1
|
Zeng Q, Li X, Shi X, Yan S. Partial molecular characterization, expression pattern and polymorphism analysis of MHC I genes in Chinese domestic goose (Anser cygnoides). Genet Mol Biol 2024; 47:e20220252. [PMID: 39012094 PMCID: PMC11249561 DOI: 10.1590/1678-4685-gmb-2022-0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/09/2024] [Indexed: 07/17/2024] Open
Abstract
Major histocompatibility complex (MHC) allelic polymorphism is critically important for mediating antigen presentation in vertebrates. Presently, there are insufficient studies of MHC genetic diversity in domestic Anseriform birds. In this study, we analyzed the expression profile of MHC I genes and screened for MHC I exon 2 polymorphism in one domestic goose population from China using Illumina MiSeq sequencing. The results showed that four MHC I alleles (Ancy-IE2*09/*11/*13/*21) in one goose were identified based on cDNA cloning and sequencing using four primer combinations, and the varying number of cDNA clones implied that these four classical sequences showed differential expression patterns. Through next-generation sequencing, 27 alleles were obtained from 68 geese with 3-10 putative alleles per individual, indicating at least the existence of 5 MHC I loci in the goose. The marked excess of the non-synonymous over the synonymous substitution in the peptide-binding region (PBR) along 27 alleles and five positively selected sites (PSSs) detected around the PBR indicated that balancing selection might be the major force in shaping high MHC variation in the goose. Additionally, IA alleles displaying lower polymorphism were subject to less positive selection pressure than non-IA alleles with a higher level of polymorphism.
Collapse
Affiliation(s)
- Qianqian Zeng
- Qilu University of Technology, School of Bioengineering, State
Key Laboratory of Biobased Material and Green Papermaking, Jinan, Shandong,
China
| | - Xiaojie Li
- Qilu University of Technology, School of Bioengineering, State
Key Laboratory of Biobased Material and Green Papermaking, Jinan, Shandong,
China
| | - Xiaomin Shi
- Qilu University of Technology, School of Bioengineering, State
Key Laboratory of Biobased Material and Green Papermaking, Jinan, Shandong,
China
| | - Shigan Yan
- Qilu University of Technology, School of Bioengineering, State
Key Laboratory of Biobased Material and Green Papermaking, Jinan, Shandong,
China
| |
Collapse
|
2
|
Yang YC, Chu PY, Chen CC, Yang WC, Hsu TH, Gong HY, Liao IC, Huang CW. Transcriptomic Insights and the Development of Microsatellite Markers to Assess Genetic Diversity in the Broodstock Management of Litopenaeus stylirostris. Animals (Basel) 2024; 14:1685. [PMID: 38891732 PMCID: PMC11171113 DOI: 10.3390/ani14111685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
The Pacific blue shrimp (Litopenaeus stylirostris) is a premium product in the international seafood market. However, intensified farming has increased disease incidence and reduced genetic diversity. In this study, we developed a transcriptome database for L. stylirostris and mined microsatellite markers to analyze their genetic diversity. Using the Illumina HiSeq 4000 platform, we identified 53,263 unigenes from muscle, hepatopancreas, the intestine, and lymphoid tissues. Microsatellite analysis identified 36,415 markers from 18,657 unigenes, predominantly dinucleotide repeats. Functional annotation highlighted key disease resistance pathways and enriched categories. The screening and PCR testing of 42 transcriptome-based and 58 literature-based markers identified 40 with successful amplification. The genotyping of 200 broodstock samples revealed that Na, Ho, He, PIC, and FIS values were 3, 0.54 ± 0.05, 0.43 ± 0.09, 0.41 ± 0.22, and 0.17 ± 0.27, respectively, indicating moderate genetic variability and significant inbreeding. Four universal microsatellite markers (CL1472.Contig13, CL517.Contig2, Unigene5692, and Unigene7147) were identified for precise diversity analysis in Pacific blue, Pacific white (Litopenaeus vannamei), and black tiger shrimps (Penaeus monodon). The transcriptome database supports the development of markers and functional gene analysis for selective breeding programs. Our findings underscore the need for an appropriate genetic management system to mitigate inbreeding depression, reduce disease susceptibility, and preserve genetic diversity in farmed shrimp populations.
