1
|
Zhang W, Zhang L, Feng Y, Lin D, Yang Z, Zhang Z, Ma Y. Genome-wide profiling of DNA methylome and transcriptome reveals epigenetic regulation of Urechis unicinctus response to sulfide stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172238. [PMID: 38582121 DOI: 10.1016/j.scitotenv.2024.172238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Sulfide is a well-known environmental pollutant that can have detrimental effects on most organisms. However, few metazoans living in sulfide-rich environments have developed mechanisms to tolerate and adapt to sulfide stress. Epigenetic mechanisms, including DNA methylation, have been shown to play a vital role in environmental stress adaptation. Nevertheless, the precise function of DNA methylation in biological sulfide adaptation remains unclear. Urechis unicinctus, a benthic organism inhabiting sulfide-rich intertidal environments, is an ideal model organism for studying adaptation to sulfide environments. In this study, we conducted a comprehensive analysis of the DNA methylome and transcriptome of U. unicinctus after exposure to 50 μM sulfide. The results revealed dynamic changes in the DNA methylation (5-methylcytosine) landscape in response to sulfide stress, with U. unicinctus exhibiting elevated DNA methylation levels following stress exposure. Integrating differentially expressed genes (DEGs) and differentially methylated regions (DMRs), we identified a crucial role of gene body methylation in predicting gene expression. Furthermore, using a DNA methyltransferase inhibitor, we validated the involvement of DNA methylation in the sulfide stress response and the gene regulatory network influenced by DNA methylation. The results indicated that by modulating DNA methylation levels during sulfide stress, the expression of glutathione S-transferase, glutamyl aminopeptidase, and cytochrome c oxidase could be up-regulated, thereby facilitating the metabolism and detoxification of exogenous sulfides. Moreover, DNA methylation was found to regulate and enhance the oxidative phosphorylation pathway, including NADH dehydrogenase, isocitrate dehydrogenase, and ATP synthase. Additionally, DNA methylation influenced the regulation of Cytochrome P450 and macrophage migration inhibitory factor, both of which are closely associated with oxidative stress and stress resistance. Our findings not only emphasize the role of DNA methylation in sulfide adaptation but also provide novel insights into the potential mechanisms through which marine organisms adapt to environmental changes.
Collapse
Affiliation(s)
- Wenqing Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Long Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Yuxin Feng
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Dawei Lin
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Zhi Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Zhifeng Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China; Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Chen J, Wang Y, Yang Z, Liu D, Jin Y, Li X, Deng Y, Wang B, Zhang Z, Ma Y. Identification and validation of the reference genes in the echiuran worm Urechis unicinctus based on transcriptome data. BMC Genomics 2023; 24:248. [PMID: 37165306 PMCID: PMC10170059 DOI: 10.1186/s12864-023-09358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Real-time quantitative PCR (RT-qPCR) is a crucial and widely used method for gene expression analysis. Selecting suitable reference genes is extremely important for the accuracy of RT-qPCR results. Commonly used reference genes are not always stable in various organisms or under different environmental conditions. With the increasing application of high-throughput sequencing, transcriptome analysis has become an effective method for identifying novel stable reference genes. RESULTS In this study, we identified candidate reference genes based on transcriptome data covering embryos and larvae of early development, normal adult tissues, and the hindgut under sulfide stress using the coefficient of variation (CV) method in the echiuran Urechis unicinctus, resulting in 6834 (15.82%), 7110 (16.85%) and 13880 (35.87%) candidate reference genes, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the candidate reference genes were significantly enriched in cellular metabolic process, protein metabolic process and ribosome in early development and normal adult tissues as well as in cellular localization and endocytosis in the hindgut under sulfide stress. Subsequently, ten genes including five new candidate reference genes and five commonly used reference genes, were validated by RT-qPCR. The expression stability of the ten genes was analyzed using four methods (geNorm, NormFinder, BestKeeper, and ∆Ct). The comprehensive results indicated that the new candidate reference genes were more stable than most commonly used reference genes. The commonly used ACTB was the most unstable gene. The candidate reference genes STX12, EHMT1, and LYAG were the most stable genes in early development, normal adult tissues, and hindgut under sulfide stress, respectively. The log2(TPM) of the transcriptome data was significantly negatively correlated with the Ct values of RT-qPCR (Ct = - 0.5405 log2(TPM) + 34.51), which made it possible to estimate the Ct value before RT-qPCR using transcriptome data. CONCLUSION Our study is the first to select reference genes for RT-qPCR from transcriptome data in Echiura and provides important information for future gene expression studies in U. unicinctus.
