1
|
Lu Y, Wei B, Yang Q, Han X, He X, Tao Q, Jiang S, Xu M, Bai Y, Zhang T, Bai L, Hu J, Liu H, Li L. Identification of candidate genes affecting the tibia quality in Nonghua duck. Poult Sci 2024; 103:103515. [PMID: 38350390 PMCID: PMC10875613 DOI: 10.1016/j.psj.2024.103515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/15/2024] Open
Abstract
The skeleton is a vital organ providing structural support in poultry. Weakness in bone structure can lead to deformities, osteoporosis, cage fatigue, and fractures, resulting in economic losses. Research has substantiated that genetic factors play a significant role in influencing bone quality. The discovery of genetic markers associated with bone quality holds paramount importance for enhancing genetic traits related to the skeletal system in poultry. This study analyzed nine phenotypic indicators of tibia quality in 120-day-old ducks. The phenotypic correlation revealed a high correlation among diameter, Perimeter, and weight (0.69-0.78), and a strong correlation was observed between toughness and breaking strength (0.62). Then, we conducted a genome-wide association analysis of the phenotypic indicators to elucidate the genetic basis of tibial quality in Nonghua ducks. Among the 11 candidate genes that were annotated, TAPT1, BST1, and STIM2 were related to the diameter indicator, ZNF652, IGF2BP1, CASK, and GREB1L were associated with the weight and toughness indicators. RFX8, GLP1R, and DNAAF5 were identified for ash, calcium, and phosphorus content, respectively. Finally, KEGG and GO analysis for annotated genes were performed. STIM2 and BST1 were enriched into the Calcium signalling pathway and Niacin and nicotinamide metabolic pathway, which may be key candidate genes affecting bone quality phenotypes. Gene expression analysis of the candidate genes, such as STIM2, BST1, TAPT1, and CASK showed higher expression levels in bones compared to other tissues. The obtained results can contribute to new insights into tibial quality and provide new genetic biomarkers that can be employed in duck breeding.
Collapse
Affiliation(s)
- Yinjuan Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 613000, China
| | - Bin Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Qinglan Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Xu Han
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 613000, China
| | - Xinxin He
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 613000, China
| | - Qiuyu Tao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 613000, China
| | - Shuaixue Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 613000, China
| | - Mengru Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 613000, China
| | - Yuan Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 613000, China
| | - Tao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 613000, China
| | - Lili Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Jiwei Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Hehe Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 613000, China
| | - Liang Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 613000, China.
| |
Collapse
|
2
|
Akhiiarova K, Khusainova R, Minniakhmetov I, Mokrysheva N, Tyurin A. Peak Bone Mass Formation: Modern View of the Problem. Biomedicines 2023; 11:2982. [PMID: 38001982 PMCID: PMC10669090 DOI: 10.3390/biomedicines11112982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Peak bone mass is the amount of bone tissue that is formed when a stable skeletal state is achieved at a young age. To date, there are no established peak bone mass standards nor clear data on the age at which peak bone mass occurs. At the same time, the level of peak bone mass at a young age is an important predictor of the onset of primary osteoporosis. The purpose of this review is to analyze the results of studies of levels of peak bone mass in general, the age of its onset, as well as factors influencing its formation. Factors such as hormonal levels, body composition, physical activity, nutrition, heredity, smoking, lifestyle, prenatal predictors, intestinal microbiota, and vitamin and micronutrient status were considered, and a comprehensive scheme of the influence of these factors on the level of peak bone mass was created. Determining the standards and timing of the formation of peak bone mass, and the factors affecting it, will help in the development of measures to prevent its shortage and the consequent prevention of osteoporosis and concomitant diseases.
Collapse
Affiliation(s)
- Karina Akhiiarova
- Internal Medicine Department, Bashkir State Medical University, 450008 Ufa, Russia;
| | - Rita Khusainova
- Medical Genetics Department, Bashkir State Medical University, 450008 Ufa, Russia;
- Endocrinology Research Centre, Dmitriya Ulianova Street, 11, 117036 Moscow, Russia; (I.M.); (N.M.)
| | - Ildar Minniakhmetov
- Endocrinology Research Centre, Dmitriya Ulianova Street, 11, 117036 Moscow, Russia; (I.M.); (N.M.)
| | - Natalia Mokrysheva
- Endocrinology Research Centre, Dmitriya Ulianova Street, 11, 117036 Moscow, Russia; (I.M.); (N.M.)
| | - Anton Tyurin
- Internal Medicine Department, Bashkir State Medical University, 450008 Ufa, Russia;
| |
Collapse
|
3
|
Abstract
Intercellular communication by Wnt proteins governs many essential processes during development, tissue homeostasis and disease in all metazoans. Many context-dependent effects are initiated in the Wnt-producing cells and depend on the export of lipidated Wnt proteins. Although much focus has been on understanding intracellular Wnt signal transduction, the cellular machinery responsible for Wnt secretion became better understood only recently. After lipid modification by the acyl-transferase Porcupine, Wnt proteins bind their dedicated cargo protein Evi/Wntless for transport and secretion. Evi/Wntless and Porcupine are conserved transmembrane proteins, and their 3D structures were recently determined. In this Review, we summarise studies and structural data highlighting how Wnts are transported from the ER to the plasma membrane, and the role of SNX3-retromer during the recycling of its cargo receptor Evi/Wntless. We also describe the regulation of Wnt export through a post-translational mechanism and review the importance of Wnt secretion for organ development and cancer, and as a future biomarker.
Collapse
Affiliation(s)
- Lucie Wolf
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Bhatia V, Stevens T, Derks MFL, Dunkelberger J, Knol EF, Ross JW, Dekkers JCM. Identification of the genetic basis of sow pelvic organ prolapse. Front Genet 2023; 14:1154713. [PMID: 37144137 PMCID: PMC10151575 DOI: 10.3389/fgene.2023.1154713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction: Pelvic organ prolapse (POP) is one contributor to recent increases in sow mortality that have been observed in some populations and environments, leading to financial losses and welfare concerns. Methods: With inconsistent previous reports, the objective here was to investigate the role of genetics on susceptibility to POP, using data on 30,429 purebred sows, of which 14,186 were genotyped (25K), collected from 2012 to 2022 in two US multiplier farms with a high POP incidence of 7.1% among culled and dead sows and ranging from 2% to 4% of all sows present by parity. Given the low incidence of POP for parities 1 and >6, only data from parities 2 to 6 were retained for analyses. Genetic analyses were conducted both across parities, using cull data (culled for POP versus another reason), and by parity, using farrowing data. (culled for POP versus culled for another reason or not culled). Results and Discussion: Estimates of heritability from univariate logit models on the underlying scale were 0.35 ± 0.02 for the across-parity analysis and ranged from 0.41 ± 0.03 in parity 2 to 0.15 ± 0.07 in parity 6 for the by-parity analyses. Estimates of genetic correlations of POP between parities based on bivariate linear models indicated a similar genetic basis of POP across parities but less similar with increasing distance between parities. Genome wide association analyses revealed six 1 Mb windows that explained more than 1% of the genetic variance in the across-parity data. Most regions were confirmed in several by-parity analyses. Functional analyses of the identified genomic regions showed a potential role of several genes on chromosomes 1, 3, 7, 10, 12, and 14 in susceptibility to POP, including the Estrogen Receptor gene. Gene set enrichment analyses showed that genomic regions that explained more variation for POP were enriched for several terms from custom transcriptome and gene ontology libraries. Conclusion: The influence of genetics on susceptibility to POP in this population and environment was confirmed and several candidate genes and biological processes were identified that can be targeted to better understand and mitigate the incidence of POP.
Collapse
Affiliation(s)
- Vishesh Bhatia
- Department of Animal Science, Iowa State University, Ames, IA, United States
- *Correspondence: Vishesh Bhatia,
| | - Tomas Stevens
- Topigs Norsvin Research Center, Beuningen, Netherlands
| | | | | | | | - Jason W. Ross
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Jack C. M. Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
5
|
Zhang Y, Mao X, Yu X, Huang X, He W, Yang H. Bone mineral density and risk of breast cancer: A cohort study and Mendelian randomization analysis. Cancer 2022; 128:2768-2776. [PMID: 35511874 DOI: 10.1002/cncr.34252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Estrogen is involved in both bone metabolism and breast cancer proliferation. However, evidence about the risk of breast cancer according to women's bone mineral density (BMD) is scarce, and little is known about their causal associations. METHODS Women participating in the UK Biobank cohort were used to investigate the association between BMD and the risk of breast cancer using Cox regression models. Instrumental variants associated with estimated BMD (eBMD) were extracted from genome-wide association studies with European ancestry. Logistic regression was used to calculate the genetic association with breast cancer in the UK Biobank and 2-sample Mendelian randomization (MR) analyses to assess their causal associations with breast cancer. Finally, the pleiotropic conditional false discovery rate (cFDR) method was conducted to further detect common genetic variants between BMD and breast cancer. RESULTS Compared with the general population, postmenopausal women with BMD T scores <-2.5 had a lower risk of breast cancer (hazard ratio [HR], 0.77; 95% CI, 0.59-1.00), and this effect was stronger in women with fracture (HR, 0.31; 95% CI, 0.12-0.82). In MR analysis, no causal associations between eBMD and breast cancer were observed. The cFDR method identified 63 pleiotropic loci associated with both BMD and breast cancer, of which CCDC170, ESR1, and FTO might play crucial roles in their pleiotropy. CONCLUSIONS An association between BMD and the risk of postmenopausal breast cancer in the UK Biobank was observed, whereas no evidence supported their causal association. Instead, their association could be explained by pleiotropic genetic variants leading to the pathology of osteoporosis and breast cancer.
