1
|
Chandra T, Jaiswal S, Tomar RS, Iquebal MA, Kumar D. Realizing visionary goals for the International Year of Millet (IYoM): accelerating interventions through advances in molecular breeding and multiomics resources. PLANTA 2024; 260:103. [PMID: 39304579 DOI: 10.1007/s00425-024-04520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
MAIN CONCLUSION Leveraging advanced breeding and multi-omics resources is vital to position millet as an essential "nutricereal resource," aligning with IYoM goals, alleviating strain on global cereal production, boosting resilience to climate change, and advancing sustainable crop improvement and biodiversity. The global challenges of food security, nutrition, climate change, and agrarian sustainability demand the adoption of climate-resilient, nutrient-rich crops to support a growing population amidst shifting environmental conditions. Millets, also referred to as "Shree Anna," emerge as a promising solution to address these issues by bolstering food production, improving nutrient security, and fostering biodiversity conservation. Their resilience to harsh environments, nutritional density, cultural significance, and potential to enhance dietary quality index made them valuable assets in global agriculture. Recognizing their pivotal role, the United Nations designated 2023 as the "International Year of Millets (IYoM 2023)," emphasizing their contribution to climate-resilient agriculture and nutritional enhancement. Scientific progress has invigorated efforts to enhance millet production through genetic and genomic interventions, yielding a wealth of advanced molecular breeding technologies and multi-omics resources. These advancements offer opportunities to tackle prevailing challenges in millet, such as anti-nutritional factors, sensory acceptability issues, toxin contamination, and ancillary crop improvements. This review provides a comprehensive overview of molecular breeding and multi-omics resources for nine major millet species, focusing on their potential impact within the framework of IYoM. These resources include whole and pan-genome, elucidating adaptive responses to abiotic stressors, organelle-based studies revealing evolutionary resilience, markers linked to desirable traits for efficient breeding, QTL analysis facilitating trait selection, functional gene discovery for biotechnological interventions, regulatory ncRNAs for trait modulation, web-based platforms for stakeholder communication, tissue culture techniques for genetic modification, and integrated omics approaches enabled by precise application of CRISPR/Cas9 technology. Aligning these resources with the seven thematic areas outlined by IYoM catalyzes transformative changes in millet production and utilization, thereby contributing to global food security, sustainable agriculture, and enhanced nutritional consequences.
Collapse
Affiliation(s)
- Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Rukam Singh Tomar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, 110012, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| |
Collapse
|
2
|
Dong S, Chen T, Xi R, Gao S, Li G, Zhou X, Song X, Ma Y, Hu C, Yuan X. Crop Safety and Weed Control of Foliar Application of Penoxsulam in Foxtail Millet. PLANTS (BASEL, SWITZERLAND) 2024; 13:2296. [PMID: 39204732 PMCID: PMC11359421 DOI: 10.3390/plants13162296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Grass damage has become an important factor restricting foxtail millet production; chemical weeding can help resolve this issue. However, special herbicides in foxtail millet fields are lacking. Penoxsulam has a broad weed control spectrum and a good control effect. In this project, Jingu 21 was used as the test material, and five different concentrations of penoxsulam were used for spraying test in the three-five leaf stage. In this experiment, the effects on the growth of foxtail millet were discussed by measuring the agronomic characters and antioxidant capacity of foxtail millet after spraying penoxsulam. The results showed that: (1) penoxsulam is particularly effective in controlling Amaranthus retroflexus L. (A. retroflexus) and Echinochloa crus-galli (L.) Beauv. (E. crus-galli), but is ineffective in controlling Chenopodium album L. (C. album) and Digitaria sanguinalis (L.) Scop. (D. sanguinalis); (2) the stem diameter, fresh weight, and dry weight of the above-ground parts decreased with the increase in spraying amount; (3) as the spraying dosage increased, the superoxide (SOD), peroxidase (POD), and catalase (CAT) activities in the foxtail millet initially increased and subsequently decreased; the malonaldehyde (MDA) content increased. Our experiment found that 1/2X and 1X spraying dosages had certain application value in controlling gramineous weeds in foxtail millet field. Other spraying dosages are not recommended as they may harm the crops. Our findings provide reference for identifying new herbicides in the foxtail millet field.
Collapse
Affiliation(s)
- Shuqi Dong
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030800, China; (S.D.); (T.C.); (R.X.); (S.G.); (G.L.); (X.S.)
| | - Tingting Chen
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030800, China; (S.D.); (T.C.); (R.X.); (S.G.); (G.L.); (X.S.)
| | - Ruize Xi
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030800, China; (S.D.); (T.C.); (R.X.); (S.G.); (G.L.); (X.S.)
| | - Shulin Gao
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030800, China; (S.D.); (T.C.); (R.X.); (S.G.); (G.L.); (X.S.)
| | - Gaofeng Li
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030800, China; (S.D.); (T.C.); (R.X.); (S.G.); (G.L.); (X.S.)
| | - Xuena Zhou
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030800, China;
| | - Xie Song
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030800, China; (S.D.); (T.C.); (R.X.); (S.G.); (G.L.); (X.S.)
| | - Yongqing Ma
- Institute of Soil and Water Conservation, Chinese Academy of Sciences (CAS) & Ministry of Water Resources (MWR), Xianyang 712100, China;
| | - Chunyan Hu
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030800, China;
| | - Xiangyang Yuan
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030800, China; (S.D.); (T.C.); (R.X.); (S.G.); (G.L.); (X.S.)
| |
Collapse
|
3
|
Zhang W, Lu Z, Guo T, Yuan C, Liu J. Construction of a high-density genetic map and QTL localization of body weight and wool production related traits in Alpine Merino sheep based on WGR. BMC Genomics 2024; 25:641. [PMID: 38937677 PMCID: PMC11212225 DOI: 10.1186/s12864-024-10535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND The Alpine Merino is a new breed of fine-wool sheep adapted to the cold and arid climate of the plateau in the world. It has been popularized in Northwest China due to its superior adaptability as well as excellent production performance. Those traits related to body weight, wool yield, and wool fiber characteristics, which are economically essential traits in Alpine Merino sheep, are controlled by QTL (Quantitative Trait Loci). Therefore, the identification of QTL and genetic markers for these key economic traits is a critical step in establishing a MAS (Marker-Assisted Selection) breeding program. RESULTS In this study, we constructed the high-density genetic linkage map of Alpine Merino sheep by sequencing 110 F1 generation individuals using WGR (Whole Genome Resequencing) technology. 14,942 SNPs (Single Nucleotide Polymorphism) were identified and genotyped. The map spanned 2,697.86 cM, with an average genetic marker interval of 1.44 cM. A total of 1,871 high-quality SNP markers were distributed across 27 linkage groups, with an average of 69 markers per LG (Linkage Group). Among them, the smallest genetic distance is 19.62 cM for LG2, while the largest is 237.19 cM for LG19. The average genetic distance between markers in LGs ranged from 0.24 cM (LG2) to 3.57 cM (LG17). The marker density in the LGs ranged from LG14 (39 markers) to LG1 (150 markers). CONCLUSIONS The first genetic map of Alpine Merino sheep we constructed included 14,942 SNPs, while 46 QTLs associated with body weight, wool yield and wool fiber traits were identified, laying the foundation for genetic studies and molecular marker-assisted breeding. Notably, there were QTL intervals for overlapping traits on LG4 and LG8, providing potential opportunities for multi-trait co-breeding and further theoretical support for selection and breeding of ultra-fine and meaty Alpine Merino sheep.