Collapse
Affiliation(s)
- Jiao Chen
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yunjian Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhi Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Danwen Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yao Jin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xixi Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yuhang Deng
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Boya Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| |
Collapse
|
3
|
Liu D, Qin Z, Wei M, Kong D, Zheng Q, Bai S, Lin S, Zhang Z, Ma Y. Genome-Wide Analyses of Heat Shock Protein Superfamily Provide New Insights on Adaptation to Sulfide-Rich Environments in Urechis unicinctus (Annelida, Echiura). Int J Mol Sci 2022; 23:2715. [PMID: 35269857 PMCID: PMC8910992 DOI: 10.3390/ijms23052715] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
The intertidal zone is a transitional area of the land-sea continuum, in which physical and chemical properties vary during the tidal cycle and highly toxic sulfides are rich in sediments due to the dynamic regimes. As a typical species thriving in this habitat, Urechis unicinctus presents strong sulfide tolerance and is expected to be a model species for sulfide stress research. Heat shock proteins (HSPs) consist of a large group of highly conserved molecular chaperones, which play important roles in stress responses. In this study, we systematically analyzed the composition and expression of HSPs in U. unicinctus. A total of eighty-six HSP genes from seven families were identified, in which two families, including sHSP and HSP70, showed moderate expansion, and this variation may be related to the benthic habitat of the intertidal zone. Furthermore, expression analysis revealed that almost all the HSP genes in U. unicinctus were significantly induced under sulfide stress, suggesting that they may be involved in sulfide stress response. Weighted gene co-expression network analysis (WGCNA) showed that 12 HSPs, including 5 sHSP and 4 HSP70 family genes, were highly correlated with the sulfide stress response which was distributed in steelblue and green modules. Our data indicate that HSPs, especially sHSP and HSP70 families, may play significant roles in response to sulfide stress in U. unicinctus. This systematic analysis provides valuable information for further understanding of the function of the HSP gene family for sulfide adaptation in U. unicinctus and contributes a better understanding of the species adaptation strategies of marine benthos in the intertidal zone.
Collapse
Affiliation(s)
- Danwen Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
| | - Maokai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
| | - Dexu Kong
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
| | - Qiaojun Zheng
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
| | - Shumiao Bai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
| | - Siyu Lin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
| |
Collapse
|
4
|
Chen EH, Duan JY, Song W, Wang DX, Tang PA. RNA-seq Analysis Reveals Mitochondrial and Cuticular Protein Genes Are Associated with Phosphine Resistance in the Rusty Grain Beetle (Coleoptera:Laemophloeidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:440-453. [PMID: 33346362 DOI: 10.1093/jee/toaa273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Indexed: 06/12/2023]
Abstract
The rusty grain beetle, Cryptolestes ferrugineus (Stephens), is a serious pest of stored grain, which has developed high levels of resistance to phosphine. In this study, five geographically distant populations of C. ferrugineus had been collected in China, specifically in granaries where phosphine fumigant is used for pest control, and they showed a high resistance ratio up to 1,907 (LC50 = 21.0 mg/liter). Then, a reference transcriptome was constructed to use as a basis for investigating the molecular mechanisms of phosphine resistance in this species, which consisted of 47,006 unigenes with a mean length of 1,090. Subsequently, the RNA-Seq analysis of individuals from the most susceptible and resistant populations led to the identification of 54 genes that are differentially expressed. GO and KEGG analysis demonstrated that genes associated with mitochondrial and respiration functions were significantly enriched. Also, the 'structural constituent of cuticle' term was annotated in the GO enrichment analysis and further qRT-PCR confirmed that the expression levels of nine cuticular protein genes were significantly increased in the resistant population. In conclusion, we present here a transcriptome-wide overview of gene expression changes between resistant and susceptible populations of C. ferrugineus, and this in turn documents that mitochondria and cuticular protein genes may play together a crucial role in phosphine resistance. Further gene function analysis should enable the provision of advice to expedite resistance management decisions.
