1
|
Marbehan X, Roger M, Fournier F, Infossi P, Guedon E, Delecourt L, Lebrun R, Giudici-Orticoni MT, Delaunay S. Combining metabolic flux analysis with proteomics to shed light on the metabolic flexibility: the case of Desulfovibrio vulgaris Hildenborough. Front Microbiol 2024; 15:1336360. [PMID: 38463485 PMCID: PMC10920352 DOI: 10.3389/fmicb.2024.1336360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/24/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction Desulfovibrio vulgaris Hildenborough is a gram-negative anaerobic bacterium belonging to the sulfate-reducing bacteria that exhibits highly versatile metabolism. By switching from one energy mode to another depending on nutrients availability in the environments" it plays a central role in shaping ecosystems. Despite intensive efforts to study D. vulgaris energy metabolism at the genomic, biochemical and ecological level, bioenergetics in this microorganism remain far from being fully understood. Alternatively, metabolic modeling is a powerful tool to understand bioenergetics. However, all the current models for D. vulgaris appeared to be not easily adaptable to various environmental conditions. Methods To lift off these limitations, here we constructed a novel transparent and robust metabolic model to explain D. vulgaris bioenergetics by combining whole-cell proteomic analysis with modeling approaches (Flux Balance Analysis). Results The iDvu71 model showed over 0.95 correlation with experimental data. Further simulations allowed a detailed description of D. vulgaris metabolism in various conditions of growth. Altogether, the simulations run in this study highlighted the sulfate-to-lactate consumption ratio as a pivotal factor in D. vulgaris energy metabolism. Discussion In particular, the impact on the hydrogen/formate balance and biomass synthesis is discussed. Overall, this study provides a novel insight into D. vulgaris metabolic flexibility.
Collapse
Affiliation(s)
| | - Magali Roger
- BIP-UMR 7281, Laboratoire de Bioénergétique et Ingénierie des Protéines, Aix-Marseille Université, CNRS, Marseille, France
| | | | - Pascale Infossi
- BIP-UMR 7281, Laboratoire de Bioénergétique et Ingénierie des Protéines, Aix-Marseille Université, CNRS, Marseille, France
| | | | - Louis Delecourt
- BIP-UMR 7281, Laboratoire de Bioénergétique et Ingénierie des Protéines, Aix-Marseille Université, CNRS, Marseille, France
- LISM-UMR 7255, Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Aix-Marseille Université, CNRS, Marseille, France
| | - Régine Lebrun
- IMM-FR3479, Marseille Protéomique, Aix-Marseille Université, CNRS, Marseille, France
| | - Marie-Thérèse Giudici-Orticoni
- BIP-UMR 7281, Laboratoire de Bioénergétique et Ingénierie des Protéines, Aix-Marseille Université, CNRS, Marseille, France
| | | |
Collapse
|
2
|
Jawaharraj K, Peta V, Dhiman SS, Gnimpieba EZ, Gadhamshetty V. Transcriptome-wide marker gene expression analysis of stress-responsive sulfate-reducing bacteria. Sci Rep 2023; 13:16181. [PMID: 37758719 PMCID: PMC10533852 DOI: 10.1038/s41598-023-43089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Sulfate-reducing bacteria (SRB) are terminal members of any anaerobic food chain. For example, they critically influence the biogeochemical cycling of carbon, nitrogen, sulfur, and metals (natural environment) as well as the corrosion of civil infrastructure (built environment). The United States alone spends nearly $4 billion to address the biocorrosion challenges of SRB. It is important to analyze the genetic mechanisms of these organisms under environmental stresses. The current study uses complementary methodologies, viz., transcriptome-wide marker gene panel mapping and gene clustering analysis to decipher the stress mechanisms in four SRB. Here, the accessible RNA-sequencing data from the public domains were mined to identify the key transcriptional signatures. Crucial transcriptional candidate genes of Desulfovibrio spp. were accomplished and validated the gene cluster prediction. In addition, the unique transcriptional signatures of Oleidesulfovibrio alaskensis (OA-G20) at graphene and copper interfaces were discussed using in-house RNA-sequencing data. Furthermore, the comparative genomic analysis revealed 12,821 genes with translation, among which 10,178 genes were in homolog families and 2643 genes were in singleton families were observed among the 4 genomes studied. The current study paves a path for developing predictive deep learning tools for interpretable and mechanistic learning analysis of the SRB gene regulation.