Collapse
Affiliation(s)
- Ya-Chi Yang
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan; (Y.-C.Y.); (P.-Y.C.); (C.-C.C.); (T.-H.H.); (H.-Y.G.)
| | - Pei-Yun Chu
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan; (Y.-C.Y.); (P.-Y.C.); (C.-C.C.); (T.-H.H.); (H.-Y.G.)
| | - Che-Chun Chen
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan; (Y.-C.Y.); (P.-Y.C.); (C.-C.C.); (T.-H.H.); (H.-Y.G.)
| | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Academia Sinica Road, Sec. 2, Nankang, Taipei 11529, Taiwan;
| | - Te-Hua Hsu
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan; (Y.-C.Y.); (P.-Y.C.); (C.-C.C.); (T.-H.H.); (H.-Y.G.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan;
| | - Hong-Yi Gong
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan; (Y.-C.Y.); (P.-Y.C.); (C.-C.C.); (T.-H.H.); (H.-Y.G.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan;
| | - I Chiu Liao
- Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan;
| | - Chang-Wen Huang
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan; (Y.-C.Y.); (P.-Y.C.); (C.-C.C.); (T.-H.H.); (H.-Y.G.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan;
| |
Collapse
|
3
|
Performance Comparison of Different Approaches in Genotyping MHC-DRB: The Contrast between Single-Locus and Multi-Locus Species. Animals (Basel) 2022; 12:ani12182452. [PMID: 36139311 PMCID: PMC9495155 DOI: 10.3390/ani12182452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Major histocompatibility complex (MHC) genes are widely recognised as valuable markers for wildlife genetic studies given their extreme polymorphism and functional importance in fitness-related traits. Newly developed genotyping methods, which rely on the use of next-generation sequencing (NGS), are gradually replacing traditional cloning and Sanger sequencing methods in MHC genotyping studies. Allele calling in NGS methods remains challenging due to extreme polymorphism and locus multiplication in the MHC coupled with allele amplification bias and the generation of artificial sequences. In this study, we compared the performance of molecular cloning with Illumina and Ion Torrent NGS sequencing in MHC-DRB genotyping of single-locus species (roe deer) and species with multiple DRB loci (red deer) in an attempt to adopt a reliable and straightforward method that does not require complex bioinformatic analyses. Our results show that all methods work similarly well in roe deer, but we demonstrate non-consistency in results across methods in red deer. With Illumina sequencing, we detected a maximum number of alleles in 10 red deer individuals (42), while other methods were somewhat less accurate as they scored 69–81% of alleles detected with Illumina sequencing.
Collapse
|
4
|
Cheng Y, Grueber C, Hogg CJ, Belov K. Improved high-throughput MHC typing for non-model species using long-read sequencing. Mol Ecol Resour 2021; 22:862-876. [PMID: 34551192 PMCID: PMC9293008 DOI: 10.1111/1755-0998.13511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022]
Abstract
The major histocompatibility complex (MHC) plays a critical role in the vertebrate immune system. Accurate MHC typing is critical to understanding not only host fitness and disease susceptibility, but also the mechanisms underlying host‐pathogen co‐evolution. However, due to the high degree of gene duplication and diversification of MHC genes, it is often technically challenging to accurately characterise MHC genetic diversity in non‐model species. Here we conducted a systematic review to identify common issues associated with current widely used MHC typing approaches. Then to overcome these challenges, we developed a long‐read based MHC typing method along with a new analysis pipeline. Our approach enables the sequencing of fully phased MHC alleles spanning all key functional domains and the separation of highly similar alleles as well as the removal of technical artefacts such as PCR heteroduplexes and chimeras. Using this approach, we performed population‐scale MHC typing in the Tasmanian devil (Sarcophilus harrisii), revealing previously undiscovered MHC functional diversity in this endangered species. Our new method provides a better solution for addressing research questions that require high MHC typing accuracy. Since the method is not limited by species or the number of genes analysed, it will be applicable for studying not only the MHC but also other complex gene families.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Catherine Grueber
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.,San Diego Zoo Wildlife Alliance, San Diego, California, USA
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Buckner JC, Jack KM, Melin AD, Schoof VAM, Gutiérrez-Espeleta GA, Lima MGM, Lynch JW. Major histocompatibility complex class II DR and DQ evolution and variation in wild capuchin monkey species (Cebinae). PLoS One 2021; 16:e0254604. [PMID: 34383779 PMCID: PMC8360539 DOI: 10.1371/journal.pone.0254604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022] Open