Collapse
Affiliation(s)
- Yanyu Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xinhe Mao
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Xingxing Yu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xiaoxi Huang
- Department of Breast, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Wei He
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Chronic Disease Research Institute, the Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University, Hangzhou, China
| | - Haomin Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Du D, Jing Z, Zhang G, Dang X, Liu R, Song J. The relationship between central obesity and bone mineral density: a Mendelian randomization study. Diabetol Metab Syndr 2022; 14:63. [PMID: 35501835 PMCID: PMC9063301 DOI: 10.1186/s13098-022-00840-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The relationship between obesity and osteoporosis is an important public health issue. The goal of this study was to investigate whether and to what extent central obesity traits affect bone mineral density (BMD). METHODS We conducted a two-sample Mendelian randomization analysis. Genomewide significant single nucleotide polymorphisms associated with waist circumference, hip circumference, waist-to-hip ratio, waist circumference adjusted by body mass index (WCadjBMI), hip circumference adjusted by BMI (HCadjBMI) and waist-to-hip ratio adjusted by BMI (WHRadjBMI) were obtained from a large-scale database containing 224,459 samples. The BMD summary dataset was obtained from a UK Biobank database including 265,627 participants. RESULTS The results provided strong evidence that the HCadjBMI trait was causally and negatively associated with BMD (β: - 0.135, 95% CI - 0.216 to - 0.054; P = 0.001), while the WHR trait was causally and positively associated with BMD (β: 0.194, 95% CI 0.062 to 0.325, P = 0.004). No significant effects were observed for other traits on BMD. CONCLUSIONS This study indicates variations in the abilities of different central obesity traits to influence BMD. These results should be considered in further studies and public health measures on obesity and osteoporosis prevention strategies.
Collapse
Affiliation(s)
- Dengkui Du
- Department of Orthopaedics, The Second Affiliated Hospital, Xi’an Jiaotong University, No.157, Xiwu Road, Xi’an, 710004 Shaanxi Province China
- Department of Orthopaedics, Luoyang Central Hospital, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471009 Henan Province China
| | - Zhaopu Jing
- Department of Orthopaedics, The Second Affiliated Hospital, Xi’an Jiaotong University, No.157, Xiwu Road, Xi’an, 710004 Shaanxi Province China
| | - Guangyang Zhang
- Department of Orthopaedics, The Second Affiliated Hospital, Xi’an Jiaotong University, No.157, Xiwu Road, Xi’an, 710004 Shaanxi Province China
| | - Xiaoqian Dang
- Department of Orthopaedics, The Second Affiliated Hospital, Xi’an Jiaotong University, No.157, Xiwu Road, Xi’an, 710004 Shaanxi Province China
| | - Ruiyu Liu
- Department of Orthopaedics, The Second Affiliated Hospital, Xi’an Jiaotong University, No.157, Xiwu Road, Xi’an, 710004 Shaanxi Province China
| | - Jidong Song
- Department of Orthopaedics, The Second Affiliated Hospital, Xi’an Jiaotong University, No.157, Xiwu Road, Xi’an, 710004 Shaanxi Province China
| |
Collapse
|
7
|
Zhang J, Cai Q, Chen W, Huang M, Guan R, Jin T. Relationship between rs7586085, GALNT3 and CCDC170 gene polymorphisms and the risk of osteoporosis among the Chinese Han population. Sci Rep 2022; 12:6089. [PMID: 35414641 PMCID: PMC9005502 DOI: 10.1038/s41598-022-09755-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
Osteoporosis (OP) has plagued many women for years, and bone density loss is an indicator of OP. The purpose of this study was to evaluate the relationship between the polymorphism of the rs7586085, CCDC170 and GALNT3 gene polymorphisms and the risk of OP in the Chinese Han population. Using the Agena MassArray method, we identified six candidate SNPs on chromosomes 2 and 6 in 515 patients with OP and 511 healthy controls. Genetic model analysis was performed to evaluate the significant association between variation and OP risk, and meanwhile, the multiple tests were corrected by false discovery rate (FDR). Haploview 4.2 was used for haplotype analysis. In stratified analysis of BMI ˃ 24, rs7586085, rs6726821, rs6710518, rs1346004, and rs1038304 were associated with the risk of OP based on the results of genetic models among females even after the correction of FDR (qd < 0.05). In people at age ≤ 60 years, rs1038304 was associated with an increased risk of OP under genetic models after the correction of FDR (qd < 0.05). Our study reported that GALNT3 and CCDC170 gene polymorphisms and rs7586085 are the effective risk factors for OP in the Chinese Han population.
Collapse
Affiliation(s)
- Jiaqiang Zhang
- Department of Medical Image, People's Hospital of Wanning, Wanning, Hainan, China
| | - Qinlei Cai
- Department of Radiology, Hainan Hospital Affiliated to Hainan Medical College, Haikou, Hainan, China
| | - Wangxue Chen
- Department of Medical Image, People's Hospital of Wanning, Wanning, Hainan, China
| | - Maoxue Huang
- Department of Medical Image, People's Hospital of Wanning, Wanning, Hainan, China
| | - Renyang Guan
- Department of Medical Image, People's Hospital of Wanning, Wanning, Hainan, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi, 710069, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China.
| |
Collapse
|
8
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
9
|
Bae JH, Park D. Effect of dietary calcium on the gender-specific association between polymorphisms in the PTPRD locus and osteoporosis. Clin Nutr 2022; 41:680-686. [DOI: 10.1016/j.clnu.2022.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/01/2022] [Accepted: 01/21/2022] [Indexed: 11/03/2022]
|
10
|
Identification of PDXDC1 as a novel pleiotropic susceptibility locus shared between lumbar spine bone mineral density and birth weight. J Mol Med (Berl) 2022; 100:723-734. [PMID: 35314877 PMCID: PMC9110509 DOI: 10.1007/s00109-021-02165-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/13/2021] [Accepted: 11/04/2021] [Indexed: 02/04/2023]
Abstract
An increasing number of epidemiological studies have suggested that birth weight (BW) may be a determinant of bone health later in life, although the underlying genetic mechanism remains unclear. Here, we applied a pleiotropic conditional false discovery rate (cFDR) approach to the genome-wide association study (GWAS) summary statistics for lumbar spine bone mineral density (LS BMD) and BW, aiming to identify novel susceptibility variants shared between these two traits. We detected 5 novel potential pleiotropic loci which are located at or near 7 different genes (NTAN1, PDXDC1, CACNA1G, JAG1, FAT1P1, CCDC170, ESR1), among which PDXDC1 and FAT1P1 have not previously been linked to these phenotypes. To partially validate the findings, we demonstrated that the expression of PDXDC1 was dramatically reduced in ovariectomized (OVX) mice in comparison with sham-operated (SHAM) mice in both the growth plate and trabecula bone. Furthermore, immunohistochemistry assay with serial sections showed that both osteoclasts and osteoblasts express PDXDC1, supporting its potential role in bone metabolism. In conclusion, our study provides insights into some shared genetic mechanisms for BMD and BW as well as a novel potential therapeutic target for the prevention of OP in the early stages of the disease development. KEY MESSAGES : We investigated pleiotropy-informed enrichment between LS BMD and BW. We identified genetic variants related to both LS BMD and BW by utilizing a cFDR approach. PDXDC1 is a novel pleiotropic gene which may be related to both LS BMD and BW. Elevated expression of PDXDC1 is related to higher BMD and lower ratio n-6/n-3 PUFA indicating a bone protective effect of PDXDC1.