Collapse
Affiliation(s)
- Er-Hu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Jin-Yan Duan
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Wei Song
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Dian-Xuan Wang
- Collaborative Innovation Center of Grain Storage Security, Zhengzhou, Henan, China
| | - Pei-An Tang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Hou X, Qin Z, Wei M, Fu Z, Liu R, Lu L, Bai S, Ma Y, Zhang Z. Identification of the neuropeptide precursor genes potentially involved in the larval settlement in the Echiuran worm Urechis unicinctus. BMC Genomics 2020; 21:892. [PMID: 33317448 PMCID: PMC7737342 DOI: 10.1186/s12864-020-07312-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In marine invertebrate life cycles, which often consist of planktonic larval and benthonic adult stages, settlement of the free-swimming larva to the sea floor in response to environmental cues is a key life cycle transition. Settlement is regulated by a specialized sensory-neurosecretory system, the larval apical organ. The neuroendocrine mechanisms through which the apical organ transduces environmental cues into behavioral responses during settlement are not fully understood yet. RESULTS In this study, a total of 54 neuropeptide precursors (pNPs) were identified in the Urechis unicinctus larva and adult transcriptome databases using local BLAST and NpSearch prediction, of which 10 pNPs belonging to the ancient eumetazoa, 24 pNPs belonging to the ancient bilaterian, 3 pNPs belonging to the ancient protostome, 9 pNPs exclusive in lophotrochozoa, 3 pNPs exclusive in annelid, and 5 pNPs only found in U. unicinctus. Furthermore, four pNPs (MIP, FRWamide, FxFamide and FILamide) which may be associated with the settlement and metamorphosis of U. unicinctus larvae were analysed by qRT-PCR. Whole-mount in situ hybridization results showed that all the four pNPs were expressed in the region of the apical organ of the larva, and the positive signals were also detected in the ciliary band and abdomen chaetae. We speculated that these pNPs may regulate the movement of larval cilia and chaeta by sensing external attachment signals. CONCLUSIONS This study represents the first comprehensive identification of neuropeptides in Echiura, and would contribute to a complete understanding on the roles of various neuropeptides in larval settlement of most marine benthonic invertebrates.
Collapse
Affiliation(s)
- Xitan Hou
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Maokai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhong Fu
- Hebei Research Institute of Marine and Fishery Science, Qinhuangdao, 066002, China
| | - Ruonan Liu
- College of Medical Engineering, Jining Medical University, Jining, 272067, China
| | - Li Lu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shumiao Bai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China.
| |
Collapse
|
6
|
Zhang L, Cui W, Chen Q, Ren Q, Zhu Y, Zhang Y. Thymosin-β12 characteristics and function in Urechis unicinctus. Comp Biochem Physiol B Biochem Mol Biol 2020; 239:110366. [DOI: 10.1016/j.cbpb.2019.110366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 10/25/2022]
|
7
|
Hou X, Wei M, Li Q, Zhang T, Zhou D, Kong D, Xie Y, Qin Z, Zhang Z. Transcriptome Analysis of Larval Segment Formation and Secondary Loss in the Echiuran Worm Urechis unicinctus. Int J Mol Sci 2019; 20:E1806. [PMID: 31013695 PMCID: PMC6514800 DOI: 10.3390/ijms20081806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/23/2019] [Accepted: 04/10/2019] [Indexed: 01/06/2023] Open
Abstract
The larval segment formation and secondary loss in echiurans is a special phenomenon, which is considered to be one of the important characteristics in the evolutionary relationship between the Echiura and Annelida. To better understand the molecular mechanism of this phenomenon, we revealed the larval transcriptome profile of the echiuran worm Urechis unicinctus using RNA-Seq technology. Twelve cDNA libraries of U. unicinctus larvae, late-trochophore (LT), early-segmentation larva (ES), segmentation larva (SL), and worm-shaped larva (WL) were constructed. Totally 243,381 unigenes were assembled with an average length of 1125 bp and N50 of 1836 bp, and 149,488 unigenes (61.42%) were annotated. We obtained 70,517 differentially expressed genes (DEGs) by pairwise comparison of the larval transcriptome data at different developmental stages and clustered them into 20 gene expression profiles using STEM software. Based on the typical profiles during the larval segment formation and secondary loss, eight signaling pathways were enriched, and five of which, mTOR, PI3K-AKT, TGF-β, MAPK, and Dorso-ventral axis formation signaling pathway, were proposed for the first time to be involved in the segment formation. Furthermore, we identified 119 unigenes related to the segment formation of annelids, arthropods, and chordates, in which 101 genes were identified in Drosophila and annelids. The function of most segment polarity gene homologs (hedgehog, wingless, engrailed, etc.) was conserved in echiurans, annelids, and arthropods based on their expression profiles, while the gap and pair-rule gene homologs were not. Finally, we verified that strong positive signals of Hedgehog were indeed located on the boundary of larval segments using immunofluorescence. Data in this study provide molecular evidence for the understanding of larval segment development in echiurans and may serve as a blueprint for segmented ancestors in future research.