Collapse
Affiliation(s)
- Wentao Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Tingting Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| |
Collapse
|
4
|
Jiang Y, Dong L, Li H, Liu Y, Wang X, Liu G. Genetic linkage map construction and QTL analysis for plant height in proso millet (Panicum miliaceum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:78. [PMID: 38466414 DOI: 10.1007/s00122-024-04576-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024]
Abstract
KEY MESSAGE A genetic linkage map representing proso millet genome was constructed with SSR markers, and a major QTL corresponding to plant height was mapped on chromosome 14 of this map. Proso millet (Panicum miliaceum L.) has the lowest water requirements of all cultivated cereal crops. However, the lack of a genetic map and the paucity of genomic resources for this species have limited the utility of proso millet for detailed genetic studies and hampered genetic improvement programs. In this study, 97,317 simple sequence repeat (SSR) markers were developed based on the genome sequence of the proso millet landrace Longmi 4. Using some of these markers in conjunction with previously identified SSRs, an SSR-based linkage map for proso millet was successfully constructed using a large mapping population (316 F2 offspring). In total, 186 SSR markers were assigned to 18 linkage groups corresponding to the haploid chromosomes. The constructed map had a total length of 3033.42 centimorgan (cM) covering 78.17% of the assembled reference genome. The length of the 18 linkage groups ranged from 88.89 cM (Chr. 15) to 274.82 cM (Chr. 16), with an average size of 168.17 cM. To our knowledge, this is the first genetic linkage map for proso millet based on SSR markers. Plant height is one of the most important traits in crop improvement. A major QTL was repeatedly detected in different environments, explaining 8.70-24.50% of the plant height variations. A candidate gene affecting auxin biosynthesis and transport, and ROS homeostasis regulation was predicted. Thus, the linkage map and QTL analysis provided herein will promote the development of gene mining and molecular breeding in proso millet.
Collapse
Affiliation(s)
- Yanmiao Jiang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Li Dong
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Haiquan Li
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Yanan Liu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Xindong Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
| | - Guoqing Liu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China.
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China.
| |
Collapse
|
5
|
Liu T, Liu X, He J, Dong K, Zhang L, Li Y, Ren R, Yang T. Comparative transcriptome analysis and genetic dissection of vegetative branching traits in foxtail millet (Setaria italica). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:39. [PMID: 38294546 DOI: 10.1007/s00122-023-04524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024]
Abstract
KEY MESSAGE Two major genetic loci, qTN5.1 and qAB9.1, were identified and finely mapped to the 255 Kb region with one potential candidate gene for tiller number and the 521 Kb region with eight candidate genes for axillary branch number, respectively. Vegetative branching including tillering and axillary branching are vital traits affecting both the plant architecture and the biomass in cereal crops. However, the mechanism underlying the formation of vegetative branching in foxtail millet is largely unknown. Here, a foxtail millet cultivar and its bushy wild relative Setaria viridis accession were used to construct segregating populations to identify candidate genes regulating tiller number and axillary branch number. Transcriptome analysis using vegetative branching bud samples of parental accessions was performed, and key differentially expressed genes and pathways regulating vegetative branching were pointed out. Bulk segregant analysis on their F2:3 segregating population was carried out, and a major QTL for tiller number (qTN5.1) and two major QTLs for axillary branch number (qAB2.1 and qAB9.1) were detected. Fine-mapping strategy was further performed on F2:4 segregate population, and Seita.5G356600 encoding β-glucosidase 11 was identified as the promising candidate gene for qTN5.1, and eight genes, especially Seita.9G125300 and Seita.9G125400 annotated as B-S glucosidase 44, were finally identified as candidate genes for regulating axillary branching. Findings in this study will help to elucidate the genetic basis of the vegetative branching formation of foxtail millet and lay a foundation for breeding foxtail millet varieties with ideal vegetative branching numbers.
Collapse
Affiliation(s)
- Tianpeng Liu
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Xueying Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Jihong He
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Kongjun Dong
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Lei Zhang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Yawei Li
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Ruiyu Ren
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Tianyu Yang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China.
| |
Collapse
|
6
|
Jaiswal V, Bandyopadhyay T, Singh RK, Gahlaut V, Muthamilarasan M, Prasad M. Multi-environment GWAS identifies genomic regions underlying grain nutrient traits in foxtail millet (Setaria italica). PLANT CELL REPORTS 2023; 43:6. [PMID: 38127149 DOI: 10.1007/s00299-023-03127-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
KEY MESSAGE A total of 104 foxtail millet accessions were evaluated for 11 nutrients in three environments and 67 high-confidence marker-trait associations (MTAs) were identified. Six SNPs showed pleiotropic effect and associated with two or more nutrients, whereas 24 candidate genes were identified for 28 MTAs involving seven traits. Millets are known for their better nutritional profiles compared to major cereals. Foxtail millet (Setaria italica) is rich in nutrients essential to circumvent malnutrition and hidden hunger. However, the genetic determinants underlying this trait remain elusive. In this context, we evaluated 104 diverse foxtail millet accessions in three different environments (E1, E2, and E3) for 11 nutrients and genotyped with 30K SNPs. The genome-wide association study showed 67 high-confidence (Bonferroni-corrected) marker-trait associations (MTAs) for the nutrients except for phosphorus. Six pleiotropic SNPs were also identified, which were associated with two or more nutrients. Around 24 candidate genes (CGs) were identified for 28 MTAs involving seven nutrients. A total of 17 associated SNPs were present within the gene region, and five (5) were mapped in the exon of the CGs. Significant SNPs, desirable alleles and CGs identified in the present study will be useful in breeding programmes for trait improvement.