Collapse
|
11
|
Jansen S, Baulain U, Habig C, Ramzan F, Schauer J, Schmitt AO, Scholz AM, Sharifi AR, Weigend A, Weigend S. Identification and Functional Annotation of Genes Related to Bone Stability in Laying Hens Using Random Forests. Genes (Basel) 2021; 12:702. [PMID: 34066823 PMCID: PMC8151682 DOI: 10.3390/genes12050702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
Skeletal disorders, including fractures and osteoporosis, in laying hens cause major welfare and economic problems. Although genetics have been shown to play a key role in bone integrity, little is yet known about the underlying genetic architecture of the traits. This study aimed to identify genes associated with bone breaking strength and bone mineral density of the tibiotarsus and the humerus in laying hens. Potentially informative single nucleotide polymorphisms (SNP) were identified using Random Forests classification. We then searched for genes known to be related to bone stability in close proximity to the SNPs and identified 16 potential candidates. Some of them had human orthologues. Based on our findings, we can support the assumption that multiple genes determine bone strength, with each of them having a rather small effect, as illustrated by our SNP effect estimates. Furthermore, the enrichment analysis showed that some of these candidates are involved in metabolic pathways critical for bone integrity. In conclusion, the identified candidates represent genes that may play a role in the bone integrity of chickens. Although further studies are needed to determine causality, the genes reported here are promising in terms of alleviating bone disorders in laying hens.
Collapse
Affiliation(s)
- Simon Jansen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
| | - Ulrich Baulain
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
| | - Christin Habig
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
| | - Faisal Ramzan
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany; (F.R.); (A.O.S.)
| | - Jens Schauer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
| | - Armin Otto Schmitt
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany; (F.R.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany;
| | - Armin Manfred Scholz
- Livestock Center of the Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 85764 Oberschleissheim, Germany;
| | - Ahmad Reza Sharifi
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany;
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany
| | - Annett Weigend
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
| | - Steffen Weigend
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany;
| |
Collapse
|
12
|
Twelve years of GWAS discoveries for osteoporosis and related traits: advances, challenges and applications. Bone Res 2021; 9:23. [PMID: 33927194 PMCID: PMC8085014 DOI: 10.1038/s41413-021-00143-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/21/2020] [Indexed: 02/03/2023] Open
Abstract
Osteoporosis is a common skeletal disease, affecting ~200 million people around the world. As a complex disease, osteoporosis is influenced by many factors, including diet (e.g. calcium and protein intake), physical activity, endocrine status, coexisting diseases and genetic factors. In this review, we first summarize the discovery from genome-wide association studies (GWASs) in the bone field in the last 12 years. To date, GWASs and meta-analyses have discovered hundreds of loci that are associated with bone mineral density (BMD), osteoporosis, and osteoporotic fractures. However, the GWAS approach has sometimes been criticized because of the small effect size of the discovered variants and the mystery of missing heritability, these two questions could be partially explained by the newly raised conceptual models, such as omnigenic model and natural selection. Finally, we introduce the clinical use of GWAS findings in the bone field, such as the identification of causal clinical risk factors, the development of drug targets and disease prediction. Despite the fruitful GWAS discoveries in the bone field, most of these GWAS participants were of European descent, and more genetic studies should be carried out in other ethnic populations to benefit disease prediction in the corresponding population.
Collapse
|
13
|
Tseng CC, Wong MC, Liao WT, Chen CJ, Lee SC, Yen JH, Chang SJ. Genetic Variants in Transcription Factor Binding Sites in Humans: Triggered by Natural Selection and Triggers of Diseases. Int J Mol Sci 2021; 22:ijms22084187. [PMID: 33919522 PMCID: PMC8073710 DOI: 10.3390/ijms22084187] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Variants of transcription factor binding sites (TFBSs) constitute an important part of the human genome. Current evidence demonstrates close links between nucleotides within TFBSs and gene expression. There are multiple pathways through which genomic sequences located in TFBSs regulate gene expression, and recent genome-wide association studies have shown the biological significance of TFBS variation in human phenotypes. However, numerous challenges remain in the study of TFBS polymorphisms. This article aims to cover the current state of understanding as regards the genomic features of TFBSs and TFBS variants; the mechanisms through which TFBS variants regulate gene expression; the approaches to studying the effects of nucleotide changes that create or disrupt TFBSs; the challenges faced in studies of TFBS sequence variations; the effects of natural selection on collections of TFBSs; in addition to the insights gained from the study of TFBS alleles related to gout, its associated comorbidities (increased body mass index, chronic kidney disease, diabetes, dyslipidemia, coronary artery disease, ischemic heart disease, hypertension, hyperuricemia, osteoporosis, and prostate cancer), and the treatment responses of patients.
Collapse
Affiliation(s)
- Chia-Chun Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (J.-H.Y.)
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Man-Chun Wong
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Wei-Ting Liao
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Correspondence: (W.-T.L.); (S.-J.C.); Tel.: +886-7-3121101 (W.-T.L.); +886-7-5916679 (S.-J.C.); Fax:+886-7-3125339 (W.-T.L.); +886-7-5919264 (S.-J.C.)
| | - Chung-Jen Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan;
| | - Su-Chen Lee
- Laboratory Diagnosis of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jeng-Hsien Yen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (J.-H.Y.)
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Biological Science and Technology, National Chiao-Tung University, Hsinchu 30010, Taiwan
| | - Shun-Jen Chang
- Department of Kinesiology, Health and Leisure Studies, National University of Kaohsiung, Kaohsiung 81148, Taiwan
- Correspondence: (W.-T.L.); (S.-J.C.); Tel.: +886-7-3121101 (W.-T.L.); +886-7-5916679 (S.-J.C.); Fax:+886-7-3125339 (W.-T.L.); +886-7-5919264 (S.-J.C.)
| |
Collapse
|
14
|
Liu X, Li YG, Tan F, Liu J, Yi R, Zhao X. Three functional polymorphisms in CCDC170 were associated with osteoporosis phenotype. Biol Open 2021; 10:bio.050930. [PMID: 33785515 PMCID: PMC8061906 DOI: 10.1242/bio.050930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/26/2020] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) play essential roles in regulating bone formation and homeostasis. Genomic variations within miRNA target sites may therefore be important sources of genetic differences in osteoporosis risk. The function of CCDC170 in bone biology is still unclear. To verify the function of CCDC170, we knocked down CCDC170 in cells and mice and searched for miRNA recognition sites within CCDC170 using the TargetScan, miRNASNP, and miRBase databases. In this study, our results demonstrated that CCDC170 plays an important role in the positive regulation of bone formation. MiR-153-3p, miR-374b-3p, miR-4274, miR-572 and miR-2964a-5p inhibited CCDC170 expression in an allele-specific manner by binding GWAS lead SNPs rs6932603, rs3757322 and rs3734806. These findings may improve our understanding of the association between CCDC170, miRNAs, GWAS lead SNPs, and osteoporosis pathogenesis and may provide a potential therapeutic target for osteoporosis therapy. Summary: CCDC170 may provide a potential therapeutic target for osteoporosis therapy.
Collapse
Affiliation(s)
- Xinhong Liu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Yu-Gang Li
- Department of Orthopedics, the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University, Valenzuela 838, Philippines
| | - Jia Liu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China
| |
Collapse
|
15
|
Zheng D, Jiang C, Yan N, Miao Y, Wang K, Gao G, Jiao Y, Zhang X, He M, Yang Z. Wntless (Wls): A Prognostic Index for Progression and Patient Survival of Breast Cancer. Onco Targets Ther 2020; 13:12649-12659. [PMID: 33335405 PMCID: PMC7737487 DOI: 10.2147/ott.s265324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/23/2020] [Indexed: 11/23/2022] Open
Abstract
Background Wntless (Wls) is an essential protein that is necessary for the secretion of Wnt proteins. While numerous researches have demonstrated that aberrations in Wnt/β-catenin expression lead to tumorigenesis and progression in many cancer types, the effects of Wls in breast cancer (BC) are less studied. Methods The mRNA and protein expression of Wls in BC cell lines were detected by RT-qPCR and Western blot; the protein expression of patient samples was detected by immunohistochemistry (IHC). The associations between Wls expression and clinicopathological factors as well as survival time, including overall survival (OS) and disease-free survival (DFS) were analyzed. Bioinformatics analysis was used to reveal the correlation between Wls genes and associated genes or pathways. Results Wls was overexpressed in BC cell lines and tissues. The expression level of Wls was significantly correlated with tumor size, estrogen receptor (ER), progesterone receptor (PR), Ki-67, molecular classification, and follow-up status. Spearman correlation analysis showed that Wls protein expression was negatively correlated with ER and PR, which was confirmed by bioinformatics analysis in mRNA level. However, there were positive relationships with MBNG (modified Black's nuclear grade), tumor size, Ki-67, molecular classification, follow-up, and vital status. Univariate and multivariate analysis showed that Wls was an independent prognostic factor for OS and DFS in BC patients. Moreover, Wls was a significant prognostic indicator of OS and DFS in a hormone receptor-positive (HR+) subgroup. GSEA showed that estrogen and androgen response, as well as epithelial-mesenchymal transition pathways, were up-regulated in the Wls high-expression group. Conclusion Overexpression of Wls is a significant marker of worse prognosis in BC and might play a crucial role in the HR+ subgroup.