Abstract
The major histocompatibility complex (MHC) is an important gene complex contributing to adaptive immunity. Studies of platyrrhine MHC have focused on identifying experimental models of immune system function in the equivalent Human Leukocyte Antigen (HLA). These genes have thus been explored primarily in captive platyrrhine individuals from research colonies. However, investigations of standing MHC variation and evolution in wild populations are essential to understanding its role in immunity, sociality and ecology. Capuchins are a promising model group exhibiting the greatest habitat diversity, widest diet breadth and arguably the most social complexity among platyrrhines, together likely resulting in varied immunological challenges. We use high-throughput sequencing to characterize polymorphism in four Class II DR and DQ exons for the first time in seven capuchin species. We find evidence for at least three copies for DQ genes and at least five for DRB, with possible additional unrecovered diversity. Our data also reveal common genotypes that are inherited across our most widely sampled population, Cebus imitator in Sector Santa Rosa, Costa Rica. Notably, phylogenetic analyses reveal that platyrrhine DQA sequences form a monophyletic group to the exclusion of all Catarrhini sequences examined. This result is inconsistent with the trans-species hypothesis for MHC evolution across infraorders in Primates and provides further evidence for the independent origin of current MHC genetic diversity in Platyrrhini. Identical allele sharing across cebid species, and more rarely genera, however, does underscore the complexity of MHC gene evolution and the need for more comprehensive assessments of allelic diversity and genome structure.
Collapse
Affiliation(s)
- Janet C. Buckner
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA, United States of America
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States of America
- * E-mail: (JCB); (JWL)
| | - Katharine M. Jack
- Department of Anthropology, Tulane University, New Orleans, LA, United States of America
| | - Amanda D. Melin
- Department of Anthropology & Archaeology and Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Valérie A. M. Schoof
- Bilingual Biology Program, Glendon College, York University, Toronto, ON, Canada
| | | | - Marcela G. M. Lima
- Laboratory of Conservation Biogeography and Macroecology, Federal University of Pará, Belém, PA, Brazil
| | - Jessica W. Lynch
- Institute for Society and Genetics, University of California, Los Angeles, CA, United States of America
- Department of Anthropology, University of California, Los Angeles, CA, United States of America
- * E-mail: (JCB); (JWL)
| |
Collapse
|
6
|
Genete M, Castric V, Vekemans X. Genotyping and De Novo Discovery of Allelic Variants at the Brassicaceae Self-Incompatibility Locus from Short-Read Sequencing Data. Mol Biol Evol 2021; 37:1193-1201. [PMID: 31688901 DOI: 10.1093/molbev/msz258] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plant self-incompatibility (SI) is a genetic system that prevents selfing and enforces outcrossing. Because of strong balancing selection, the genes encoding SI are predicted to maintain extraordinarily high levels of polymorphism, both in terms of the number of functionally distinct S-alleles that segregate in SI species and in terms of their nucleotide sequence divergence. However, because of these two combined features, documenting polymorphism of these genes also presents important methodological challenges that have so far largely prevented the comprehensive analysis of complete allelic series in natural populations, and also precluded the obtention of complete genic sequences for many S-alleles. Here, we develop a powerful methodological approach based on a computationally optimized comparison of short Illumina sequencing reads from genomic DNA to a database of known nucleotide sequences of the extracellular domain of SRK (eSRK). By examining mapping patterns along the reference sequences, we obtain highly reliable predictions of S-genotypes from individuals collected from natural populations of Arabidopsis halleri. Furthermore, using a de novo assembly approach of the filtered short reads, we obtain full-length sequences of eSRK even when the initial sequence in the database was only partial, and we discover putative new SRK alleles that were not initially present in the database. When including those new alleles in the reference database, we were able to resolve the complete diploid SI genotypes of all individuals. Beyond the specific case of Brassicaceae S-alleles, our approach can be readily applied to other polymorphic loci, given reference allelic sequences are available.