Collapse
Affiliation(s)
- Vandana Jaiswal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.
| | | | | | - Vijay Gahlaut
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Department of Biotechnology, University Center for Research and Development, Chandigarh University, Gharuan, Mohali, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India.
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
- Department of Genetics, University of Delhi South Campus, New Delhi, India.
| |
Collapse
|
7
|
Feng Y, Yang C, Zhang J, Qiao J, Wang B, Zhao Y. Construction of a High-Density Paulownia Genetic Map and QTL Mapping of Important Phenotypic Traits Based on Genome Assembly and Whole-Genome Resequencing. Int J Mol Sci 2023; 24:15647. [PMID: 37958630 PMCID: PMC10647314 DOI: 10.3390/ijms242115647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Quantitative trait locus (QTL) mapping based on a genetic map is a very effective method of marker-assisted selection in breeding, and whole-genome resequencing is one of the useful methods to obtain high-density genetic maps. In this study, the hybrid assembly of Illumina, PacBio, and chromatin interaction mapping data was used to construct high-quality chromosomal genome sequences of Paulownia fortunei, with a size of 476.82 Mb, a heterozygosity of 0.52%, and a contig and scaffold N50s of 7.81 Mb and 21.81 Mb, respectively. Twenty scaffolds with a total length of 437.72 Mb were assembled into 20 pseudochromosomes. Repeat sequences with a total length of 243.96 Mb accounted for 51.16% of the entire genome. In all, 26,903 protein-coding gene loci were identified, and 26,008 (96.67%) genes had conserved functional motifs. Further comparative genomics analysis preliminarily showed that the split of P. fortunei with Tectona grandis likely occurred 38.8 (33.3-45.1) million years ago. Whole-genome resequencing was used to construct a merged genetic map of 20 linkage groups, with 2993 bin markers (3,312,780 SNPs), a total length of 1675.14 cm, and an average marker interval of 0.56 cm. In total, 73 QTLs for important phenotypic traits were identified (19 major QTLs with phenotypic variation explained ≥ 10%), including 10 for the diameter at breast height, 7 for the main trunk height, and 56 for branch-related traits. These results not only enrich P. fortunei genomic data but also form a solid foundation for fine QTL mapping and key marker/gene mining of Paulownia, which is of great significance for the directed genetic improvement of these species.
Collapse
Affiliation(s)
- Yanzhi Feng
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Y.F.); (C.Y.); (J.Z.); (J.Q.)
- Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Chaowei Yang
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Y.F.); (C.Y.); (J.Z.); (J.Q.)
- Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Jiajia Zhang
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Y.F.); (C.Y.); (J.Z.); (J.Q.)
- Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Jie Qiao
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Y.F.); (C.Y.); (J.Z.); (J.Q.)
- Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Baoping Wang
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Y.F.); (C.Y.); (J.Z.); (J.Q.)
- Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Yang Zhao
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Y.F.); (C.Y.); (J.Z.); (J.Q.)
- Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| |
Collapse
|
8
|
Krishna TPA, Veeramuthu D, Maharajan T, Soosaimanickam M. The Era of Plant Breeding: Conventional Breeding to Genomics-assisted Breeding for Crop Improvement. Curr Genomics 2023; 24:24-35. [PMID: 37920729 PMCID: PMC10334699 DOI: 10.2174/1389202924666230517115912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 11/04/2023] Open
Abstract
Plant breeding has made a significant contribution to increasing agricultural production. Conventional breeding based on phenotypic selection is not effective for crop improvement. Because phenotype is considerably influenced by environmental factors, which will affect the selection of breeding materials for crop improvement. The past two decades have seen tremendous progress in plant breeding research. Especially the availability of high-throughput molecular markers followed by genomic-assisted approaches significantly contributed to advancing plant breeding. Integration of speed breeding with genomic and phenomic facilities allowed rapid quantitative trait loci (QTL)/gene identifications and ultimately accelerated crop improvement programs. The advances in sequencing technology helps to understand the genome organization of many crops and helped with genomic selection in crop breeding. Plant breeding has gradually changed from phenotype-to-genotype-based to genotype-to-phenotype-based selection. High-throughput phenomic platforms have played a significant role in the modern breeding program and are considered an essential part of precision breeding. In this review, we discuss the rapid advance in plant breeding technology for efficient crop improvements and provide details on various approaches/platforms that are helpful for crop improvement. This review will help researchers understand the recent developments in crop breeding and improvements.
Collapse
Affiliation(s)
| | - Duraipandiyan Veeramuthu
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, India
| | - Theivanayagam Maharajan
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, India
| | - Mariapackiam Soosaimanickam
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, India
- Department of Advanced Zoology & Biotechnology, Loyola College, Nungambakkam, Chennai, 600034, India
| |
Collapse
|
9
|
Lydia Pramitha J, Ganesan J, Francis N, Rajasekharan R, Thinakaran J. Revitalization of small millets for nutritional and food security by advanced genetics and genomics approaches. Front Genet 2023; 13:1007552. [PMID: 36699471 PMCID: PMC9870178 DOI: 10.3389/fgene.2022.1007552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
Small millets, also known as nutri-cereals, are smart foods that are expected to dominate food industries and diets to achieve nutritional security. Nutri-cereals are climate resilient and nutritious. Small millet-based foods are becoming popular in markets and are preferred for patients with celiac and diabetes. These crops once ruled as food and fodder but were pushed out of mainstream cultivation with shifts in dietary habits to staple crops during the green revolution. Nevertheless, small millets are rich in micronutrients and essential amino acids for regulatory activities. Hence, international and national organizations have recently aimed to restore these lost crops for their desirable traits. The major goal in reviving these crops is to boost the immune system of the upcoming generations to tackle emerging pandemics and disease infestations in crops. Earlier periods of civilization consumed these crops, which had a greater significance in ethnobotanical values. Along with nutrition, these crops also possess therapeutic traits and have shown vast medicinal use in tribal communities for the treatment of diseases like cancer, cardiovascular disease, and gastrointestinal issues. This review highlights the significance of small millets, their values in cultural heritage, and their prospects. Furthermore, this review dissects the nutritional and therapeutic traits of small millets for developing sustainable diets in near future.