Collapse
Affiliation(s)
- Kalimuthu Jawaharraj
- Civil and Environmental Engineering, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA
- 2D-Materials for Biofilm Engineering, Science and Technology (2D BEST) Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA
- Data-Driven Materials Discovery for Bioengineering Innovation Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA
| | - Vincent Peta
- Biomedical Engineering, University of South Dakota, 4800 N Career Ave, Sioux Falls, SD, 57107, USA
| | - Saurabh Sudha Dhiman
- Civil and Environmental Engineering, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA
- Data-Driven Materials Discovery for Bioengineering Innovation Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA
- Chemistry, Biology and Health Sciences, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA
| | - Etienne Z Gnimpieba
- 2D-Materials for Biofilm Engineering, Science and Technology (2D BEST) Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA.
- Data-Driven Materials Discovery for Bioengineering Innovation Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA.
- Biomedical Engineering, University of South Dakota, 4800 N Career Ave, Sioux Falls, SD, 57107, USA.
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA.
- 2D-Materials for Biofilm Engineering, Science and Technology (2D BEST) Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA.
- Data-Driven Materials Discovery for Bioengineering Innovation Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA.
| |
Collapse
|
3
|
Tripathi AK, Thakur P, Saxena P, Rauniyar S, Gopalakrishnan V, Singh RN, Gadhamshetty V, Gnimpieba EZ, Jasthi BK, Sani RK. Gene Sets and Mechanisms of Sulfate-Reducing Bacteria Biofilm Formation and Quorum Sensing With Impact on Corrosion. Front Microbiol 2021; 12:754140. [PMID: 34777309 PMCID: PMC8586430 DOI: 10.3389/fmicb.2021.754140] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/24/2021] [Indexed: 01/02/2023] Open
Abstract
Sulfate-reducing bacteria (SRB) have a unique ability to respire under anaerobic conditions using sulfate as a terminal electron acceptor, reducing it to hydrogen sulfide. SRB thrives in many natural environments (freshwater sediments and salty marshes), deep subsurface environments (oil wells and hydrothermal vents), and processing facilities in an industrial setting. Owing to their ability to alter the physicochemical properties of underlying metals, SRB can induce fouling, corrosion, and pipeline clogging challenges. Indigenous SRB causes oil souring and associated product loss and, subsequently, the abandonment of impacted oil wells. The sessile cells in biofilms are 1,000 times more resistant to biocides and induce 100-fold greater corrosion than their planktonic counterparts. To effectively combat the challenges posed by SRB, it is essential to understand their molecular mechanisms of biofilm formation and corrosion. Here, we examine the critical genes involved in biofilm formation and microbiologically influenced corrosion and categorize them into various functional categories. The current effort also discusses chemical and biological methods for controlling the SRB biofilms. Finally, we highlight the importance of surface engineering approaches for controlling biofilm formation on underlying metal surfaces.
Collapse
Affiliation(s)
- Abhilash Kumar Tripathi
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Payal Thakur
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Priya Saxena
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Shailabh Rauniyar
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Vinoj Gopalakrishnan
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Ram Nageena Singh
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Venkataramana Gadhamshetty
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States.,BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Etienne Z Gnimpieba
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Biomedical Engineering Program, University of South Dakota, Sioux Falls, SD, United States
| | - Bharat K Jasthi
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Rajesh Kumar Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States.,BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Composite and Nanocomposite Advanced Manufacturing Centre-Biomaterials, Rapid City, SD, United States
| |
Collapse
|
4
|
Fiévet A, Merrouch M, Brasseur G, Eve D, Biondi EG, Valette O, Pauleta SR, Dolla A, Dermoun Z, Burlat B, Aubert C. OrpR is a σ 54 -dependent activator using an iron-sulfur cluster for redox sensing in Desulfovibrio vulgaris Hildenborough. Mol Microbiol 2021; 116:231-244. [PMID: 33595838 PMCID: PMC8359166 DOI: 10.1111/mmi.14705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 01/15/2023]
Abstract
Enhancer binding proteins (EBPs) are key players of σ54 -regulation that control transcription in response to environmental signals. In the anaerobic microorganism Desulfovibrio vulgaris Hildenborough (DvH), orp operons have been previously shown to be coregulated by σ54 -RNA polymerase, the integration host factor IHF and a cognate EBP, OrpR. In this study, ChIP-seq experiments indicated that the OrpR regulon consists of only the two divergent orp operons. In vivo data revealed that (i) OrpR is absolutely required for orp operons transcription, (ii) under anaerobic conditions, OrpR binds on the two dedicated DNA binding sites and leads to high expression levels of the orp operons, (iii) increasing the redox potential of the medium leads to a drastic down-regulation of the orp operons expression. Moreover, combining functional and biophysical studies on the anaerobically purified OrpR leads us to propose that OrpR senses redox potential variations via a redox-sensitive [4Fe-4S]2+ cluster in the sensory PAS domain. Overall, the study herein presents the first characterization of a new Fe-S redox regulator belonging to the σ54 -dependent transcriptional regulator family probably advantageously selected by cells adapted to the anaerobic lifestyle to monitor redox stress conditions.