Collapse
Affiliation(s)
- Mathieu Genete
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Vincent Castric
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Xavier Vekemans
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| |
Collapse
|
7
|
MHC Genotyping by SSCP and Amplicon-Based NGS Approach in Chamois. Animals (Basel) 2020; 10:ani10091694. [PMID: 32962183 PMCID: PMC7552744 DOI: 10.3390/ani10091694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 11/17/2022] Open
Abstract
Genes of the major histocompatibility complex (MHC) code for cell surface proteins essential for adaptive immunity. They show the most outstanding genetic diversity in vertebrates, which has been connected with various fitness traits and thus with the long-term persistence of populations. In this study, polymorphism of the MHC class II DRB locus was investigated in chamois with Single-Strand Conformation Polymorphism (SSCP)/Sanger genotyping and Ion Torrent S5 next-generation sequencing (NGS). From eight identified DRB variants in 28 individuals, five had already been described, and three were new, undescribed alleles. With conventional SSCP/Sanger sequencing, we were able to detect seven alleles, all of which were also detected with NGS. We found inconsistencies in the individual genotypes between the two methods, which were mainly caused by allelic dropout in the SSCP/Sanger method. Six out of 28 individuals were falsely classified as homozygous with SSCP/Sanger analysis. Overall, 25% of the individuals were identified as genotyping discrepancies between the two methods. Our results show that NGS technologies are better performing in sequencing highly variable regions such as the MHC, and they also have a higher detection capacity, thus allowing a more accurate description of the genetic composition, which is crucial for evolutionary and population genetic studies.
Collapse
|
8
|
Drea CM. Design, delivery and perception of condition-dependent chemical signals in strepsirrhine primates: implications for human olfactory communication. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190264. [PMID: 32306880 DOI: 10.1098/rstb.2019.0264] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The study of human chemical communication benefits from comparative perspectives that relate humans, conceptually and empirically, to other primates. All major primate groups rely on intraspecific chemosignals, but strepsirrhines present the greatest diversity and specialization, providing a rich framework for examining design, delivery and perception. Strepsirrhines actively scent mark, possess a functional vomeronasal organ, investigate scents via olfactory and gustatory means, and are exquisitely sensitive to chemically encoded messages. Variation in delivery, scent mixing and multimodality alters signal detection, longevity and intended audience. Based on an integrative, 19-species review, the main scent source used (excretory versus glandular) differentiates nocturnal from diurnal or cathemeral species, reflecting differing socioecological demands and evolutionary trajectories. Condition-dependent signals reflect immutable (species, sex, identity, genetic diversity, immunity and kinship) and transient (health, social status, reproductive state and breeding history) traits, consistent with socio-reproductive functions. Sex reversals in glandular elaboration, marking rates or chemical richness in female-dominant species implicate sexual selection of olfactory ornaments in both sexes. Whereas some compounds may be endogenously produced and modified (e.g. via hormones), microbial analyses of different odorants support the fermentation hypothesis of bacterial contribution. The intimate contexts of information transfer and varied functions provide important parallels applicable to olfactory communication in humans. This article is part of the Theo Murphy meeting issue 'Olfactory communication in humans'.
Collapse
Affiliation(s)
- Christine M Drea
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708-0383, USA.,Department of Biology, Duke University, Durham, NC 27708-0383, USA
| |
Collapse
|
9
|
Gaigher A, Burri R, San-Jose LM, Roulin A, Fumagalli L. Lack of statistical power as a major limitation in understanding MHC-mediated immunocompetence in wild vertebrate populations. Mol Ecol 2019; 28:5115-5132. [PMID: 31614047 DOI: 10.1111/mec.15276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 01/09/2023]
Abstract
Disentangling the sources of variation in developing an effective immune response against pathogens is of major interest to immunoecology and evolutionary biology. To date, the link between immunocompetence and genetic variation at the major histocompatibility complex (MHC) has received little attention in wild animals, despite the key role of MHC genes in activating the adaptive immune system. Although several studies point to a link between MHC and immunocompetence, negative findings have also been reported. Such disparate findings suggest that limited statistical power might be affecting studies on this topic, owing to insufficient sample sizes and/or a generally small effect of MHC on the immunocompetence of wild vertebrates. To clarify this issue, we investigated the link between MHC variation and seven immunocompetence proxies in a large sample of barn owls and estimated the effect sizes and statistical power of this and published studies on this topic. We found that MHC poorly explained variation in immunocompetence of barn owls, with small-to-moderate associations between MHC and immunocompetence in owls (effect size: .1 ≥ r ≤ .3) similar to other vertebrates studied to date. Such small-to-moderate effects were largely associated with insufficient power, which was only sufficient (>0.8) to detect moderate-to-large effect sizes (r ≥ .3). Thus, studies linking MHC variation with immunocompetence in wild populations are underpowered to detect MHC effects, which are likely to be of generally small magnitude. Larger sample sizes (>200) will be required to achieve sufficient power in future studies aiming to robustly test for a link between MHC variation and immunocompetence.