Collapse
Affiliation(s)
- Dandan Zheng
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, People's Republic of China.,Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Chengwei Jiang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Ning Yan
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Yayun Miao
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Keren Wang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Ge Gao
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Xiangkai Zhang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Miao He
- Department of Anesthesia, The Second Hospital of Jilin University, Changchun, Jilin 130022, People's Republic of China
| | - Zhaoying Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People's Republic of China
| |
Collapse
|
16
|
Hasan LK, Aljabban J, Rohr M, Mukhtar M, Adapa N, Salim R, Aljabban N, Syed S, Syed S, Panahiazar M, Hadley D, Jarjour W. Metaanalysis Reveals Genetic Correlates of Osteoporosis Pathogenesis. J Rheumatol 2020; 48:940-945. [PMID: 33262303 DOI: 10.3899/jrheum.200951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2020] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Osteoporosis is a growing healthcare burden. By identifying osteoporosis-promoting genetic variations, we can spotlight targets for new pharmacologic therapies that will improve patient outcomes. In this metaanalysis, we analyzed mesenchymal stem cell (MSC) biomarkers in patients with osteoporosis. METHODS We employed our Search Tag Analyze Resource for the Gene Expression Omnibus (STARGEO) platform to conduct a metaanalysis to define osteoporosis pathogenesis. We compared 15 osteoporotic and 14 healthy control MSC samples. We then analyzed the genetic signature in Ingenuity Pathway Analysis. RESULTS The top canonical pathways identified that were statistically significant included the serine peptidase inhibitor kazal type 1 pancreatic cancer pathway, calcium signaling, pancreatic adenocarcinoma signaling, axonal guidance signaling, and glutamate receptor signaling. Upstream regulators involved in this disease process included ESR1, dexamethasone, CTNNβ1, CREB1, and ERBB2. CONCLUSION Although there has been extensive research looking at the genetic basis for inflammatory arthritis, very little literature currently exists that has identified genetic pathways contributing to osteoporosis. Our study has identified several important genes involved in osteoporosis pathogenesis including ESR1, CTNNβ1, CREB1, and ERBB2. ESR1 has been shown to have numerous polymorphisms, which may play a prominent role in osteoporosis. The Wnt pathway, which includes the CTNNβ1 gene identified in our study, plays a prominent role in bone mass regulation. Wnt pathway polymorphisms can increase susceptibility to osteoporosis. Our analysis also suggests a potential mechanism for ERBB2 in osteoporosis through Semaphorin 4D (SEMA4D). Our metaanalysis identifies several genes and pathways that can be targeted to develop new anabolic drugs for osteoporosis treatment.
Collapse
Affiliation(s)
- Laith K Hasan
- L.K. Hasan, BBA, Tulane University School of Medicine, New Orleans, Lousiana;
| | - Jihad Aljabban
- J. Aljabban, MD, MMSc, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Michael Rohr
- M. Rohr, BS, D. Hadley, MD, PhD, University of Central Florida College of Medicine, Orlando, Florida
| | - Mohamed Mukhtar
- M. Mukhtar, BS, Michigan State University College of Medicine, Lansing, Michigan
| | - Nikhil Adapa
- N. Adapa, MD, State University of New York Upstate Medical University, Syracuse, New York
| | - Rahaf Salim
- R. Salim, BS, Case Western University, Cleveland, Ohio
| | - Nabeal Aljabban
- N. Aljabban, BS, Penn State College of Medicine, Hershey, Pennsylvania
| | - Saad Syed
- S. Syed, BS, S. Syed, MD, Stanford University School of Medicine, Palo Alto, California
| | - Sharjeel Syed
- S. Syed, BS, S. Syed, MD, Stanford University School of Medicine, Palo Alto, California
| | - Maryam Panahiazar
- M. Panahiazar, PhD, University of California San Francisco, San Francisco, California
| | - Dexter Hadley
- M. Rohr, BS, D. Hadley, MD, PhD, University of Central Florida College of Medicine, Orlando, Florida
| | - Wael Jarjour
- W. Jarjour, MD, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
17
|
Kanzi AM, San JE, Chimukangara B, Wilkinson E, Fish M, Ramsuran V, de Oliveira T. Next Generation Sequencing and Bioinformatics Analysis of Family Genetic Inheritance. Front Genet 2020; 11:544162. [PMID: 33193618 PMCID: PMC7649788 DOI: 10.3389/fgene.2020.544162] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
Mendelian and complex genetic trait diseases continue to burden and affect society both socially and economically. The lack of effective tests has hampered diagnosis thus, the affected lack proper prognosis. Mendelian diseases are caused by genetic mutations in a singular gene while complex trait diseases are caused by the accumulation of mutations in either linked or unlinked genomic regions. Significant advances have been made in identifying novel diseases associated mutations especially with the introduction of next generation and third generation sequencing. Regardless, some diseases are still without diagnosis as most tests rely on SNP genotyping panels developed from population based genetic analyses. Analysis of family genetic inheritance using whole genomes, whole exomes or a panel of genes has been shown to be effective in identifying disease-causing mutations. In this review, we discuss next generation and third generation sequencing platforms, bioinformatic tools and genetic resources commonly used to analyze family based genomic data with a focus on identifying inherited or novel disease-causing mutations. Additionally, we also highlight the analytical, ethical and regulatory challenges associated with analyzing personal genomes which constitute the data used for family genetic inheritance.
Collapse
Affiliation(s)
- Aquillah M. Kanzi
- Kwazulu-Natal Research and Innovation Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | | | | | | | | | | |
Collapse
|
18
|
He P, Meng XH, Zhang X, Lin X, Zhang Q, Jiang RL, Schiller MR, Deng FY, Deng HW. Identifying Pleiotropic SNPs Associated With Femoral Neck and Heel Bone Mineral Density. Front Genet 2020; 11:772. [PMID: 32774344 PMCID: PMC7388689 DOI: 10.3389/fgene.2020.00772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/29/2020] [Indexed: 01/06/2023] Open
Abstract
Background Genome-wide association studies (GWASs) routinely identify loci associated with risk factors for osteoporosis. However, GWASs with relatively small sample sizes still lack sufficient power to ascertain the majority of genetic variants with small to modest effect size, which may together truly influence the phenotype. The loci identified only account for a small percentage of the heritability of osteoporosis. This study aims to identify novel genetic loci associated with DXA-derived femoral neck (FNK) bone mineral density (BMD) and quantitative ultrasound of the heel calcaneus estimated BMD (eBMD), and to detect shared/causal variants for the two traits, to assess whether the SNPs or putative causal SNPs associated with eBMD were also associated with FNK-BMD. Methods Novel loci associated with eBMD and FNK-BMD were identified by the genetic pleiotropic conditional false discovery rate (cFDR) method. Shared putative causal variants between eBMD and FNK-BMD and putative causal SNPs for each trait were identified by the colocalization method. Mendelian randomization analysis addresses the causal relationship between eBMD/FNK-BMD and fracture. Results We identified 9,500 (cFDR < 9.8E-6), 137 (cFDR < 8.9E-4) and 124 SNPs associated with eBMD, FNK-BMD, and both eBMD and FNK-BMD, respectively, with 37 genomic regions where there was a SNP that influences both eBMD and FNK-BMD. Most genomic regions only contained putative causal SNPs associated with eBMD and 3 regions contained two distinct putative causal SNPs influenced both traits, respectively. We demonstrated a causal effect of FNK-BMD/eBMD on fracture. Conclusion Most of SNPs or putative causal SNPs associated with FNK-BMD were also associated with eBMD. However, most of SNPs or putative causal SNPs associated with eBMD were not associated with FNK-BMD. The novel variants we identified may help to account for the additional proportion of variance of each trait and advance our understanding of the genetic mechanisms underlying osteoporotic fracture.
