syntenic cluster of sHSPs (sHSP-C) is a hallmark of most Arthropod genomes. Using 11 genomes from Hymenopteran species our phylogenetic analyses have refined the evolution of the sHSP-C in Hymenoptera and found that the sHSP-C is order-specific with evidence of birth-and-death evolution in the hymenopteran lineage. Finally we have shown that the honeybee sHSP-C is co-ordinately expressed and is marked by genomic features, including H3K27me3 histone marks consistent with coordinate regulation, during honeybee ovary activation. Conclusions The syntenic sHSP-C is present in most insect genomes, and its conserved coordinate expression and regulation implies that it is an integral genomic component of environmental response in arthropods. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01885-8.
Collapse
Affiliation(s)
- Megan Leask
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| | - Mackenzie Lovegrove
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.,Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Abigail Walker
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Elizabeth Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter Dearden
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.,Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Greenhalgh R, Dermauw W, Glas JJ, Rombauts S, Wybouw N, Thomas J, Alba JM, Pritham EJ, Legarrea S, Feyereisen R, Van de Peer Y, Van Leeuwen T, Clark RM, Kant MR. Genome streamlining in a minute herbivore that manipulates its host plant. eLife 2020; 9:56689. [PMID: 33095158 PMCID: PMC7738191 DOI: 10.7554/elife.56689] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The tomato russet mite, Aculops lycopersici, is among the smallest animals on earth. It is a worldwide pest on tomato and can potently suppress the host's natural resistance. We sequenced its genome, the first of an eriophyoid, and explored whether there are genomic features associated with the mite's minute size and lifestyle. At only 32.5 Mb, the genome is the smallest yet reported for any arthropod and, reminiscent of microbial eukaryotes, exceptionally streamlined. It has few transposable elements, tiny intergenic regions, and is remarkably intron-poor, as more than 80% of coding genes are intronless. Furthermore, in accordance with ecological specialization theory, this defense-suppressing herbivore has extremely reduced environmental response gene families such as those involved in chemoreception and detoxification. Other losses associate with this species' highly derived body plan. Our findings accelerate the understanding of evolutionary forces underpinning metazoan life at the limits of small physical and genome size.
Collapse
Affiliation(s)
- Robert Greenhalgh
- School of Biological Sciences, University of Utah, Salt Lake City, United States
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Joris J Glas
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Nicky Wybouw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jainy Thomas
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Juan M Alba
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Ellen J Pritham
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Saioa Legarrea
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - René Feyereisen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Richard M Clark
- School of Biological Sciences, University of Utah, Salt Lake City, United States.,Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, United States
| | - Merijn R Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Wu C, Jordan MD, Newcomb RD, Gemmell NJ, Bank S, Meusemann K, Dearden PK, Duncan EJ, Grosser S, Rutherford K, Gardner PP, Crowhurst RN, Steinwender B, Tooman LK, Stevens MI, Buckley TR. Analysis of the genome of the New Zealand giant collembolan (Holacanthella duospinosa) sheds light on hexapod evolution. BMC Genomics 2017; 18:795. [PMID: 29041914 PMCID: PMC5644144 DOI: 10.1186/s12864-017-4197-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/08/2017] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The New Zealand collembolan genus Holacanthella contains the largest species of springtails (Collembola) in the world. Using Illumina technology we have sequenced and assembled a draft genome and transcriptome from Holacanthella duospinosa (Salmon). We have used this annotated assembly to investigate the genetic basis of a range of traits critical to the evolution of the Hexapoda, the phylogenetic position of H. duospinosa and potential horizontal gene transfer events. RESULTS Our genome assembly was ~375 Mbp in size with a scaffold N50 of ~230 Kbp and sequencing coverage of ~180×. DNA elements, LTRs and simple repeats and LINEs formed the largest components and SINEs were very rare. Phylogenomics (370,877 amino acids) placed H. duospinosa within the Neanuridae. We recovered orthologs of the conserved sex determination genes thought to play a role in sex determination. Analysis of CpG content suggested the absence of DNA methylation, and consistent with this we were unable to detect orthologs of the DNA methyltransferase enzymes. The small subunit rRNA gene contained a possible retrotransposon. The Hox gene complex was broken over two scaffolds. For chemosensory ability, at least 15 and 18 ionotropic glutamate and gustatory receptors were identified, respectively. However, we were unable to identify any odorant receptors or their obligate co-receptor Orco. Twenty-three chitinase-like genes were identified from the assembly. Members of this multigene family may play roles in the digestion of fungal cell walls, a common food source for these saproxylic organisms. We also detected 59 and 96 genes that blasted to bacteria and fungi, respectively, but were located on scaffolds that otherwise contained arthropod genes. CONCLUSIONS The genome of H. duospinosa contains some unusual features including a Hox complex broken over two scaffolds, in a different manner to other arthropod species, a lack of odorant receptor genes and an apparent lack of environmentally responsive DNA methylation, unlike many other arthropods. Our detection of candidate horizontal gene transfer candidates confirms that this phenomenon is occurring across Collembola. These findings allow us to narrow down the regions of the arthropod phylogeny where key innovations have occurred that have facilitated the evolutionary success of Hexapoda.