Collapse
Affiliation(s)
| | | | | | - Danaé Eve
- Aix Marseille Univ, CNRS, LCB, Marseille, France
| | | | | | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO, REQUIMTE, Dept. Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alain Dolla
- Aix Marseille Univ, Toulon Univ, CNRS, IRD, MIO, Marseille, France
| | | | | | | |
Collapse
|
5
|
Mahmud AKMF, Nilsson K, Fahlgren A, Navais R, Choudhury R, Avican K, Fällman M. Genome-Scale Mapping Reveals Complex Regulatory Activities of RpoN in Yersinia pseudotuberculosis. mSystems 2020; 5:e01006-20. [PMID: 33172972 PMCID: PMC7657599 DOI: 10.1128/msystems.01006-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 10/20/2020] [Indexed: 11/26/2022] Open
Abstract
RpoN, an alternative sigma factor commonly known as σ54, is implicated in persistent stages of Yersinia pseudotuberculosis infections in which genes associated with this regulator are upregulated. We here combined phenotypic and genomic assays to provide insight into its role and function in this pathogen. RpoN was found essential for Y. pseudotuberculosis virulence in mice, and in vitro functional assays showed that it controls biofilm formation and motility. Mapping genome-wide associations of Y. pseudotuberculosis RpoN using chromatin immunoprecipitation coupled with next-generation sequencing identified an RpoN binding motif located at 103 inter- and intragenic sites on both sense and antisense strands. Deletion of rpoN had a large impact on gene expression, including downregulation of genes encoding proteins involved in flagellar assembly, chemotaxis, and quorum sensing. There were also clear indications of cross talk with other sigma factors, together with indirect effects due to altered expression of other regulators. Matching differential gene expression with locations of the binding sites implicated around 130 genes or operons potentially activated or repressed by RpoN. Mutagenesis of selected intergenic binding sites confirmed both positive and negative regulatory effects of RpoN binding. Corresponding mutations of intragenic sense sites had less impact on associated gene expression. Surprisingly, mutating intragenic sites on the antisense strand commonly reduced expression of genes carried by the corresponding sense strand.IMPORTANCE The alternative sigma factor RpoN (σ54), which is widely distributed in eubacteria, has been implicated in controlling gene expression of importance for numerous functions including virulence. Proper responses to host environments are crucial for bacteria to establish infection, and regulatory mechanisms involved are therefore of high interest for development of future therapeutics. Little is known about the function of RpoN in the intestinal pathogen Y. pseudotuberculosis, and we therefore investigated its regulatory role in this pathogen. This regulator was indeed found to be critical for establishment of infection in mice, likely involving its requirement for motility and biofilm formation. The RpoN regulon involved both activating and suppressive effects on gene expression which could be confirmed with mutagenesis of identified binding sites. This is the first study of its kind of RpoN in Y. pseudotuberculosis, revealing complex regulation of gene expression involving both productive and silent effects of its binding to DNA, providing important information about RpoN regulation in enterobacteria.
Collapse
Affiliation(s)
- A K M Firoj Mahmud
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Kristina Nilsson
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Anna Fahlgren
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Roberto Navais
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Rajdeep Choudhury
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Kemal Avican
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Maria Fällman
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
6
|
Anion transport as a target of adaption to perchlorate in sulfate-reducing communities. ISME JOURNAL 2019; 14:450-462. [PMID: 31659234 DOI: 10.1038/s41396-019-0540-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 11/09/2022]
Abstract
Inhibitors can be used to control the functionality of microbial communities by targeting specific metabolisms. The targeted inhibition of dissimilatory sulfate reduction limits the generation of toxic and corrosive hydrogen sulfide across several industrial systems. Sulfate-reducing microorganisms (SRM) are specifically inhibited by sulfate analogs, such as perchlorate. Previously, we showed pure culture SRM adaptation to perchlorate stress through mutation of the sulfate adenylyltransferase, a central enzyme in the sulfate reduction pathway. Here, we explored adaptation to perchlorate across unconstrained SRM on a community scale. We followed natural and bio-augmented sulfidogenic communities through serial transfers in increasing concentrations of perchlorate. Our results demonstrated that perchlorate stress altered community structure by initially selecting for innately more resistant strains. Isolation, whole-genome sequencing, and molecular biology techniques allowed us to define subsequent genetic mechanisms of adaptation that arose across the dominant adapting SRM. Changes in the regulation of divalent anion:sodium symporter family transporters led to increased intracellular sulfate to perchlorate ratios, allowing SRM to escape the effects of competitive inhibition. Thus, in contrast to pure-culture results, SRM in communities cope with perchlorate stress via changes in anion transport and its regulation. This highlights the value of probing evolutionary questions in an ecological framework, bridging the gap between ecology, evolution, genomics, and physiology.