Collapse
Affiliation(s)
- J. Lydia Pramitha
- Karunya Institute of Technology and Sciences, Coimbatore, India,*Correspondence: J. Lydia Pramitha,
| | - Jeeva Ganesan
- Tamil Nadu Agricultural University, Coimbatore, India
| | - Neethu Francis
- Karunya Institute of Technology and Sciences, Coimbatore, India
| | | | | |
Collapse
|
10
|
Feng Z, Zhao J, Nie M, Qu F, Li X, Wang J. Effects of exogenous auxin on yield in foxtail millet ( Setaria italica L.) when applied at the grain-filling stage. FRONTIERS IN PLANT SCIENCE 2023; 13:1019152. [PMID: 36684766 PMCID: PMC9846363 DOI: 10.3389/fpls.2022.1019152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Foxtail millet (Setaria italica L.) is of high nutritious value, which is an important crop in arid and semi-arid regions. The objective of this experiment was to explore the effects of the synthetic auxin naphthalene acetic acid (NAA) on the physiological processes of foxtail millet, and to provide a theoretical basis and technical approaches for its efficient use in millet cultivation. Two foxtail millet varieties ('Jingu 21' and 'Zhangzagu 5') were treated with six concentrations of NAA from 0-144 mg L-1 at the grain-filling stage in field experiments. The photosynthetic pigment contents, gas exchange parameters, chlorophyll fluorescence parameters, and grain yield were measured in foxtail millet. The results showed that low concentrations of NAA (18-36 mg L-1) increased the contents of photosynthetic pigments, and increased the activities of antioxidant enzymes, the photosynthetic rate, and the activity of photosystem system II (PS II). At higher NAA concentrations, the facilitation effect of the treatments diminished, showing a clear concentration effect. In this study, yield was significantly and positively correlated with PS II effective quantum yield (Y(II)) and the PSII electron transport rate (ETR), and the net photosynthetic rate (Pn) was significantly and positively correlated with chlorophyll content, stomatal conductance (Gs), Y(II), and ETR. These results also indicated that exogenous NAA application promotes the production of ATP and NADPH by increasing the efficiency of electron transfer within the photosystems and also improved photochemical utilization, which facilitates the fixation and reduction of carbon, ultimately leading to an increase in Pn and increasing grain yield in foxtail millet.
Collapse
Affiliation(s)
| | | | | | | | - Xin Li
- *Correspondence: Xin Li, ; Juanling Wang,
| | | |
Collapse
|
11
|
The Integration of Genome-Wide Association Study and Homology Analysis to Explore the Genomic Regions and Candidate Genes for Panicle-Related Traits in Foxtail Millet. Int J Mol Sci 2022; 23:ijms232314735. [PMID: 36499063 PMCID: PMC9741022 DOI: 10.3390/ijms232314735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Panicle traits are important factors affecting yield, and their improvement has long been a critical goal in foxtail millet breeding. In order to understand the genetic basis of panicle formation, a large-scale genome-wide association study (GWAS) was performed in this study for six panicle-related traits based on 706,646 high-polymorphism SNP loci in 407 accessions. As a result, 87 quantitative trait loci (QTL) regions with a physical distance of less than 100 kb were detected to be associated with these traits in three environments. Among them, 27 core regions were stably detected in at least two environments. Based on rice-foxtail millet homologous comparison, expression, and haplotype analysis, 27 high-confidence candidate genes in the QTL regions, such as Si3g11200 (OsDER1), Si1g27910 (OsMADS6), Si7g27560 (GS5), etc., affected panicle-related traits by involving multiple plant growth regulator pathways, a photoperiod response, as well as panicle and grain development. Most of these genes showed multiple effects on different panicle-related traits, such as Si3g11200 affecting all six traits. In summary, this study clarified a strategy based on the integration of GWAS, a homologous comparison, and haplotype analysis to discover the genomic regions and candidate genes for important traits in foxtail millet. The detected QTL regions and candidate genes could be further used for gene clone and marker-assisted selection in foxtail millet breeding.
Collapse
|
12
|
Aggarwal PR, Pramitha L, Choudhary P, Singh RK, Shukla P, Prasad M, Muthamilarasan M. Multi-omics intervention in Setaria to dissect climate-resilient traits: Progress and prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:892736. [PMID: 36119586 PMCID: PMC9470963 DOI: 10.3389/fpls.2022.892736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Millets constitute a significant proportion of underutilized grasses and are well known for their climate resilience as well as excellent nutritional profiles. Among millets, foxtail millet (Setaria italica) and its wild relative green foxtail (S. viridis) are collectively regarded as models for studying broad-spectrum traits, including abiotic stress tolerance, C4 photosynthesis, biofuel, and nutritional traits. Since the genome sequence release, the crop has seen an exponential increase in omics studies to dissect agronomic, nutritional, biofuel, and climate-resilience traits. These studies have provided first-hand information on the structure, organization, evolution, and expression of several genes; however, knowledge of the precise roles of such genes and their products remains elusive. Several open-access databases have also been instituted to enable advanced scientific research on these important crops. In this context, the current review enumerates the contemporary trend of research on understanding the climate resilience and other essential traits in Setaria, the knowledge gap, and how the information could be translated for the crop improvement of related millets, biofuel crops, and cereals. Also, the review provides a roadmap for studying other underutilized crop species using Setaria as a model.
Collapse
Affiliation(s)
- Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Lydia Pramitha
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Pooja Choudhary
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | | | - Pooja Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Manoj Prasad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
13
|
Liu T, He J, Dong K, Wang X, Zhang L, Ren R, Huang S, Sun X, Pan W, Wang W, Yang P, Yang T, Zhang Z. Genome-wide identification of quantitative trait loci for morpho-agronomic and yield-related traits in foxtail millet (Setaria italica) across multi-environments. Mol Genet Genomics 2022; 297:873-888. [PMID: 35451683 PMCID: PMC9130181 DOI: 10.1007/s00438-022-01894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/31/2022] [Indexed: 11/21/2022]
Abstract
Foxtail millet (Setaria italica) is an ideal model of genetic system for functional genomics of the Panicoideae crop. Identification of QTL responsible for morpho-agronomic and yield-related traits facilitates dissection of genetic control and breeding in cereal crops. Here, based on a Yugu1 × Longgu7 RIL population and genome-wide resequencing data, an updated linkage map harboring 2297 bin and 74 SSR markers was constructed, spanning 1315.1 cM with an average distance of 0.56 cM between adjacent markers. A total of 221 QTL for 17 morpho-agronomic and yield-related traits explaining 5.5 ~ 36% of phenotypic variation were identified across multi-environments. Of these, 109 QTL were detected in two to nine environments, including the most stable qLMS6.1 harboring a promising candidate gene Seita.6G250500, of which 70 were repeatedly identified in different trials in the same geographic location, suggesting that foxtail millet has more identical genetic modules under the similar ecological environment. One hundred-thirty QTL with overlapping intervals formed 22 QTL clusters. Furthermore, six superior recombinant inbred lines, RIL35, RIL48, RIL77, RIL80, RIL115 and RIL125 with transgressive inheritance and enrichment of favorable alleles in plant height, tiller, panicle morphology and yield related-traits were screened by hierarchical cluster. These identified QTL, QTL clusters and superior lines lay ground for further gene-trait association studies and breeding practice in foxtail millet.