Collapse
Affiliation(s)
- Chen Wu
- Landcare Research, Private Bag, Auckland, 92170, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Melissa D Jordan
- The New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Richard D Newcomb
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- The New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sarah Bank
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Karen Meusemann
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
- Evolutionary Biology & Ecology, Institute for Biology, University of Freiburg, Freiburg, Germany
| | - Peter K Dearden
- Genetics Otago, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Elizabeth J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sefanie Grosser
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilian University of Munich, Planegg-, Martinsried, Germany
| | - Kim Rutherford
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Paul P Gardner
- Biomolecular Interactions Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Ross N Crowhurst
- The New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Bernd Steinwender
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- The New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Leah K Tooman
- The New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Mark I Stevens
- South Australian Museum, North Terrace, GPO Box 234, Adelaide, SA, 5001, Australia
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Thomas R Buckley
- Landcare Research, Private Bag, Auckland, 92170, New Zealand.
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
9
|
Liao BK, Oates AC. Delta-Notch signalling in segmentation. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:429-447. [PMID: 27888167 PMCID: PMC5446262 DOI: 10.1016/j.asd.2016.11.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
Modular body organization is found widely across multicellular organisms, and some of them form repetitive modular structures via the process of segmentation. It's vastly interesting to understand how these regularly repeated structures are robustly generated from the underlying noise in biomolecular interactions. Recent studies from arthropods reveal similarities in segmentation mechanisms with vertebrates, and raise the possibility that the three phylogenetic clades, annelids, arthropods and chordates, might share homology in this process from a bilaterian ancestor. Here, we discuss vertebrate segmentation with particular emphasis on the role of the Notch intercellular signalling pathway. We introduce vertebrate segmentation and Notch signalling, pointing out historical milestones, then describe existing models for the Notch pathway in the synchronization of noisy neighbouring oscillators, and a new role in the modulation of gene expression wave patterns. We ask what functions Notch signalling may have in arthropod segmentation and explore the relationship between Notch-mediated lateral inhibition and synchronization. Finally, we propose open questions and technical challenges to guide future investigations into Notch signalling in segmentation.
Collapse
Affiliation(s)
- Bo-Kai Liao
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - Andrew C Oates
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
10
|
Duncan EJ, Hyink O, Dearden PK. Notch signalling mediates reproductive constraint in the adult worker honeybee. Nat Commun 2016; 7:12427. [PMID: 27485026 PMCID: PMC4976197 DOI: 10.1038/ncomms12427] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023] Open
Abstract
The hallmark of eusociality is the reproductive division of labour, in which one female caste reproduces, while reproduction is constrained in the subordinate caste. In adult worker honeybees (Apis mellifera) reproductive constraint is conditional: in the absence of the queen and brood, adult worker honeybees activate their ovaries and lay haploid male eggs. Here, we demonstrate that chemical inhibition of Notch signalling can overcome the repressive effect of queen pheromone and promote ovary activity in adult worker honeybees. We show that Notch signalling acts on the earliest stages of oogenesis and that the removal of the queen corresponds with a loss of Notch protein in the germarium. We conclude that the ancient and pleiotropic Notch signalling pathway has been co-opted into constraining reproduction in worker honeybees and we provide the first molecular mechanism directly linking ovary activity in adult worker bees with the presence of the queen. In honeybees, pheromones produced by the queen inhibit reproduction by workers and enforce a eusocial division of labour. Here, Duncan, Hyink and Dearden show that this inhibition is mediated by the Notch signalling pathway in the workers' ovaries.
Collapse
Affiliation(s)
- Elizabeth J Duncan
- Department of Biochemistry, Laboratory for Evolution and Development, Genetics Otago and Gravida (The National Centre for Growth and Development), University of Otago, P.O. Box 56, Dunedin 9054, Aotearoa-New Zealand
| | - Otto Hyink
- Department of Biochemistry, Laboratory for Evolution and Development, Genetics Otago and Gravida (The National Centre for Growth and Development), University of Otago, P.O. Box 56, Dunedin 9054, Aotearoa-New Zealand
| | - Peter K Dearden
- Department of Biochemistry, Laboratory for Evolution and Development, Genetics Otago and Gravida (The National Centre for Growth and Development), University of Otago, P.O. Box 56, Dunedin 9054, Aotearoa-New Zealand
| |
Collapse
|