Collapse
Affiliation(s)
- Xitan Hou
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Maokai Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Qi Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Tingting Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Di Zhou
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Dexu Kong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yueyang Xie
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zhenkui Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zhifeng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
8
|
Qin Z, Li X, Liu D, Wang Q, Lu L, Zhang Z. Analysis of chromosome karyotype and genome size in echiuran Urechisunicinctus Drasche, 1880 (Polychaeta, Urechidae). COMPARATIVE CYTOGENETICS 2019; 13:75-85. [PMID: 30918599 PMCID: PMC6426825 DOI: 10.3897/compcytogen.v13i1.31448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Karyotype and genome size are two primary cytogenetic characteristics of species, which are of great significance to the study of cytogenetics, taxonomy, phylogenesis, evolution as well as molecular biology. However, this basic cytogenetic information in echiurans is lacking. Therefore, we analyzed characteristics of karyotype and genome size in the echiuran worm Urechisunicinctus Drasche, 1880. In this study, coelomic cells of U.unicinctus were used for analyzing the genome size by a flow cytometry with chicken erythrocytes as DNA standard, and the 2C DNA content was determined to be 1.85 pg, which was corresponded to the genome size of 904.58 Mbp approximately. Furthermore, trochophores of U.unicinctus were dissociated and cells were utilized for preparing the chromosomes stained with DAPI, and the karyotype was determined as 2n = 30 (10m + 6sm + 6st + 8t), FN=52. Our data provided the basic cytogenetic information of U.unicinctus, which could be utilized in taxonomic study and whole-genome sequencing in future.
Collapse
Affiliation(s)
- Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaOcean University of ChinaQingdaoChina
| | - Xueyu Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaOcean University of ChinaQingdaoChina
| | - Danwen Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaOcean University of ChinaQingdaoChina
| | - Qing Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaOcean University of ChinaQingdaoChina
| | - Li Lu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaOcean University of ChinaQingdaoChina
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaOcean University of ChinaQingdaoChina
| |
Collapse
|
9
|
Brown AP, Arias-Rodriguez L, Yee MC, Tobler M, Kelley JL. Concordant Changes in Gene Expression and Nucleotides Underlie Independent Adaptation to Hydrogen-Sulfide-Rich Environments. Genome Biol Evol 2018; 10:2867-2881. [PMID: 30215710 PMCID: PMC6225894 DOI: 10.1093/gbe/evy198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2018] [Indexed: 12/23/2022] Open
Abstract
The colonization of novel environments often involves changes in gene expression, protein coding sequence, or both. Studies of how populations adapt to novel conditions, however, often focus on only one of these two processes, potentially missing out on the relative importance of different parts of the evolutionary process. In this study, our objectives were 1) to better understand the qualitative concordance between conclusions drawn from analyses of differential expression and changes in genic sequence and 2) to quantitatively test whether differentially expressed genes were enriched for sites putatively under positive selection within gene regions. To achieve this, we compared populations of fish (Poecilia mexicana) that have independently adapted to hydrogen-sulfide-rich environments in southern Mexico to adjacent populations residing in nonsulfidic waters. Specifically, we used RNA-sequencing data to compare both gene expression and DNA sequence differences between populations. Analyzing these two different data types led to similar conclusions about which biochemical pathways (sulfide detoxification and cellular respiration) were involved in adaptation to sulfidic environments. Additionally, we found a greater overlap between genes putatively under selection and differentially expressed genes than expected by chance. We conclude that considering both differential expression and changes in DNA sequence led to a more comprehensive understanding of how these populations adapted to extreme environmental conditions. Our results imply that changes in both gene expression and DNA sequence-sometimes at the same loci-may be involved in adaptation.