Collapse
Affiliation(s)
- Tianpeng Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Jihong He
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Kongjun Dong
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Xuewen Wang
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA, 30601, USA
| | - Lei Zhang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Ruiyu Ren
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Sha Huang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Xiaoting Sun
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Wanxiang Pan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenwen Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Peng Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Tianyu Yang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China.
| | - Zhengsheng Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
14
|
Ajeesh Krishna TP, Maharajan T, Ceasar SA. Improvement of millets in the post-genomic era. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:669-685. [PMID: 35465206 PMCID: PMC8986959 DOI: 10.1007/s12298-022-01158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 05/16/2023]
Abstract
Millets are food and nutrient security crops in the semi-arid tropics of developing countries. Crop improvement using modern tools is one of the priority areas of research in millets. The whole-genome sequence (WGS) of millets provides new insight into understanding and studying the genes, genome organization and genomic-assisted improvement of millets. The WGS of millets helps to carry out genome-wide comparison and co-linearity studies among millets and other cereal crops. This approach might lead to the identification of genes underlying biotic and abiotic stress tolerance in millets. The available genome sequence of millets can be used for SNP identification, allele discovery, association and linkage mapping, identification of valuable candidate genes, and marker-assisted breeding (MAB) programs. Next generation sequencing (NGS) technology provides opportunities for genome-assisted breeding (GAB) through genomic selection (GS) and genome-wide association studies (GAWS) for crop improvement. Clustered, regularly interspaced, short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) genome editing (GE) system provides new opportunities for millet improvement. In this review, we discuss the details on the WGS available for millets and highlight the importance of utilizing such resources in the post-genomic era for millet improvement. We also draw inroads on the utilization of various approaches such as GS, GWAS, functional genomics, gene validation and GE for millet improvement. This review might be helpful for understanding the developments in the post-genomic era of millet improvement.
Collapse
Affiliation(s)
- T P Ajeesh Krishna
- Department of Biosciences, Rajagiri College of Social Sciences, 683104 Kochi, Kerala India
| | - T Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences, 683104 Kochi, Kerala India
| | - S Antony Ceasar
- Department of Biosciences, Rajagiri College of Social Sciences, 683104 Kochi, Kerala India
| |
Collapse
|
15
|
Du X, Wang ·Z, Han ·K, Lian ·S, Li ·Y, Zhang ·L, Guo ·E, Wang J. Fine mapping of qPH9, a major quantitative trait locus, responsible for plant height in foxtail millet [ Setaria italica (L.) P. Beauv.]. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:77. [PMID: 37309515 PMCID: PMC10236064 DOI: 10.1007/s11032-021-01261-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/21/2021] [Indexed: 06/14/2023]
Abstract
Plant height is vital for crop yield by influencing plant architecture and resistance to lodging. Although lots of quantitative trait loci (QTLs) controlling plant height had been mapped in foxtail millet, their contributions to phenotypic variation were generally small and mapping regions were relatively large, indicating the difficult application in molecular breeding using marker-assisted selection (MAS). In the present paper, a total of 23 QTLs involving in 15 traits were identified via a high-density Bin map containing 3024 Bin markers with an average distance of 0.48 cM through an F2 population. Among them, qPH9, with a large phenotypic variation explained (51.6%) related to plant height, was one of the major QTLs. Furthermore, qPH9 was repeatedly detected in multi-environments under field conditions using two new developed F2 populations from the same F1 plant, and was narrowed down to a smaller interval of 281 kb using 1024 recessive F2 individuals from the same F1 plant. Finally, we found that there was an extremely significant correlation between marker MRI1016 and plant height, and further speculated that Seita.9G088900 and Seita.9G089700 could be key candidates of qPH9. This study laid an important foundation for the cloning of qPH9 and molecular breeding of dwarf varieties via MAS. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01261-w.
Collapse
Affiliation(s)
- Xiaofen Du
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Millet Research Institute, Shanxi Agricultural University, Changzhi, 046011 China
| | - ·Zhilan Wang
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Millet Research Institute, Shanxi Agricultural University, Changzhi, 046011 China
| | - ·Kangni Han
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Millet Research Institute, Shanxi Agricultural University, Changzhi, 046011 China
| | - ·Shichao Lian
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Millet Research Institute, Shanxi Agricultural University, Changzhi, 046011 China
| | - ·Yuxin Li
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Millet Research Institute, Shanxi Agricultural University, Changzhi, 046011 China
| | - ·Linyi Zhang
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Millet Research Institute, Shanxi Agricultural University, Changzhi, 046011 China
| | - ·Erhu Guo
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Millet Research Institute, Shanxi Agricultural University, Changzhi, 046011 China
| | - Jun Wang
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Millet Research Institute, Shanxi Agricultural University, Changzhi, 046011 China
| |
Collapse
|
16
|
Zhi H, He Q, Tang S, Yang J, Zhang W, Liu H, Jia Y, Jia G, Zhang A, Li Y, Guo E, Gao M, Li S, Li J, Qin N, Zhu C, Ma C, Zhang H, Chen G, Zhang W, Wang H, Qiao Z, Li S, Cheng R, Xing L, Wang S, Liu J, Liu J, Diao X. Genetic control and phenotypic characterization of panicle architecture and grain yield-related traits in foxtail millet (Setaria italica). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3023-3036. [PMID: 34081150 DOI: 10.1007/s00122-021-03875-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Multi-environment QTL mapping identified 23 stable loci and 34 co-located QTL clusters for panicle architecture and grain yield-related traits, which provide a genetic basis for foxtail millet yield improvement. Panicle architecture and grain weight, both of which are influenced by genetic and environmental factors, have significant effects on grain yield potential. Here, we used a recombinant inbred line (RIL) population of 333 lines of foxtail millet, which were grown in 13 trials with varying environmental conditions, to identify quantitative trait loci (QTL) controlling nine agronomic traits related to panicle architecture and grain yield. We found that panicle weight, grain weight per panicle, panicle length, panicle diameter, and panicle exsertion length varied across different geographical locations. QTL mapping revealed 159 QTL for nine traits. Of the 159 QTL, 34 were identified in 2 to 12 environments, suggesting that the genetic control of panicle architecture in foxtail millet is sensitive to photoperiod and/or other environmental factors. Eighty-eight QTL controlling different traits formed 34 co-located QTL clusters, including the triple QTL cluster qPD9.2/qPL9.5/qPEL9.3, which was detected 23 times in 13 environments. Several candidate genes, including Seita.2G388700, Seita.3G136000, Seita.4G185300, Seita.5G241500, Seita.5G243100, Seita.9G281300, and Seita.9G342700, were identified in the genomic intervals of multi-environmental QTL or co-located QTL clusters. Using available phenotypic and genotype data, we conducted haplotype analysis for Seita.2G002300 and Seita.9G064000,which showed high correlations with panicle weight and panicle exsertion length, respectively. These results not only provided a basis for further fine mapping, functional studies and marker-assisted selection of traits related to panicle architecture in foxtail millet, but also provide information for comparative genomics analyses of cereal crops.