Collapse
Affiliation(s)
- Pei He
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China.,Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Xiang-He Meng
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States.,Center of Reproductive Health, System Biology and Data Information, School of Basic Medical Science, Central South University, Changsha, China.,Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiao Zhang
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Xu Lin
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States.,Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qiang Zhang
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States.,College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ri-Li Jiang
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Martin R Schiller
- Nevada Institute of Personalized Medicine, School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Hong-Wen Deng
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States.,Center of Reproductive Health, System Biology and Data Information, School of Basic Medical Science, Central South University, Changsha, China.,Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
19
|
Deleterious variants in genes associated with bone mineral density are linked to susceptibility to periodontitis development. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
20
|
Funkhouser SA, Vazquez AI, Steibel JP, Ernst CW, Los Campos GD. Deciphering Sex-Specific Genetic Architectures Using Local Bayesian Regressions. Genetics 2020; 215:231-241. [PMID: 32198180 PMCID: PMC7198271 DOI: 10.1534/genetics.120.303120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/01/2020] [Indexed: 11/18/2022] Open
Abstract
Many complex human traits exhibit differences between sexes. While numerous factors likely contribute to this phenomenon, growing evidence from genome-wide studies suggest a partial explanation: that males and females from the same population possess differing genetic architectures. Despite this, mapping gene-by-sex (G×S) interactions remains a challenge likely because the magnitude of such an interaction is typically and exceedingly small; traditional genome-wide association techniques may be underpowered to detect such events, due partly to the burden of multiple test correction. Here, we developed a local Bayesian regression (LBR) method to estimate sex-specific SNP marker effects after fully accounting for local linkage-disequilibrium (LD) patterns. This enabled us to infer sex-specific effects and G×S interactions either at the single SNP level, or by aggregating the effects of multiple SNPs to make inferences at the level of small LD-based regions. Using simulations in which there was imperfect LD between SNPs and causal variants, we showed that aggregating sex-specific marker effects with LBR provides improved power and resolution to detect G×S interactions over traditional single-SNP-based tests. When using LBR to analyze traits from the UK Biobank, we detected a relatively large G×S interaction impacting bone mineral density within ABO, and replicated many previously detected large-magnitude G×S interactions impacting waist-to-hip ratio. We also discovered many new G×S interactions impacting such traits as height and body mass index (BMI) within regions of the genome where both male- and female-specific effects explain a small proportion of phenotypic variance (R2 < 1 × 10-4), but are enriched in known expression quantitative trait loci.
Collapse
Affiliation(s)
- Scott A Funkhouser
- Institute for Behavioral Genetics, The University of Colorado, Boulder, Colorado 80309
- Genetics Graduate Program, Michigan State University, East Lansing, Michigan 48824
| | - Ana I Vazquez
- Departments of Epidemiology and Biostatistics and Statistics and Probability, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, 48824
| | - Juan P Steibel
- Department of Animal Science, Michigan State University, East Lansing, Michigan, 48824
| | - Catherine W Ernst
- Department of Animal Science, Michigan State University, East Lansing, Michigan, 48824
| | - Gustavo de Los Campos
- Departments of Epidemiology and Biostatistics and Statistics and Probability, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, 48824
| |
Collapse
|
21
|
Mullin BH, Tickner J, Zhu K, Kenny J, Mullin S, Brown SJ, Dudbridge F, Pavlos NJ, Mocarski ES, Walsh JP, Xu J, Wilson SG. Characterisation of genetic regulatory effects for osteoporosis risk variants in human osteoclasts. Genome Biol 2020; 21:80. [PMID: 32216834 PMCID: PMC7098081 DOI: 10.1186/s13059-020-01997-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background Osteoporosis is a complex disease with a strong genetic contribution. A recently published genome-wide association study (GWAS) for estimated bone mineral density (eBMD) identified 1103 independent genome-wide significant association signals. Most of these variants are non-coding, suggesting that regulatory effects may drive many of the associations. To identify genes with a role in osteoporosis, we integrate the eBMD GWAS association results with those from our previous osteoclast expression quantitative trait locus (eQTL) dataset. Results We identify sixty-nine significant cis-eQTL effects for eBMD GWAS variants after correction for multiple testing. We detect co-localisation of eBMD GWAS and osteoclast eQTL association signals for 21 of the 69 loci, implicating a number of genes including CCR5, ZBTB38, CPE, GNA12, RIPK3, IQGAP1 and FLCN. Summary-data-based Mendelian Randomisation analysis of the eBMD GWAS and osteoclast eQTL datasets identifies significant associations for 53 genes, with TULP4 presenting as a strong candidate for pleiotropic effects on eBMD and gene expression in osteoclasts. By performing analysis using the GARFIELD software, we demonstrate significant enrichment of osteoporosis risk variants among high-confidence osteoclast eQTL across multiple GWAS P value thresholds. Mice lacking one of the genes of interest, the apoptosis/necroptosis gene RIPK3, show disturbed bone micro-architecture and increased osteoclast number, highlighting a new biological pathway relevant to osteoporosis. Conclusion We utilise a unique osteoclast eQTL dataset to identify a number of potential effector genes for osteoporosis risk variants, which will help focus functional studies in this area.
Collapse
Affiliation(s)
- Benjamin H Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia. .,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.
| | - Jennifer Tickner
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Kun Zhu
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Jacob Kenny
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Shelby Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Suzanne J Brown
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Frank Dudbridge
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Nathan J Pavlos
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Edward S Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, School of Medicine, Emory University, Atlanta, GA, USA
| | - John P Walsh
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Medical School, The University of Western Australia, Crawley, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Scott G Wilson
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.,Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| |
Collapse
|
22
|
Huybrechts Y, Mortier G, Boudin E, Van Hul W. WNT Signaling and Bone: Lessons From Skeletal Dysplasias and Disorders. Front Endocrinol (Lausanne) 2020; 11:165. [PMID: 32328030 PMCID: PMC7160326 DOI: 10.3389/fendo.2020.00165] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal dysplasias are a diverse group of heritable diseases affecting bone and cartilage growth. Throughout the years, the molecular defect underlying many of the diseases has been identified. These identifications led to novel insights in the mechanisms regulating bone and cartilage growth and homeostasis. One of the pathways that is clearly important during skeletal development and bone homeostasis is the Wingless and int-1 (WNT) signaling pathway. So far, three different WNT signaling pathways have been described, which are all activated by binding of the WNT ligands to the Frizzled (FZD) receptors. In this review, we discuss the skeletal disorders that are included in the latest nosology of skeletal disorders and that are caused by genetic defects involving the WNT signaling pathway. The number of skeletal disorders caused by defects in WNT signaling genes and the clinical phenotype associated with these disorders illustrate the importance of the WNT signaling pathway during skeletal development as well as later on in life to maintain bone mass. The knowledge gained through the identification of the genes underlying these monogenic conditions is used for the identification of novel therapeutic targets. For example, the genes underlying disorders with altered bone mass are all involved in the canonical WNT signaling pathway. Consequently, targeting this pathway is one of the major strategies to increase bone mass in patients with osteoporosis. In addition to increasing the insights in the pathways regulating skeletal development and bone homeostasis, knowledge of rare skeletal dysplasias can also be used to predict possible adverse effects of these novel drug targets. Therefore, this review gives an overview of the skeletal and extra-skeletal phenotype of the different skeletal disorders linked to the WNT signaling pathway.
Collapse
|
23
|
Yuan J, Tickner J, Mullin BH, Zhao J, Zeng Z, Morahan G, Xu J. Advanced Genetic Approaches in Discovery and Characterization of Genes Involved With Osteoporosis in Mouse and Human. Front Genet 2019; 10:288. [PMID: 31001327 PMCID: PMC6455049 DOI: 10.3389/fgene.2019.00288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis is a complex condition with contributions from, and interactions between, multiple genetic loci and environmental factors. This review summarizes key advances in the application of genetic approaches for the identification of osteoporosis susceptibility genes. Genome-wide linkage analysis (GWLA) is the classical approach for identification of genes that cause monogenic diseases; however, it has shown limited success for complex diseases like osteoporosis. In contrast, genome-wide association studies (GWAS) have successfully identified over 200 osteoporosis susceptibility loci with genome-wide significance, and have provided most of the candidate genes identified to date. Phenome-wide association studies (PheWAS) apply a phenotype-to-genotype approach which can be used to complement GWAS. PheWAS is capable of characterizing the association between osteoporosis and uncommon and rare genetic variants. Another alternative approach, whole genome sequencing (WGS), will enable the discovery of uncommon and rare genetic variants in osteoporosis. Meta-analysis with increasing statistical power can offer greater confidence in gene searching through the analysis of combined results across genetic studies. Recently, new approaches to gene discovery include animal phenotype based models such as the Collaborative Cross and ENU mutagenesis. Site-directed mutagenesis and genome editing tools such as CRISPR/Cas9, TALENs and ZNFs have been used in functional analysis of candidate genes in vitro and in vivo. These resources are revolutionizing the identification of osteoporosis susceptibility genes through the use of genetically defined inbred mouse libraries, which are screened for bone phenotypes that are then correlated with known genetic variation. Identification of osteoporosis-related susceptibility genes by genetic approaches enables further characterization of gene function in animal models, with the ultimate aim being the identification of novel therapeutic targets for osteoporosis.