Collapse
Affiliation(s)
- Arnaud Gaigher
- Department of Ecology and Evolution, Laboratory for Conservation Biology, Biophore, University of Lausanne, Lausanne, Switzerland.,Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland.,CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Reto Burri
- Department of Population Ecology, Institute of Ecology & Evolution, Friedrich Schiller University Jena, Jena, Germany
| | - Luis M San-Jose
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland.,Laboratoire Évolution & Diversité Biologique, UMR 5174, CNRS, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Alexandre Roulin
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Luca Fumagalli
- Department of Ecology and Evolution, Laboratory for Conservation Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Grogan KE, Harris RL, Boulet M, Drea CM. Genetic variation at MHC class II loci influences both olfactory signals and scent discrimination in ring-tailed lemurs. BMC Evol Biol 2019; 19:171. [PMID: 31438845 PMCID: PMC6704550 DOI: 10.1186/s12862-019-1486-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 07/21/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Diversity at the Major Histocompatibility Complex (MHC) is critical to health and fitness, such that MHC genotype may predict an individual's quality or compatibility as a competitor, ally, or mate. Moreover, because MHC products can influence the components of bodily secretions, an individual's body odors may signal its MHC composition and influence partner identification or mate choice. Here, we investigated MHC-based signaling and recipient sensitivity by testing for odor-gene covariance and behavioral discrimination of MHC diversity and pairwise dissimilarity in a strepsirrhine primate, the ring-tailed lemur (Lemur catta). METHODS First, we coupled genotyping of the MHC class II gene, DRB, with gas chromatography-mass spectrometry of genital gland secretions to investigate if functional genetic diversity is signaled by the chemical diversity of lemur scent secretions. We also assessed if the chemical similarity between individuals correlated with their MHC-DRB similarity. Next, we assessed if lemurs discriminated this chemically encoded, genetic information in opposite-sex conspecifics. RESULTS We found that both sexes signaled overall MHC-DRB diversity and pairwise MHC-DRB similarity via genital secretions, but in a sex- and season-dependent manner. Additionally, the sexes discriminated absolute and relative MHC-DRB diversity in the genital odors of opposite-sex conspecifics, suggesting that lemur genital odors function to advertise genetic quality. CONCLUSIONS In summary, genital odors of ring-tailed lemurs provide honest information about an individual's absolute and relative MHC quality. Complementing evidence in humans and Old World monkeys, we suggest that reliance on scent signals to communicate MHC quality may be important across the primate lineage.
Collapse
Affiliation(s)
- Kathleen E Grogan
- University Program in Ecology, Duke University, Durham, NC, USA.
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.
- Department of Psychology, Emory University, Atlanta, GA, USA.
- Pennsylvania State University, 516 Carpenter Building, University Park, PA, 16802, USA.
| | - Rachel L Harris
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Marylène Boulet
- Department of Biological Sciences, Bishop's University, Sherbrooke, Canada
| | - Christine M Drea
- University Program in Ecology, Duke University, Durham, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, USA
| |
Collapse
|
11
|
Casso M, Turon X, Pascual M. Single zooids, multiple loci: independent colonisations revealed by population genomics of a global invader. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02069-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Montero BK, Refaly E, Ramanamanjato J, Randriatafika F, Rakotondranary SJ, Wilhelm K, Ganzhorn JU, Sommer S. Challenges of next-generation sequencing in conservation management: Insights from long-term monitoring of corridor effects on the genetic diversity of mouse lemurs in a fragmented landscape. Evol Appl 2019; 12:425-442. [PMID: 30828365 PMCID: PMC6383737 DOI: 10.1111/eva.12723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/24/2018] [Accepted: 09/30/2018] [Indexed: 01/30/2023] Open
Abstract
Long-term genetic monitoring of populations is essential for efforts aimed at preserving genetic diversity of endangered species. Here, we employ a framework of long-term genetic monitoring to evaluate the effects of fragmentation and the effectiveness of the establishment of corridors in restoring population connectivity and genetic diversity of mouse lemurs Microcebus ganzhorni. To this end, we supplement estimates of neutral genetic diversity with the assessment of adaptive genetic variability of the major histocompatibility complex (MHC). In addition, we address the challenges of long-term genetic monitoring of functional diversity by comparing the genotyping performance and estimates of MHC variability generated by single-stranded conformation polymorphism (SSCP)/Sanger sequencing with those obtained by high-throughput sequencing (next-generation sequencing [NGS], Illumina), an issue that is particularly relevant when previous work serves as a baseline for planning management strategies that aim to ensure the viability of a population. We report that SSCP greatly underestimates individual diversity and that discrepancies in estimates of MHC diversity attributable to the comparisons of traditional and NGS genotyping techniques can influence the conclusions drawn from conservation management scenarios. Evidence of migration among fragments in Mandena suggests that mouse lemurs are robust to the process of fragmentation and that the effect of corridors is masked by ongoing gene flow. Nonetheless, results based on a larger number of shared private alleles at neutral loci between fragment pairs found after the establishment of corridors in Mandena suggest that gene flow is augmented as a result of enhanced connectivity. Our data point out that despite low effective population size, M. ganzhorni maintains high individual heterozygosity at neutral loci and at MHC II DRB gene and that selection plays a predominant role in maintaining MHC diversity. These findings highlight the importance of long-term genetic monitoring in order to disentangle between the processes of drift and selection maintaining adaptive genetic diversity in small populations.