Collapse
Affiliation(s)
- Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing, 100081, China
| | - Qiang He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing, 100081, China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing, 100081, China
| | - Junjun Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing, 100081, China
| | - Wei Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing, 100081, China
| | - Huifang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing, 100081, China
| | - Yanchao Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing, 100081, China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing, 100081, China
| | - Aiying Zhang
- Institute of Millet Crops, Shanxi Agricultural University, Changzhi, 046000, Shanxi, China
| | - Yuhui Li
- Institute of Millet Crops, Shanxi Agricultural University, Changzhi, 046000, Shanxi, China
| | - Erhu Guo
- Institute of Millet Crops, Shanxi Agricultural University, Changzhi, 046000, Shanxi, China
| | - Ming Gao
- Institute of Crop Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, Jilin, China
| | - Shujie Li
- Institute of Crop Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, Jilin, China
| | - Junxia Li
- Cereal Crops Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Na Qin
- Cereal Crops Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Cancan Zhu
- Cereal Crops Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Chunye Ma
- Cereal Crops Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Haijin Zhang
- Institute of Dry-Land Agriculture and Forestry, Liaoning Academy of Agricultural Sciences, Chaoyang, 122000, Liaoning, China
| | - Guoqiu Chen
- Institute of Dry-Land Agriculture and Forestry, Liaoning Academy of Agricultural Sciences, Chaoyang, 122000, Liaoning, China
| | - Wenfei Zhang
- Institute of Dry-Land Agriculture and Forestry, Liaoning Academy of Agricultural Sciences, Chaoyang, 122000, Liaoning, China
| | - Haigang Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, 030031, Shanxi, China
| | - Zhijun Qiao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, 030031, Shanxi, China
| | - Shunguo Li
- Institute of Millet Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, China
| | - Ruhong Cheng
- Institute of Millet Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, China
| | - Lu Xing
- Anyang Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Suying Wang
- Anyang Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jinrong Liu
- Anyang Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing, 100081, China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing, 100081, China.
| |
Collapse
|
17
|
Xie H, Hou J, Fu N, Wei M, Li Y, Yu K, Song H, Li S, Liu J. Identification of QTL related to anther color and hull color by RAD sequencing in a RIL population of Setaria italica. BMC Genomics 2021; 22:556. [PMID: 34281524 PMCID: PMC8290542 DOI: 10.1186/s12864-021-07882-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background Foxtail millet (Setaria italica) is one of the oldest domesticated crops and has been considered as an ideal model plant for C4 grasses. It has abundant type of anther and hull colors which is not only a most intuitive morphological marker for color selection in seed production, but also has very important biological significance for the study of molecular mechanism of regulating the synthesis and metabolism of flavonoids and lignin. However, only a few genetic studies have been reported for anther color and hull color in foxtail millet. Results Quantitative trait loci (QTL) analysis for anther color and hull color was conducted using 400 F6 and F7 recombinant inbreed lines (RILs) derived from a cross between parents Yugu18 and Jigu19. Using restriction-site associated DNA sequencing, 43,001 single-nucleotide polymorphisms (SNPs) and 3,022 indels were identified between both the parents and the RILs. A total of 1,304 bin markers developed from the SNPs and indels were used to construct a genetic map that spanned 2196 cM of the foxtail millet genome with an average of 1.68 cM/bin. Combined with this genetic map and the phenotypic data observed in two locations for two years, two QTL located on chromosome 6 (Chr6) in a 1.215-Mb interval (33,627,819–34,877,940 bp) for anther color (yellow - white) and three QTL located on Chr1 in a 6.23-Mb interval (1–6,229,734 bp) for hull color (gold-reddish brown) were detected. To narrow the QTL regions identified from the genetic map and QTL analysis, we developed a new method named “inconsistent rate analysis” and efficiently narrowed the QTL regions of anther color into a 60-kb interval (34.13–34.19 Mb) in Chr6, and narrowed the QTL regions of hull color into 70-kb (5.43–5.50 Mb) and 30-kb (5.69–5.72 Mb) intervals in Chr1. Two genes (Seita.6G228600.v2.2 and Seita.6G228700.v2.2) and a cinnamyl alcohol dehydrogenase (CAD) gene (Seita.1G057300.v2.2) with amino acid changes between the parents detected by whole-genome resequencing were identified as candidate genes for anther and hull color, respectively. Conclusions This work presents the related QTL and candidate genes of anther and hull color in foxtail millet and developed a new method named inconsistent rate analysis to detect the chromosome fragments linked with the quality trait in RILs. This is the first study of the QTL related to hull color in foxtail millet and clarifying that the CAD gene (Seita.1G057300.v2.2) is the key gene responsible for this trait. It lays the foundation for further cloning of the functional genes and provides a powerful tool to detect the chromosome fragments linked with quality traits in RILs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07882-x.