Collapse
Affiliation(s)
- Jinbo Yuan
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Benjamin H Mullin
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Zhiyu Zeng
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
24
|
Hidalgo-Bravo A, Parra-Torres AY, Casas-Avila L, Jimenez-Ortega RF, Ramírez-Salazar EG, Patiño N, Rivera-Paredez B, Salmerón J, Valdés-Flores M, Velázquez-Cruz R. Association of RMND1/CCDC170-ESR1 single nucleotide polymorphisms with hip fracture and osteoporosis in postmenopausal women. Climacteric 2019; 22:97-104. [PMID: 30601066 DOI: 10.1080/13697137.2018.1538339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This study aimed to investigate the association of seven single nucleotide polymorphisms (SNPs) on the RMND1, CCDC170, and ESR1 genes with osteoporosis or hip fracture in a postmenopausal Mexican population. METHODS We included a group of 400 postmenopausal women from the Health Workers Cohort Study from the Mexican Institute of Social Security. As a replication sample, we recruited 423 postmenopausal women from the National Institute of Rehabilitation. Demographic data were collected through a structured questionnaire. Bone mineral density was assessed using dual X-ray absorptiometry. Individuals were classified as normal, osteopenia, osteoporosis, and fracture, according to World Health Organization criteria. Genotyping was performed using predesigned TaqMan Probes. Linear regression analysis was used to investigate association. RESULTS All of the analyzed SNPs showed association with at least one of the phenotypes of the study groups. In addition, we observed a region with linkage disequilibrium within the ESR1 gene in all groups. CONCLUSION This study shows that an association of the SNPs can exist with osteopenia, osteoporosis, or fragility fracture. Our results agree with data published elsewhere, supporting the potential of these loci for the identification of the population at risk. However, additional studies are required to determine the extent of this association for other geographic regions of Mexico.
Collapse
Affiliation(s)
- A Hidalgo-Bravo
- a Department of Genetics , National Institute of Rehabilitation , Mexico City , Mexico
| | - A Y Parra-Torres
- b Genomics of Bone Metabolism Laboratory , National Institute of Genomic Medicine (INMEGEN) , Mexico City , Mexico
| | - L Casas-Avila
- a Department of Genetics , National Institute of Rehabilitation , Mexico City , Mexico
| | - R F Jimenez-Ortega
- b Genomics of Bone Metabolism Laboratory , National Institute of Genomic Medicine (INMEGEN) , Mexico City , Mexico
| | - E G Ramírez-Salazar
- b Genomics of Bone Metabolism Laboratory , National Institute of Genomic Medicine (INMEGEN) , Mexico City , Mexico.,c National Council for Science and Technology (CONACYT) - Genomics of Bone Metabolism Laboratory , National Institute of Genomic Medicine (INMEGEN) , Mexico City , Mexico
| | - N Patiño
- d Subdirection of Development of Clinical Applications , National Institute of Genomic Medicine (INMEGEN) , Mexico City , Mexico
| | - B Rivera-Paredez
- e Academic Unit in Epidemiological Research, Research Center in Policies, Population and Health, School of Medicine , National Autonomous University of Mexico , Mexico City , Mexico
| | - J Salmerón
- e Academic Unit in Epidemiological Research, Research Center in Policies, Population and Health, School of Medicine , National Autonomous University of Mexico , Mexico City , Mexico.,f Center for Population Health Research , National Institute of Public Health (INSP) , Cuernavaca , Mexico
| | - M Valdés-Flores
- a Department of Genetics , National Institute of Rehabilitation , Mexico City , Mexico
| | - R Velázquez-Cruz
- b Genomics of Bone Metabolism Laboratory , National Institute of Genomic Medicine (INMEGEN) , Mexico City , Mexico
| |
Collapse
|
25
|
Hu Y, Tan LJ, Chen XD, Greenbaum J, Deng HW. Identification of novel variants associated with osteoporosis, type 2 diabetes and potentially pleiotropic loci using pleiotropic cFDR method. Bone 2018; 117:6-14. [PMID: 30172742 PMCID: PMC6364698 DOI: 10.1016/j.bone.2018.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/16/2022]
Abstract
AIMS Clinical and epidemiological findings point to an association between type 2 diabetes (T2D) and osteoporosis. Genome-wide association studies (GWASs) have been fruitful in identifying some loci potentially associated with osteoporosis and T2D respectively. However, the total genetic variance for each of these two diseases and the shared genetic determination between them are largely unknown. The aim of this study was to identify novel genetic variants for osteoporosis and/or T2D. METHODS First, using a pleiotropic conditional false discovery rate (cFDR) method, we analyzed two GWAS summary data of femoral neck bone mineral density (FN_BMD, n = 53,236) and T2D (n = 159,208) to identify novel shared genetic loci. FN_BMD is an important risk factor for osteoporosis. Next, to explore the potential functions of the identified potential pleiotropic genes, differential expression analysis was performed for them in monocytes and peripheral blood mononuclear cells (PBMCs) as these cells are relevant to the etiology of osteoporosis and/or T2D. Further, weighted gene co-expression analysis (WGCNA) was conducted to identify functional connections between novel pleiotropic genes and known osteoporosis/T2D susceptibility genes by using transcriptomic expression datasets in bone biopsies (E-MEXP-1618) and pancreatic islets (GSE50397). Finally, multi-trait fine mapping for the detected pleiotropic risk loci were conducted to identify the SNPs that have the highest probability of being causal for both FN_BMD and T2D. RESULTS We identified 27 significant SNPs with cFDR<0.05 for FN_BMD and 61 SNPs for T2D respectively. Four loci, rs7068487 (PLEKHA1), rs10885421 (TCF7L2), rs944082 (GNG12-AS1 (WLS)) and rs2065929 (PIFO||PGCP1), were found to be potentially pleiotropic and shared between FN_BMD and T2D (ccFDR<0.05). PLEKHA1 was found differentially expressed in circulating monocytes between high and low BMD subjects, and PBMCs between diabetic and non-diabetic conditions. WGCNA showed that PLEKHA1 and TCF7L2 were interconnected with multiple osteoporosis and T2D associated genes in bone biopsy and pancreatic islets, such as JAG, EN1 and CPE. Fine mapping showed that rs11200594 was a potentially causal variant in the locus of PLEKHA1. rs11200594 is also an eQTL of PLEKHA1 in multiple tissue (e.g. peripheral blood cells, adipose and ovary) and is in strong LD with a number of functional variants. CONCLUSIONS Four potential pleiotropic loci were identified for shared genetic determination of osteoporosis and T2D. Our study highlights PLEKHA1 as an important potentially pleiotropic gene. The findings may help us gain a better understanding of the shared genetic determination between these two important disorders.
Collapse
Affiliation(s)
- Yuan Hu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Li-Jun Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiang-Ding Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Jonathan Greenbaum
- School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Hong-Wen Deng
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China; Center of Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA.
| |
Collapse
|
26
|
Hwang LD, Gharahkhani P, Breslin PAS, Gordon SD, Zhu G, Martin NG, Reed DR, Wright MJ. Bivariate genome-wide association analysis strengthens the role of bitter receptor clusters on chromosomes 7 and 12 in human bitter taste. BMC Genomics 2018; 19:678. [PMID: 30223776 PMCID: PMC6142396 DOI: 10.1186/s12864-018-5058-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 09/06/2018] [Indexed: 12/24/2022] Open
Abstract
Background Human perception of bitter substances is partially genetically determined. Previously we discovered a single nucleotide polymorphism (SNP) within the cluster of bitter taste receptor genes on chromosome 12 that accounts for 5.8% of the variance in the perceived intensity rating of quinine, and we strengthened the classic association between TAS2R38 genotype and the bitterness of propylthiouracil (PROP). Here we performed a genome-wide association study (GWAS) using a 40% larger sample (n = 1999) together with a bivariate approach to detect previously unidentified common variants with small effects on bitter perception. Results We identified two signals, both with small effects (< 2%), within the bitter taste receptor clusters on chromosomes 7 and 12, which influence the perceived bitterness of denatonium benzoate and sucrose octaacetate respectively. We also provided the first independent replication for an association of caffeine bitterness on chromosome 12. Furthermore, we provided evidence for pleiotropic effects on quinine, caffeine, sucrose octaacetate and denatonium benzoate for the three SNPs on chromosome 12 and the functional importance of the SNPs for denatonium benzoate bitterness. Conclusions These findings provide new insights into the genetic architecture of bitter taste and offer a useful starting point for determining the biological pathways linking perception of bitter substances. Electronic supplementary material The online version of this article (10.1186/s12864-018-5058-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liang-Dar Hwang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia. .,Queensland Brain Institute, University of Queensland, Brisbane, Queensland, 4072, Australia. .,Faculty of Medicine, University of Queensland, Brisbane, Queensland, 4006, Australia. .,University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, 4102, Australia.