Collapse
|
7
|
Zhu L, Gong T, Wood TL, Yamasaki R, Wood TK. σ 54 -Dependent regulator DVU2956 switches Desulfovibrio vulgaris from biofilm formation to planktonic growth and regulates hydrogen sulfide production. Environ Microbiol 2019; 21:3564-3576. [PMID: 31087603 DOI: 10.1111/1462-2920.14679] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/11/2019] [Indexed: 11/30/2022]
Abstract
Microbiologically influenced corrosion causes $100 billion in damage per year, and biofilms formed by sulfate-reducing bacteria (SRB) are the major culprit. However, little is known about the regulation of SRB biofilm formation. Using Desulfovibrio vulgaris as a model SRB organism, we compared the transcriptomes of biofilm and planktonic cells and identified that the gene for σ54 -dependent regulator DVU2956 is repressed in biofilms. Utilizing a novel promoter that is primarily transcribed in biofilms (Pdvu0304 ), we found production of DVU2956 inhibits biofilm formation by 70%. Corroborating this result, deleting dvu2956 increased biofilm formation, and this biofilm phenotype could be complemented. By producing proteins in biofilms from genes controlled by DVU2956 (dvu2960 and dvu2962), biofilm formation was inhibited almost completely. A second round of RNA-seq for the production of DVU2956 revealed DVU2956 influences electron transport via an Hmc complex (high-molecular-weight cytochrome c encoded by dvu0531-dvu0536) and the Fe-only hydrogenase (encoded by dvu1769, hydA and dvu1770, hydB) to control H2 S production. Corroborating these results, producing DVU2956 in biofilms decreased H2 S production by half, deleting dvu2956 increased H2 S production by 131 ± 5%, and producing DVU2956 in the dvu2956 strain reduced H2 S production. Therefore, DVU2956 maintains SRB in the planktonic state and reduces H2 S formation.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Chemical Engineering, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Ting Gong
- Department of Chemical Engineering, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Thammajun L Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Ryota Yamasaki
- Department of Chemical Engineering, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, State College, PA, 16802, USA
| |
Collapse
|
8
|
Genome-Guided Identification of Organohalide-Respiring Deltaproteobacteria from the Marine Environment. mBio 2018; 9:mBio.02471-18. [PMID: 30563901 PMCID: PMC6299228 DOI: 10.1128/mbio.02471-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The marine environment is a major reservoir for both anthropogenic and natural organohalides, and reductive dehalogenation is thought to be an important process in the overall cycling of these compounds. Here we demonstrate that the capacity of organohalide respiration appears to be widely distributed in members of marine Deltaproteobacteria. The identification of reductive dehalogenase genes in diverse Deltaproteobacteria and the confirmation of their dehalogenating activity through functional assays and transcript analysis in select isolates extend our knowledge of organohalide-respiring Deltaproteobacteria diversity. The presence of functional reductive dehalogenase genes in diverse Deltaproteobacteria implies that they may play an important role in organohalide respiration in the environment. Organohalide compounds are widespread in the environment as a result of both anthropogenic activities and natural production. The marine environment, in particular, is a major reservoir of organohalides, and reductive dehalogenation is thought to be an important process in the overall cycling of these compounds. Deltaproteobacteria are important members of the marine microbiota with diverse metabolic capacities, and reductive dehalogenation has been observed in some Deltaproteobacteria. In this study, a comprehensive survey of Deltaproteobacteria genomes revealed that approximately 10% contain reductive dehalogenase (RDase) genes, which are found within a common gene neighborhood. The dehalogenating potential of select RDase A-containing Deltaproteobacteria and their gene expression were experimentally verified. Three Deltaproteobacteria strains isolated from marine environments representing diverse species, Halodesulfovibrio marinisediminis, Desulfuromusa kysingii, and Desulfovibrio bizertensis, were shown to reductively dehalogenate bromophenols and utilize them as terminal electron acceptors in organohalide respiration. Their debrominating activity was not inhibited by sulfate or elemental sulfur, and these species are either sulfate- or sulfur-reducing bacteria. The analysis of RDase A gene transcripts indicated significant upregulation induced by 2,6-dibromophenol. This study extends our knowledge of the phylogenetic diversity of organohalide-respiring bacteria and their functional RDase A gene diversity. The identification of reductive dehalogenase genes in diverse Deltaproteobacteria and confirmation of their organohalide-respiring capability suggest that Deltaproteobacteria play an important role in natural organohalide cycling.
Collapse
|