Collapse
Affiliation(s)
- Huifang Xie
- Anyang Academy of Agriculture Sciences, 455000, Anyang, Henan, China
| | - Junliang Hou
- BGI Institute of Applied Agriculture, BGI-Shenzhen, 518120, Shenzhen, Guangdong, China
| | - Nan Fu
- Anyang Academy of Agriculture Sciences, 455000, Anyang, Henan, China
| | - Menghan Wei
- Anyang Academy of Agriculture Sciences, 455000, Anyang, Henan, China
| | - Yunfei Li
- BGI Institute of Applied Agriculture, BGI-Shenzhen, 518120, Shenzhen, Guangdong, China
| | - Kang Yu
- BGI Institute of Applied Agriculture, BGI-Shenzhen, 518120, Shenzhen, Guangdong, China
| | - Hui Song
- Anyang Academy of Agriculture Sciences, 455000, Anyang, Henan, China
| | - Shiming Li
- BGI Institute of Applied Agriculture, BGI-Shenzhen, 518120, Shenzhen, Guangdong, China.
| | - Jinrong Liu
- Anyang Academy of Agriculture Sciences, 455000, Anyang, Henan, China.
| |
Collapse
|
18
|
Boukail S, Macharia M, Miculan M, Masoni A, Calamai A, Palchetti E, Dell'Acqua M. Genome wide association study of agronomic and seed traits in a world collection of proso millet (Panicum miliaceum L.). BMC PLANT BIOLOGY 2021; 21:330. [PMID: 34243721 PMCID: PMC8268170 DOI: 10.1186/s12870-021-03111-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/23/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND The climate crisis threatens sustainability of crop production worldwide. Crop diversification may enhance food security while reducing the negative impacts of climate change. Proso millet (Panicum milaceum L.) is a minor cereal crop which holds potential for diversification and adaptation to different environmental conditions. In this study, we assembled a world collection of proso millet consisting of 88 varieties and landraces to investigate its genomic and phenotypic diversity for seed traits, and to identify marker-trait associations (MTA). RESULTS Sequencing of restriction-site associated DNA fragments yielded 494 million reads and 2,412 high quality single nucleotide polymorphisms (SNPs). SNPs were used to study the diversity in the collection and perform a genome wide association study (GWAS). A genotypic diversity analysis separated accessions originating in Western Europe, Eastern Asia and Americas from accessions sampled in Southern Asia, Western Asia, and Africa. A Bayesian structure analysis reported four cryptic genetic groups, showing that landraces accessions had a significant level of admixture and that most of the improved proso millet materials clustered separately from landraces. The collection was highly diverse for seed traits, with color varying from white to dark brown and width spanning from 1.8 to 2.6 mm. A GWAS study for seed morphology traits identified 10 MTAs. In addition, we identified three MTAs for agronomic traits that were previously measured on the collection. CONCLUSION Using genomics and automated seed phenotyping, we elucidated phylogenetic relationships and seed diversity in a global millet collection. Overall, we identified 13 MTAs for key agronomic and seed traits indicating the presence of alleles with potential for application in proso breeding programs.
Collapse
Affiliation(s)
- Sameh Boukail
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Mercy Macharia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Mara Miculan
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alberto Masoni
- School of Agriculture, University of Florence, Florence, Italy
| | | | | | - Matteo Dell'Acqua
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
| |
Collapse
|
19
|
Huangfu Y, Pan J, Li Z, Wang Q, Mastouri F, Li Y, Yang S, Liu M, Dai S, Liu W. Genome-wide identification of PTI1 family in Setaria italica and salinity-responsive functional analysis of SiPTI1-5. BMC PLANT BIOLOGY 2021; 21:319. [PMID: 34217205 PMCID: PMC8254068 DOI: 10.1186/s12870-021-03077-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/27/2021] [Indexed: 05/18/2023]
Abstract
BACKGROUND PTI1 (Pto-interacting 1) protein kinase belongs to the receptor-like cytoplasmic kinase (RLCK) group of receptor-like protein kinases (RLK), but lack extracellular and transmembrane domains. PTI1 was first identified in tomato (Solanum lycopersicum) and named SlPTI1, which has been reported to interact with bacterial effector Pto, a serine/threonine protein kinase involved in plant resistance to bacterial disease. Briefly, the host PTI1 specifically recognizes and interacts with the bacterial effector AvrPto, which triggers hypersensitive cell death to inhibit the pathogen growth in the local infection site. Previous studies have demonstrated that PTI1 is associated with oxidative stress and hypersensitivity. RESULTS We identified 12 putative PTI1 genes from the genome of foxtail millet (Setaria italica) in this study. Gene replication analysis indicated that both segmental replication events played an important role in the expansion of PTI1 gene family in foxtail millet. The PTI1 family members of model plants, i.e. S. italica, Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), maize (Zea mays), S. lycopersicum, and soybean (Glycine max), were classified into six major categories according to the phylogenetic analysis, among which the PTI1 family members in foxtail millet showed higher degree of homology with those of rice and maize. The analysis of a complete set of SiPTI1 genes/proteins including classification, chromosomal location, orthologous relationships and duplication. The tissue expression characteristics revealed that SiPTI1 genes are mainly expressed in stems and leaves. Experimental qRT-PCR results demonstrated that 12 SiPTI1 genes were induced by multiple stresses. Subcellular localization visualized that all of foxtail millet SiPTI1s were localized to the plasma membrane. Additionally, heterologous expression of SiPTI1-5 in yeast and E. coli enhanced their tolerance to salt stress. CONCLUSIONS Our results contribute to a more comprehensive understanding of the roles of PTI1 protein kinases and will be useful in prioritizing particular PTI1 for future functional validation studies in foxtail millet.