Collapse
Affiliation(s)
- B. Karina Montero
- Animal Ecology and ConservationHamburg UniversityHamburgGermany
- Institute of Evolutionary Ecology and Conservation GenomicsUniversity of UlmUlmGermany
| | | | | | | | | | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation GenomicsUniversity of UlmUlmGermany
| | | | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation GenomicsUniversity of UlmUlmGermany
| |
Collapse
|
13
|
de Winter II, Qurkhuli T, de Groot N, de Vos-Rouweler AJM, van Hooft P, Heitkönig IMA, Prins HHT, Bontrop RE, Doxiadis GGM. Determining Mhc-DRB profiles in wild populations of three congeneric true lemur species by noninvasive methods. Immunogenetics 2018; 71:97-107. [PMID: 30324236 PMCID: PMC6327083 DOI: 10.1007/s00251-018-1085-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022]
Abstract
The major histocompatibility complex (MHC) is a highly polymorphic and polygenic genomic region that plays a crucial role in immune-related diseases. Given the need for comparative studies on the variability of immunologically important genes among wild populations and species, we investigated the allelic variation of MHC class II DRB among three congeneric true lemur species: the red-fronted lemur (Eulemur rufifrons), red-bellied lemur (Eulemur rubriventer), and black lemur (Eulemur macaco). We noninvasively collected hair and faecal samples from these species across different regions in Madagascar. We assessed DRB exon 2 polymorphism with a newly developed primer set, amplifying nearly all non-synonymous codons of the antigen-binding sites. We defined 26 DRB alleles from 45 individuals (17 alleles from E. rufifrons (N = 18); 5 from E. rubriventer (N = 7); and 4 from E. macaco (N = 20). All detected alleles are novel and show high levels of nucleotide (26.8%) and non-synonymous codon polymorphism (39.4%). In these lemur species, we found neither evidence of a duplication of DRB genes nor a sharing of alleles among sympatric groups or allopatric populations of the same species. The non-sharing of alleles may be the result of a geographical separation over a long time span and/or different pathogen selection pressures. We found dN/dS rates > 1 in the functionally important antigen recognition sites, providing evidence for balancing selection. Especially for small and isolated populations, quantifying and monitoring DRB variation are recommended to establish successful conservation plans that mitigate the possible loss of immunogenetic diversity in lemurs.
Collapse
Affiliation(s)
- Iris I de Winter
- Resource Ecology Group, Wageningen University, Wageningen, The Netherlands. .,Department of Biology, Utrecht University, Utrecht, The Netherlands.