Collapse
Affiliation(s)
- Anthony P Brown
- School of Biological Sciences, Washington State University, 100 Dairy Road, Pullman, WA 99164
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), C.P. 86150, Villahermosa, Tabasco, México
| | - Muh-Ching Yee
- Stanford Functional Genomics Facility, CCSR 0120, Stanford, CA 94305
| | - Michael Tobler
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, 100 Dairy Road, Pullman, WA 99164
| |
Collapse
|
10
|
Qin Z, Zhang Y, Mu H, Zhang Z, Qiu JW. The Sperm Proteome of the EchiuranUrechis unicinctus(Annelida, Echiura). Proteomics 2018; 18:e1800107. [DOI: 10.1002/pmic.201800107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/16/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding; College of Marine Life Sciences; Ocean University of China; 266003 Qingdao Shandong China
| | - Yanjie Zhang
- HKBU Institute of Research and Continuing Education; 518057 Shenzhen Guangdong China
- Department of Biology; Hong Kong Baptist University; Kowloon Tong Hong Kong China
| | - Huawei Mu
- School of Life Sciences; The University of Science and Technology of China; 230071 Hefei Anhui China
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding; College of Marine Life Sciences; Ocean University of China; 266003 Qingdao Shandong China
| | - Jian-Wen Qiu
- HKBU Institute of Research and Continuing Education; 518057 Shenzhen Guangdong China
- Department of Biology; Hong Kong Baptist University; Kowloon Tong Hong Kong China
| |
Collapse
|
11
|
Gong J, Zhao R, Deng J, Zhao Y, Zuo J, Huang L, Jing M. Genetic diversity and population structure of penis fish (Urechis unicinctus) based on mitochondrial and nuclear gene markers. Mitochondrial DNA A DNA Mapp Seq Anal 2018; 29:1261-1268. [PMID: 29482423 DOI: 10.1080/24701394.2018.1444039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Urechis unicinctus is distributed only in Bohai Gulf of China and Korean and Japanese coast. The wild populations of this species have sharply declined in China and Japan. We collected 105 samples from six localities of Bohai Gulf and Korea coast, and investigated genetic diversity and population structure with mitochondrial COI, 16S-rRNA and nuclear 28S-rRNA gene fragments. Genetic diversity of U. unicinctus based on COI sequences was still high (Hd: 0.9595, π: 0.0101), however, 28S-rRNA gene sequences showed low level of genetic diversity (Hd: 0.4084, π: 0.0007). Based on COI sequences, FST values between populations ranged from -0.00204 to 0.05210, and 99.12% genetic diversity was contributed by different individuals within population. Both phylogenetic trees and median-joining network did not show clear geographic cluster, haplotypes from different populations were mixed. Our results indicated low level of genetic divergence among different localities of U. unicinctus, and this species should be treated as a whole population among China, Japan and Korea coast during species conservation.