| | - Puya Gharahkhani
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
| | - Paul A S Breslin
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, 19104, USA.,Department of Nutritional Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Scott D Gordon
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
| | - Gu Zhu
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
| | - Danielle R Reed
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, 19104, USA
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, 4072, Australia.,Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
27
|
Galván-Femenía I, Obón-Santacana M, Piñeyro D, Guindo-Martinez M, Duran X, Carreras A, Pluvinet R, Velasco J, Ramos L, Aussó S, Mercader JM, Puig L, Perucho M, Torrents D, Moreno V, Sumoy L, de Cid R. Multitrait genome association analysis identifies new susceptibility genes for human anthropometric variation in the GCAT cohort. J Med Genet 2018; 55:765-778. [PMID: 30166351 PMCID: PMC6252362 DOI: 10.1136/jmedgenet-2018-105437] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 12/22/2022]
Abstract
Background Heritability estimates have revealed an important contribution of SNP variants for most common traits; however, SNP analysis by single-trait genome-wide association studies (GWAS) has failed to uncover their impact. In this study, we applied a multitrait GWAS approach to discover additional factor of the missing heritability of human anthropometric variation. Methods We analysed 205 traits, including diseases identified at baseline in the GCAT cohort (Genomes For Life- Cohort study of the Genomes of Catalonia) (n=4988), a Mediterranean adult population-based cohort study from the south of Europe. We estimated SNP heritability contribution and single-trait GWAS for all traits from 15 million SNP variants. Then, we applied a multitrait-related approach to study genome-wide association to anthropometric measures in a two-stage meta-analysis with the UK Biobank cohort (n=336 107). Results Heritability estimates (eg, skin colour, alcohol consumption, smoking habit, body mass index, educational level or height) revealed an important contribution of SNP variants, ranging from 18% to 77%. Single-trait analysis identified 1785 SNPs with genome-wide significance threshold. From these, several previously reported single-trait hits were confirmed in our sample with LINC01432 (p=1.9×10−9) variants associated with male baldness, LDLR variants with hyperlipidaemia (ICD-9:272) (p=9.4×10−10) and variants in IRF4 (p=2.8×10−57), SLC45A2 (p=2.2×10−130), HERC2 (p=2.8×10−176), OCA2 (p=2.4×10−121) and MC1R (p=7.7×10−22) associated with hair, eye and skin colour, freckling, tanning capacity and sun burning sensitivity and the Fitzpatrick phototype score, all highly correlated cross-phenotypes. Multitrait meta-analysis of anthropometric variation validated 27 loci in a two-stage meta-analysis with a large British ancestry cohort, six of which are newly reported here (p value threshold <5×10−9) at ZRANB2-AS2, PIK3R1, EPHA7, MAD1L1, CACUL1 and MAP3K9. Conclusion Considering multiple-related genetic phenotypes improve associated genome signal detection. These results indicate the potential value of data-driven multivariate phenotyping for genetic studies in large population-based cohorts to contribute to knowledge of complex traits.
Collapse
Affiliation(s)
- Iván Galván-Femenía
- GenomesForLife-GCAT Lab Group, Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Crta. de Can Ruti, Badalona, Catalunya, Spain
| | - Mireia Obón-Santacana
- GenomesForLife-GCAT Lab Group, Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Crta. de Can Ruti, Badalona, Catalunya, Spain.,Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), IDIBELL and CIBERESP, Barcelona, Spain
| | - David Piñeyro
- High Content Genomics and Bioinformatics Unit, Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalunya, Spain
| | - Marta Guindo-Martinez
- Life Sciences - Computational Genomics, Barcelona Supercomputing Center (BSC-CNS), Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona, Spain
| | - Xavier Duran
- GenomesForLife-GCAT Lab Group, Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Crta. de Can Ruti, Badalona, Catalunya, Spain
| | - Anna Carreras
- GenomesForLife-GCAT Lab Group, Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Crta. de Can Ruti, Badalona, Catalunya, Spain
| | - Raquel Pluvinet
- High Content Genomics and Bioinformatics Unit, Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalunya, Spain
| | - Juan Velasco
- GenomesForLife-GCAT Lab Group, Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Crta. de Can Ruti, Badalona, Catalunya, Spain
| | - Laia Ramos
- High Content Genomics and Bioinformatics Unit, Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalunya, Spain
| | - Susanna Aussó
- High Content Genomics and Bioinformatics Unit, Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalunya, Spain
| | - J M Mercader
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, US.,Diabetes Unit and Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, US
| | - Lluis Puig
- Blood Division, Banc de Sang i Teixits, Barcelona, Spain
| | - Manuel Perucho
- Cancer Genetics and Epigenetics Group, Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalunya, Spain
| | - David Torrents
- Life Sciences - Computational Genomics, Barcelona Supercomputing Center (BSC-CNS), Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona, Spain.,ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Catalunya, Spain
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), IDIBELL and CIBERESP, Barcelona, Spain.,Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Lauro Sumoy
- High Content Genomics and Bioinformatics Unit, Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalunya, Spain
| | - Rafael de Cid
- GenomesForLife-GCAT Lab Group, Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Crta. de Can Ruti, Badalona, Catalunya, Spain
| |
Collapse
|
28
|
Mullin BH, Zhu K, Xu J, Brown SJ, Mullin S, Tickner J, Pavlos NJ, Dudbridge F, Walsh JP, Wilson SG. Expression Quantitative Trait Locus Study of Bone Mineral Density GWAS Variants in Human Osteoclasts. J Bone Miner Res 2018; 33:1044-1051. [PMID: 29473973 DOI: 10.1002/jbmr.3412] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 12/23/2022]
Abstract
Osteoporosis is a complex disease with a strong genetic component. Genomewide association studies (GWAS) have been very successful at identifying common genetic variants associated with bone parameters. A recently published study documented the results of the largest GWAS for bone mineral density (BMD) performed to date (n = 142,487), identifying 307 conditionally independent single-nucleotide polymorphisms (SNPs) as associated with estimated BMD (eBMD) at the genomewide significance level. The vast majority of these variants are non-coding SNPs. Expression quantitative trait locus (eQTL) studies using disease-specific cell types have increasingly been integrated with the results from GWAS to identify genes through which the observed GWAS associations are likely mediated. We generated a unique human osteoclast-specific eQTL data set using cells differentiated in vitro from 158 participants. We then used this resource to characterize the 307 recently identified BMD GWAS SNPs for association with nearby genes (±500 kb). After correction for multiple testing, 24 variants were found to be significantly associated with the expression of 32 genes in the osteoclast-like cells. Bioinformatics analysis suggested that these variants and those in strong linkage disequilibrium with them are enriched in regulatory regions. Several of the eQTL associations identified are relevant to genes that present strongly as having a role in bone, particularly IQGAP1, CYP19A1, CTNNB1, and COL6A3. Supporting evidence for many of the associations was obtained from publicly available eQTL data sets. We have also generated strong evidence for the presence of a regulatory region on chromosome 15q21.2 relevant to both the GLDN and CYP19A1 genes. In conclusion, we have generated a unique osteoclast-specific eQTL resource and have used this to identify 32 eQTL associations for recently identified BMD GWAS loci, which should inform functional studies of osteoclast biology. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Benjamin H Mullin
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia.,School of Biomedical Sciences, University of Western Australia, Crawley, Australia
| | - Kun Zhu
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia.,School of Biomedical Sciences, University of Western Australia, Crawley, Australia
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Crawley, Australia
| | - Suzanne J Brown
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Shelby Mullin
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia.,School of Biomedical Sciences, University of Western Australia, Crawley, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, University of Western Australia, Crawley, Australia
| | - Nathan J Pavlos
- School of Biomedical Sciences, University of Western Australia, Crawley, Australia
| | - Frank Dudbridge
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - John P Walsh
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia.,Medical School, University of Western Australia, Crawley, Australia
| | - Scott G Wilson
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia.,School of Biomedical Sciences, University of Western Australia, Crawley, Australia.,Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| |
Collapse
|
29
|
Hirata T, Koga K, Johnson TA, Morino R, Nakazono K, Kamitsuji S, Akita M, Kawajiri M, Kami A, Hoshi Y, Tada A, Ishikawa K, Hine M, Kobayashi M, Kurume N, Fujii T, Kamatani N, Osuga Y. Japanese GWAS identifies variants for bust-size, dysmenorrhea, and menstrual fever that are eQTLs for relevant protein-coding or long non-coding RNAs. Sci Rep 2018; 8:8502. [PMID: 29855537 PMCID: PMC5981393 DOI: 10.1038/s41598-018-25065-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/13/2018] [Indexed: 02/05/2023] Open
Abstract
Traits related to primary and secondary sexual characteristics greatly impact females during puberty and day-to-day adult life. Therefore, we performed a GWAS analysis of 11,348 Japanese female volunteers and 22 gynecology-related phenotypic variables, and identified significant associations for bust-size, menstrual pain (dysmenorrhea) severity, and menstrual fever. Bust-size analysis identified significant association signals in CCDC170-ESR1 (rs6557160; P = 1.7 × 10-16) and KCNU1-ZNF703 (rs146992477; P = 6.2 × 10-9) and found that one-third of known European-ancestry associations were also present in Japanese. eQTL data points to CCDC170 and ZNF703 as those signals' functional targets. For menstrual fever, we identified a novel association in OPRM1 (rs17181171; P = 2.0 × 10-8), for which top variants were eQTLs in multiple tissues. A known dysmenorrhea signal near NGF replicated in our data (rs12030576; P = 1.1 × 10-19) and was associated with RP4-663N10.1 expression, a putative lncRNA enhancer of NGF, while a novel dysmenorrhea signal in the IL1 locus (rs80111889; P = 1.9 × 10-16) contained SNPs previously associated with endometriosis, and GWAS SNPs were most significantly associated with IL1A expression. By combining regional imputation with colocalization analysis of GWAS/eQTL signals along with integrated annotation with epigenomic data, this study further refines the sets of candidate causal variants and target genes for these known and novel gynecology-related trait loci.