| | - Tamar Qurkhuli
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Nanine de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Annemiek J M de Vos-Rouweler
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Pim van Hooft
- Resource Ecology Group, Wageningen University, Wageningen, The Netherlands
| | | | - Herbert H T Prins
- Resource Ecology Group, Wageningen University, Wageningen, The Netherlands
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands.,Department of Theoretical Biology and Bioinformatics, University of Utrecht, Utrecht, The Netherlands
| | - Gaby G M Doxiadis
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| |
Collapse
|
14
|
Rekdal SL, Anmarkrud JA, Johnsen A, Lifjeld JT. Genotyping strategy matters when analyzing hypervariable major histocompatibility complex-Experience from a passerine bird. Ecol Evol 2018; 8:1680-1692. [PMID: 29435243 PMCID: PMC5792522 DOI: 10.1002/ece3.3757] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 12/26/2022] Open
Abstract
Genotyping of classical major histocompatibility complex (MHC) genes is challenging when they are hypervariable and occur in multiple copies. In this study, we used several different approaches to genotype the moderately variable MHC class I exon 3 (MHCIe3) and the highly polymorphic MHC class II exon 2 (MHCIIβe2) in the bluethroat (Luscinia svecica). Two family groups (eight individuals) were sequenced in replicates at both markers using Ion Torrent technology with both a single- and a dual-indexed primer structure. Additionally, MHCIIβe2 was sequenced on Illumina MiSeq. Allele calling was conducted by modifications of the pipeline developed by Sommer et al. (BMC Genomics, 14, 2013, 542) and the software AmpliSAS. While the different genotyping strategies gave largely consistent results for MHCIe3, with a maximum of eight alleles per individual, MHCIIβe2 was remarkably complex with a maximum of 56 MHCIIβe2 alleles called for one individual. Each genotyping strategy detected on average 50%-82% of all MHCIIβe2 alleles per individual, but dropouts were largely allele-specific and consistent within families for each strategy. The discrepancies among approaches indicate PCR biases caused by the platform-specific primer tails. Further, AmpliSAS called fewer alleles than the modified Sommer pipeline. Our results demonstrate that allelic dropout is a significant problem when genotyping the hypervariable MHCIIβe2. As these genotyping errors are largely nonrandom and method-specific, we caution against comparing genotypes across different genotyping strategies. Nevertheless, we conclude that high-throughput approaches provide a major advance in the challenging task of genotyping hypervariable MHC loci, even though they may not reveal the complete allelic repertoire.
Collapse
|
15
|
Grogan KE, Sauther ML, Cuozzo FP, Drea CM. Genetic wealth, population health: Major histocompatibility complex variation in captive and wild ring-tailed lemurs ( Lemur catta). Ecol Evol 2017; 7:7638-7649. [PMID: 29043021 PMCID: PMC5632616 DOI: 10.1002/ece3.3317] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 12/24/2022] Open
Abstract
Across species, diversity at the major histocompatibility complex (MHC) is critical to individual disease resistance and, hence, to population health; however, MHC diversity can be reduced in small, fragmented, or isolated populations. Given the need for comparative studies of functional genetic diversity, we investigated whether MHC diversity differs between populations which are open, that is experiencing gene flow, versus populations which are closed, that is isolated from other populations. Using the endangered ring-tailed lemur (Lemur catta) as a model, we compared two populations under long-term study: a relatively "open," wild population (n = 180) derived from Bezà Mahafaly Special Reserve, Madagascar (2003-2013) and a "closed," captive population (n = 121) derived from the Duke Lemur Center (DLC, 1980-2013) and from the Indianapolis and Cincinnati Zoos (2012). For all animals, we assessed MHC-DRB diversity and, across populations, we compared the number of unique MHC-DRB alleles and their distributions. Wild individuals possessed more MHC-DRB alleles than did captive individuals, and overall, the wild population had more unique MHC-DRB alleles that were more evenly distributed than did the captive population. Despite management efforts to maintain or increase genetic diversity in the DLC population, MHC diversity remained static from 1980 to 2010. Since 2010, however, captive-breeding efforts resulted in the MHC diversity of offspring increasing to a level commensurate with that found in wild individuals. Therefore, loss of genetic diversity in lemurs, owing to small founder populations or reduced gene flow, can be mitigated by managed breeding efforts. Quantifying MHC diversity within individuals and between populations is the necessary first step to identifying potential improvements to captive management and conservation plans.