Collapse
Affiliation(s)
- Jie Gong
- a School of Life Sciences , Ludong University , Yantai , Shandong , P. R. China
| | - Ruoping Zhao
- b State Key Laboratory of Genetic Resources and Evolution , Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , Yunnan , P. R. China
| | - Jiaheng Deng
- a School of Life Sciences , Ludong University , Yantai , Shandong , P. R. China
| | - Yancui Zhao
- a School of Life Sciences , Ludong University , Yantai , Shandong , P. R. China
| | - Jincheng Zuo
- a School of Life Sciences , Ludong University , Yantai , Shandong , P. R. China
| | - Ling Huang
- a School of Life Sciences , Ludong University , Yantai , Shandong , P. R. China
| | - Meidong Jing
- a School of Life Sciences , Ludong University , Yantai , Shandong , P. R. China
| |
Collapse
|
12
|
Passow CN, Henpita C, Shaw JH, Quackenbush CR, Warren WC, Schartl M, Arias-Rodriguez L, Kelley JL, Tobler M. The roles of plasticity and evolutionary change in shaping gene expression variation in natural populations of extremophile fish. Mol Ecol 2017; 26:6384-6399. [PMID: 28926156 DOI: 10.1111/mec.14360] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/22/2022]
Abstract
The notorious plasticity of gene expression responses and the complexity of environmental gradients complicate the identification of adaptive differences in gene regulation among populations. We combined transcriptome analyses in nature with common-garden and exposure experiments to establish cause-effect relationships between the presence of a physiochemical stressor and expression differences, as well as to test how evolutionary change and plasticity interact to shape gene expression variation in natural systems. We studied two evolutionarily independent population pairs of an extremophile fish (Poecilia mexicana) living in toxic, hydrogen sulphide (H2 S)-rich springs and adjacent nontoxic habitats and assessed genomewide expression patterns of wild-caught and common-garden-raised individuals exposed to different concentrations of H2 S. We found that 7.7% of genes that were differentially expressed between sulphidic and nonsulphidic ecotypes remained differentially expressed in the laboratory, indicating that sources of selection other than H2 S-or plastic responses to other environmental factors-contribute substantially to gene expression patterns observed in the wild. Concordantly differentially expressed genes in the wild and the laboratory were primarily associated with H2 S detoxification, sulphur processing and metabolic physiology. While shared, ancestral plasticity played a minor role in shaping gene expression variation observed in nature, we documented evidence for evolved population differences in the constitutive expression as well as the H2 S inducibility of candidate genes. Mechanisms underlying gene expression variation also varied substantially across the two ecotype pairs. These results provide a springboard for studying evolutionary modifications of gene regulatory mechanisms that underlie expression variation in locally adapted populations.
Collapse
Affiliation(s)
| | - Chathurika Henpita
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Jennifer H Shaw
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Corey R Quackenbush
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University, St. Louis, MO, USA
| | - Manfred Schartl
- Physiological Chemistry, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, Würzburg, Germany.,Hagler Institute for Advanced Studies and Department of Biology, Texas A&M University, College Station, TX, USA
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, México
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
13
|
Liu T, Wang L, Chen H, Huang Y, Yang P, Ahmed N, Wang T, Liu Y, Chen Q. Molecular and Cellular Mechanisms of Apoptosis during Dissociated Spermatogenesis. Front Physiol 2017; 8:188. [PMID: 28424629 PMCID: PMC5372796 DOI: 10.3389/fphys.2017.00188] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/13/2017] [Indexed: 12/12/2022] Open
Abstract
Apoptosis is a tightly controlled process by which tissues eliminate unwanted cells. Spontaneous germ cell apoptosis in testis has been broadly investigated in mammals that have an associated spermatogenesis pattern. However, the mechanism of germ cell apoptosis in seasonally breeding reptiles following a dissociated spermatogenesis has remained enigmatic. In the present study, morphological evidence has clearly confirmed the dissociated spermatogenesis pattern in Pelodiscus sinensis. TUNEL and TEM analyses presented dynamic changes and ultrastructural characteristics of apoptotic germ cells during seasonal spermatogenesis, implying that apoptosis might be one of the key mechanisms to clear degraded germ cells. Furthermore, using RNA-Seq and digital gene expression (DGE) profiling, a large number of apoptosis-related differentially expressed genes (DEGs) at different phases of spermatogenesis were identified and characterized in the testis. DGE and RT-qPCR analysis revealed that the critical anti-apoptosis genes, such as Bcl-2, BAG1, and BAG5, showed up-regulated patterns during intermediate and late spermatogenesis. Moreover, the increases in mitochondrial transmembrane potential in July and October were detected by JC-1 staining. Notably, the low protein levels of pro-apoptotic cleaved caspase-3 and CytC in cytoplasm were detected by immunohistochemistry and western blot analyses, indicating that the CytC-Caspase model might be responsible for the effects of germ cell apoptosis on seasonal spermatogenesis. These results facilitate understanding the regulatory mechanisms of apoptosis during spermatogenesis and uncovering the biological process of the dissociated spermatogenesis system in reptiles.