Collapse
Affiliation(s)
- Tetsuya Hirata
- Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kaori Koga
- Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | | - Ryoko Morino
- EverGene Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | | | | | | | | | - Azusa Kami
- EverGene Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Yuria Hoshi
- Life Science Group, Healthcare Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Asami Tada
- EverGene Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | | | - Maaya Hine
- LunaLuna Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Miki Kobayashi
- LunaLuna Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Nami Kurume
- LunaLuna Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Tomoyuki Fujii
- Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | | - Yutaka Osuga
- Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
30
|
Curtis EM, Suderman M, Phillips CM, Relton C, Harvey NC. Early-life dietary and epigenetic influences on childhood musculoskeletal health: Update on the UK component of the ALPHABET project. NUTR BULL 2018. [DOI: 10.1111/nbu.12322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- E. M. Curtis
- MRC Lifecourse Epidemiology Unit, University of Southampton; Southampton UK
| | - M. Suderman
- MRC Integrative Epidemiology Unit, University of Bristol; Bristol UK
| | - C. M. Phillips
- HRB Centre for Diet and Health Research, University College Dublin; Dublin Ireland
| | - C. Relton
- MRC Integrative Epidemiology Unit, University of Bristol; Bristol UK
| | - N. C. Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton; Southampton UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust; Southampton UK
| |
Collapse
|
31
|
Peng C, Lou HL, Liu F, Shen J, Lin X, Zeng CP, Long JR, Su KJ, Zhang L, Greenbaum J, Deng WF, Li YM, Deng HW. Enhanced Identification of Potential Pleiotropic Genetic Variants for Bone Mineral Density and Breast Cancer. Calcif Tissue Int 2017; 101:489-500. [PMID: 28761973 PMCID: PMC5796546 DOI: 10.1007/s00223-017-0308-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/22/2017] [Indexed: 10/19/2022]
Abstract
Epidemiological and clinical evidences have shown that bone mineral density (BMD) has a close relationship with breast cancer (BC). They might potentially have a shared genetic basis. By incorporating information about these pleiotropic effects, we may be able to explore more of the traits' total heritability. We applied a recently developed conditional false discovery rate (cFDR) method to the summary statistics from two independent GWASs to identify the potential pleiotropic genetic variants for BMD and BC. By jointly analyzing two large independent GWASs of BMD and BC, we found strong pleiotropic enrichment between them and identified 102 single-nucleotide polymorphisms (SNPs) in BMD and 192 SNPs in BC with cFDR < 0.05, including 230 SNPs that might have been overlooked by the standard GWAS analysis. cFDR-significant genes were enriched in GO terms and KEGG pathways which were crucial to bone metabolism and/or BC pathology (adjP < 0.05). Some cFDR-significant genes were partially validated in the gene expressional validation assay. Strong interactions were found between proteins produced by cFDR-significant genes in the context of biological mechanism of bone metabolism and/or BC etiology. Totally, we identified 7 pleiotropic SNPs that were associated with both BMD and BC (conjunction cFDR < 0.05); CCDC170, ESR1, RANKL, CPED1, and MEOX1 might play important roles in the pleiotropy of BMD and BC. Our study highlighted the significant pleiotropy between BMD and BC and shed novel insight into trait-specific as well as the potentially shared genetic architecture for both BMD and BC.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, People's Republic of China
| | - Hui-Ling Lou
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, People's Republic of China
| | - Feng Liu
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, People's Republic of China
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
| | - Chun-Ping Zeng
- Department of Endocrinology and Metabolism, Affiliated Nanhai Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Ji-Rong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kuan-Jui Su
- Department of Global Statistics and Data Science, School of Public Health and Tropical Medicine, Center for Bioinformatics and Genomics, Tulane University, New Orleans, LA, 70112, USA
| | - Lan Zhang
- Department of Global Statistics and Data Science, School of Public Health and Tropical Medicine, Center for Bioinformatics and Genomics, Tulane University, New Orleans, LA, 70112, USA
| | - Jonathan Greenbaum
- Department of Global Statistics and Data Science, School of Public Health and Tropical Medicine, Center for Bioinformatics and Genomics, Tulane University, New Orleans, LA, 70112, USA
| | - Wei-Feng Deng
- Hunan University of Medicine, Huaihua, 418000, People's Republic of China
| | - Yu-Mei Li
- School of Mathematics and Computational Science, Huaihua University, Huaihua, 418008, Hunan, People's Republic of China
| | - Hong-Wen Deng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China.
- Department of Global Statistics and Data Science, School of Public Health and Tropical Medicine, Center for Bioinformatics and Genomics, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
32
|
Genetic association study identified a 20 kb regulatory element in WLS associated with osteoporosis and bone mineral density in Han Chinese. Sci Rep 2017; 7:13668. [PMID: 29057911 PMCID: PMC5651806 DOI: 10.1038/s41598-017-13932-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/03/2017] [Indexed: 12/23/2022] Open
Abstract
Previous studies have linked the WNT pathway and human skeleton formation; therefore, genes related to WNT might contribute to the onset and development of osteoporosis. In this study, we investigated the potential genetic association of WLS, which encodes an important mediator in the WNT pathway, with osteoporosis and its related quantitative traits in a sample of 6,620 individuals from Han Chinese population. A two-stage approach, with a discovery stage with 859 cases and 1,690 controls and a validation stage with 1,039 cases and 3,032 controls, was applied in the study. Forty SNPs were genotyped in the discovery stage. The intronic SNP rs2566752 was identified to be significantly associated with osteoporosis (ORdiscovery = 0.78, Pdiscovery = 3.73 × 10−5; ORvalidation = 0.80, Pvalidation = 1.96 × 10−5). Two SNPs surrounding rs2566752 (in addition to this SNP itself) were identified to be associated with bone mineral density. In addition, we have identified a 20 kb peak region of H3K27Ac histone mark enrichment between rs2772304 and rs2566752. Our study suggested that WLS is an important locus for osteoporosis and its related quantitative phenotypes in Han Chinese population. Additional sequencing-based studies are needed to investigate the genetic architecture of this regulatory region and its relationship with osteoporosis-related phenotypes.
Collapse
|
33
|
Peng C, Shen J, Lin X, Su KJ, Greenbaum J, Zhu W, Lou HL, Liu F, Zeng CP, Deng WF, Deng HW. Genetic sharing with coronary artery disease identifies potential novel loci for bone mineral density. Bone 2017; 103:70-77. [PMID: 28651948 PMCID: PMC5796548 DOI: 10.1016/j.bone.2017.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 12/30/2022]
Abstract
Bone mineral density (BMD) is a complex trait with high missing heritability. Numerous evidences have shown that BMD variation has a relationship with coronary artery disease (CAD). This relationship may come from a common genetic basis called pleiotropy. By leveraging the pleiotropy with CAD, we may be able to improve the detection power of genetic variants associated with BMD. Using a recently developed conditional false discovery rate (cFDR) method, we jointly analyzed summary statistics from two large independent genome wide association studies (GWAS) of lumbar spine (LS) BMD and CAD. Strong pleiotropic enrichment and 7 pleiotropic SNPs were found for the two traits. We identified 41 SNPs for LS BMD (cFDR<0.05), of which 20 were replications of previous GWASs and 21 were potential novel SNPs that were not reported before. Four genes encompassed by 9 cFDR-significant SNPs were partially validated in the gene expression assay. Further functional enrichment analysis showed that genes corresponding to the cFDR-significant LS BMD SNPs were enriched in GO terms and KEGG pathways that played crucial roles in bone metabolism (adjP<0.05). In protein-protein interaction analysis, strong interactions were found between the proteins produced by the corresponding genes. Our study demonstrated the reliability and high-efficiency of the cFDR method on the detection of trait-associated genetic variants, the present findings shed novel insights into the genetic variability of BMD as well as the shared genetic basis underlying osteoporosis and CAD.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China; Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, China
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Kuan-Jui Su
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
| | - Jonathan Greenbaum
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
| | - Wei Zhu
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
| | - Hui-Ling Lou
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, China
| | - Feng Liu
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, China
| | - Chun-Ping Zeng
- Department of Endocrinology and Metabolism, Affiliated Nanhai Hospital of Southern Medical University, Guangzhou, China
| | | | - Hong-Wen Deng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China; Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA.
| |
Collapse
|