Collapse
Affiliation(s)
- Kathleen E. Grogan
- University Program in EcologyDuke UniversityDurhamNCUSA
- Department of Evolutionary AnthropologyDuke UniversityDurhamNCUSA
| | | | - Frank P. Cuozzo
- Lajuma Research CentreLouis Trichardt (Makhado)0920South Africa
| | - Christine M. Drea
- University Program in EcologyDuke UniversityDurhamNCUSA
- Department of Evolutionary AnthropologyDuke UniversityDurhamNCUSA
- Department of BiologyDuke UniversityDurhamNCUSA
| |
Collapse
|
16
|
Kaesler E, Kappeler PM, Brameier M, Demeler J, Kraus C, Rakotoniaina JH, Hämäläinen AM, Huchard E. Shared evolutionary origin of major histocompatibility complex polymorphism in sympatric lemurs. Mol Ecol 2017; 26:5629-5645. [PMID: 28833696 DOI: 10.1111/mec.14336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 07/12/2017] [Accepted: 08/05/2017] [Indexed: 12/11/2022]
Abstract
Genes of the major histocompatibility complex (MHC) play a central role in adaptive immune responses of vertebrates. They exhibit remarkable polymorphism, often crossing species boundaries with similar alleles or allelic motifs shared across species. This pattern may reflect parallel parasite-mediated selective pressures, either favouring the long maintenance of ancestral MHC allelic lineages across successive speciation events by balancing selection ("trans-species polymorphism"), or alternatively favouring the independent emergence of functionally similar alleles post-speciation via convergent evolution. Here, we investigate the origins of MHC similarity across several species of dwarf and mouse lemurs (Cheirogaleidae). We examined MHC class II variation in two highly polymorphic loci (DRB, DQB) and evaluated the overlap of gut-parasite communities in four sympatric lemurs. We tested for parasite-MHC associations across species to determine whether similar parasite pressures may select for similar MHC alleles in different species. Next, we integrated our MHC data with those previously obtained from other Cheirogaleidae to investigate the relative contribution of convergent evolution and co-ancestry to shared MHC polymorphism by contrasting patterns of codon usage at functional vs. neutral sites. Our results indicate that parasites shared across species may select for functionally similar MHC alleles, implying that the dynamics of MHC-parasite co-evolution should be envisaged at the community level. We further show that balancing selection maintaining trans-species polymorphism, rather than convergent evolution, is the primary mechanism explaining shared MHC sequence motifs between species that diverged up to 30 million years ago.
Collapse
Affiliation(s)
- Eva Kaesler
- Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung, Verhaltensökologie & Soziobiologie, Göttingen, Germany
| | - Peter M Kappeler
- Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung, Verhaltensökologie & Soziobiologie, Göttingen, Germany.,Johann Friedrich Blumenbach Institut für Zoologie & Anthropologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Markus Brameier
- Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung, Göttingen, Germany
| | - Janina Demeler
- Institut für Parasitologie und Tropenveterinärmedizin, Berlin, Germany
| | - Cornelia Kraus
- Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung, Verhaltensökologie & Soziobiologie, Göttingen, Germany.,Johann Friedrich Blumenbach Institut für Zoologie & Anthropologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Josué H Rakotoniaina
- Johann Friedrich Blumenbach Institut für Zoologie & Anthropologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Anni M Hämäläinen
- Johann Friedrich Blumenbach Institut für Zoologie & Anthropologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Elise Huchard
- Institute for Evolutionary Biology, Montpellier (ISEM, UMR 5554), CNRS, Université Montpellier, Montpellier Cedex 5, France
| |
Collapse
|
17
|
Integrating Genomic Data Sets for Knowledge Discovery: An Informed Approach to Management of Captive Endangered Species. Int J Genomics 2016; 2016:2374610. [PMID: 27376076 PMCID: PMC4916311 DOI: 10.1155/2016/2374610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 12/31/2022] Open
Abstract
Many endangered captive populations exhibit reduced genetic diversity resulting in health issues that impact reproductive fitness and quality of life. Numerous cost effective genomic sequencing and genotyping technologies provide unparalleled opportunity for incorporating genomics knowledge in management of endangered species. Genomic data, such as sequence data, transcriptome data, and genotyping data, provide critical information about a captive population that, when leveraged correctly, can be utilized to maximize population genetic variation while simultaneously reducing unintended introduction or propagation of undesirable phenotypes. Current approaches aimed at managing endangered captive populations utilize species survival plans (SSPs) that rely upon mean kinship estimates to maximize genetic diversity while simultaneously avoiding artificial selection in the breeding program. However, as genomic resources increase for each endangered species, the potential knowledge available for management also increases. Unlike model organisms in which considerable scientific resources are used to experimentally validate genotype-phenotype relationships, endangered species typically lack the necessary sample sizes and economic resources required for such studies. Even so, in the absence of experimentally verified genetic discoveries, genomics data still provides value. In fact, bioinformatics and comparative genomics approaches offer mechanisms for translating these raw genomics data sets into integrated knowledge that enable an informed approach to endangered species management.
Collapse
|