Collapse
Affiliation(s)
- Tengfei Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Lingling Wang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Hong Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Yufei Huang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Ping Yang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Nisar Ahmed
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Taozhi Wang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Yi Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Qiusheng Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
14
|
Tobler M, Passow CN, Greenway R, Kelley JL, Shaw JH. The Evolutionary Ecology of Animals Inhabiting Hydrogen Sulfide–Rich Environments. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032418] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hydrogen sulfide (H2S) is a respiratory toxicant that creates extreme environments tolerated by few organisms. H2S is also produced endogenously by metazoans and plays a role in cell signaling. The mechanisms of H2S toxicity and its physiological functions serve as a basis to discuss the multifarious strategies that allow animals to survive in H2S-rich environments. Despite their toxicity, H2S-rich environments also provide ecological opportunities, and complex selective regimes of covarying abiotic and biotic factors drive trait evolution in organisms inhabiting H2S-rich environments. Furthermore, adaptation to H2S-rich environments can drive speciation, giving rise to biodiversity hot spots with high levels of endemism in deep-sea hydrothermal vents, cold seeps, and freshwater sulfide springs. The diversity of H2S-rich environments and their inhabitants provides ideal systems for comparative studies of the effects of a clear-cut source of selection across vast geographic and phylogenetic scales, ultimately informing our understanding of how environmental stressors affect ecological and evolutionary processes.
Collapse
Affiliation(s)
- Michael Tobler
- Division of Biology, Kansas State University, Manhattan, Kansas 66506
| | | | - Ryan Greenway
- Division of Biology, Kansas State University, Manhattan, Kansas 66506
| | - Joanna L. Kelley
- School of Biological Sciences, Washington State University, Pullman, Washington 99164
| | - Jennifer H. Shaw
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078
| |
Collapse
|
15
|
Ma X, Liu X, Zhou D, Bai Y, Gao B, Zhang Z, Qin Z. The NF-κB pathway participates in the response to sulfide stress in Urechis unicinctus. FISH & SHELLFISH IMMUNOLOGY 2016; 58:229-238. [PMID: 27633672 DOI: 10.1016/j.fsi.2016.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/31/2016] [Accepted: 09/11/2016] [Indexed: 05/26/2023]
Abstract
The NF-κB pathway is known to be involved in regulating apoptosis, inflammation and immunity in organisms. In this study, we first identified full-length cDNA sequences of two key molecules in the NF-κB pathway, namely, NEMO and p65, and characterized their responses in the hindgut of Urechis unicinctus (Echiura, Urechidae) exposed to sulfide. The full-length of cDNA was 2491 bp for U. unicinctus NEMO (UuNEMO) and 1971 bp for U. unicinctus p65 (Uup65), and both polyclonal antibodies were prepared using UuNEMO or Uup65 expressed prokaryotically with the sequence of their whole open reading frame. Immunoprecipitation and Western blotting showed that the NF-κB pathway was activated in U. unicinctus exposed to sulfide, in which the content of UuNEMO ubiquitination and nuclear Uup65 increased significantly (p < 0.05) in hindgut tissue of U. unicinctus exposed to sulfide. Furthermore, the mRNA level of UuBcl-xL, a downstream anti-apoptosis gene of the NF-κB pathway, increased significantly (p < 0.05) from 48 h to 72 h and the mRNA level of UuBax, a Bcl-xL antagonist gene, decreased significantly (p < 0.05) at 48 h in the hindgut of U. unicinctus exposed to 50 μM sulfide. During the 150 μM sulfide exposure, the level of UuBcl-xL showed no obvious change, whereas the UuBax mRNA level increased significantly (p < 0.05) at 72 h post-exposure to 150 μM sulfide. We suggested that the activated NF-κB pathway up-regulates UuBcl-xL expression, and evokes an anti-apoptotic response to resist sulfide damage at 50 μM in U. unicinctus. Meanwhile, a Bax-mediated pro-apoptotic response occurs when U. unicinctus is exposed to 150 μM sulfide.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaolong Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Di Zhou
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yajiao Bai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Beibei Gao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|