Collapse
Affiliation(s)
- Yongguan Huangfu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Jiaowen Pan
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Zhen Li
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Qingguo Wang
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Fatemeh Mastouri
- Bota Bioscience, 325 Vassar st. Suite 2a, Cambridge, MA, 02139, USA
| | - Ying Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Stephen Yang
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr, Rockville, MD, 20850, USA
| | - Min Liu
- Shandong Agriculture and Engineering University, Jinan, 250100, Shandong, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Wei Liu
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
20
|
He Q, Zhi H, Tang S, Xing L, Wang S, Wang H, Zhang A, Li Y, Gao M, Zhang H, Chen G, Dai S, Li J, Yang J, Liu H, Zhang W, Jia Y, Li S, Liu J, Qiao Z, Guo E, Jia G, Liu J, Diao X. QTL mapping for foxtail millet plant height in multi-environment using an ultra-high density bin map. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:557-572. [PMID: 33128073 DOI: 10.1007/s00122-020-03714-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/23/2020] [Indexed: 05/20/2023]
Abstract
Using a fixed RIL population derived from a widely used foxtail millet backbone breeding line and an elite cultivar, we constructed a high-density bin map and identified six novel multi-environment effect QTLs and seven candidate genes for dwarf phenotype. Plant height is an important trait that determines tradeoffs between competition and resource allocation, which is crucial for yield potential. To improve the C4 model plant foxtail millet (Setaria italica) productivity, it is necessary to isolate plant height-related genes that contribute to ideal plant architecture in breeding. In the present study, we generated a foxtail millet population of 333 recombinant inbred lines (RILs) derived from a cross between a backbone line Ai 88 and an elite cultivar Liaogu 1. We evaluated plant height in 13 environmental conditions across 4 years, the mean plant height of the RIL population ranged from 89.5 to 149.9 cm. Using deep re-sequencing data, we constructed a high-density bin map with 3744 marker bins. Quantitative trait locus (QTL) mapping identified 26 QTLs significantly associated with plant height. Of these, 13 QTLs were repeatedly detected under multiple environments, including six novel QTLs that have not been reported before. Seita.1G242300, a gene encodes gibberellin 2-oxidase-8, which was detected in nine environments in a 1.54-Mb interval of qPH1.3, was considered as an important candidate gene. Moreover, other six genes involved in GA biosynthesis or signaling pathways, and fifteen genes encode F-box domain proteins which might function as E3 ligases, were also considered as candidate genes in different QTLs. These QTLs and candidate genes identified in this study will help to elucidate the genetic basis of foxtail millet plant height, and the linked markers will be useful for marker-assistant selection of varieties with ideal plant architecture and high yield potential.
Collapse
Affiliation(s)
- Qiang He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian, 100081, China
| | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian, 100081, China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian, 100081, China
| | - Lu Xing
- Anyang Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Suying Wang
- Anyang Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Haigang Wang
- Institute of Crop Germplasm, Shanxi Academy of Agricultural Sciences, Taiyuan, 030000, China
| | - Aiying Zhang
- Institute of Millet Crops, Shanxi Academy of Agricultural Sciences, Changzhi, 046000, Shanxi, China
| | - Yuhui Li
- Institute of Millet Crops, Shanxi Academy of Agricultural Sciences, Changzhi, 046000, Shanxi, China
| | - Ming Gao
- Institute of Crop Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, 136100, China
| | - Haijin Zhang
- Institute of Dry-Land Agriculture and Forestry, Liaoning Academy of Agricultural Sciences, Chaoyang, 122000, Liaoning, China
| | - Guoqiu Chen
- Institute of Dry-Land Agriculture and Forestry, Liaoning Academy of Agricultural Sciences, Chaoyang, 122000, Liaoning, China
| | - Shutao Dai
- Institute of Crop Sciences, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, Henan, China
| | - Junxia Li
- Institute of Crop Sciences, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, Henan, China
| | - Junjun Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian, 100081, China
| | - Huifang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian, 100081, China
| | - Wei Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian, 100081, China
| | - Yanchao Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian, 100081, China
| | - Shujie Li
- Institute of Crop Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, 136100, China
| | - Jinrong Liu
- Anyang Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zhijun Qiao
- Institute of Crop Germplasm, Shanxi Academy of Agricultural Sciences, Taiyuan, 030000, China
| | - Erhu Guo
- Institute of Millet Crops, Shanxi Academy of Agricultural Sciences, Changzhi, 046000, Shanxi, China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian, 100081, China
| | - Jun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian, 100081, China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian, 100081, China.
| |
Collapse
|
21
|
Muthamilarasan M, Prasad M. Small Millets for Enduring Food Security Amidst Pandemics. TRENDS IN PLANT SCIENCE 2021; 26:33-40. [PMID: 32900620 PMCID: PMC7474701 DOI: 10.1016/j.tplants.2020.08.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/31/2020] [Accepted: 08/14/2020] [Indexed: 05/07/2023]
Abstract
Food security is an ongoing problem, and current staple foods are not sufficient to overcome challenges such as the present COVID-19 pandemic. We propose here that small millets have the potential to become new staple crops, especially in hunger hotspots. Currently, the absence of intensification of millet farming, lack of deployment of genetic tools for trait improvement, and the need for optimization of storage and supply chains limit crop production. We highlight a roadmap to strengthen small millet cultivation, such as identifying varieties suitable for particular environments and targeting trait improvement using genetic and genomic approaches. These approaches will help to combat hunger and malnutrition and also economically benefit the farmers and stakeholders involved in small millet cultivation amidst the ongoing pandemic.
Collapse
Affiliation(s)
- Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
22
|
Lewis DH, Jarvis DE, Maughan PJ. SSRgenotyper: A simple sequence repeat genotyping application for whole-genome resequencing and reduced representational sequencing projects. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11402. [PMID: 33344093 PMCID: PMC7742204 DOI: 10.1002/aps3.11402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/13/2020] [Indexed: 05/13/2023]
Abstract
PREMISE Many programs can identify simple sequence repeat (SSR) motifs in genomic data. SSRgenotyper extends SSR identification to en masse genotyping from resequencing data for diversity panels and linkage mapping populations. METHODS AND RESULTS SSRgenotyper will find and genotype SSRs from SAM files and an SSR reference FASTA. Several outputs are possible, including a simple table with the SSR marker name, position, and SSR alleles, defined by the repeat number of the repeat motif. Specific output files include a GENEPOP-formatted file for downstream genetic diversity analyses and a traditional A, H, B mapping file output that is phased to the parents of the population for biparental linkage map construction. Linkage maps produced using SSRgenotyper genotypes were highly collinear with physical maps and correctly inferred known phylogenies. CONCLUSIONS SSRgenotyper provides an easy-to-use, accurate, and scalable SSR genotyping platform for whole-genome resequencing data. SSRgenotyper is freely available at https://github.com/dlewis27/SSRgenotyper.
Collapse
Affiliation(s)
- Daniel H. Lewis
- Department of Plant and Wildlife SciencesBrigham Young UniversityProvoUtah84058USA
| | - David E. Jarvis
- Department of Plant and Wildlife SciencesBrigham Young UniversityProvoUtah84058USA
| | - Peter J. Maughan
- Department of Plant and Wildlife SciencesBrigham Young UniversityProvoUtah84058USA
| |
Collapse
|
23
|
Song X, Xu Y, Gao K, Fan G, Zhang F, Deng C, Dai S, Huang H, Xin H, Li Y. High-density genetic map construction and identification of loci controlling flower-type traits in Chrysanthemum ( Chrysanthemum × morifolium Ramat.). HORTICULTURE RESEARCH 2020; 7:108. [PMID: 32637136 PMCID: PMC7326996 DOI: 10.1038/s41438-020-0333-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/16/2020] [Accepted: 05/01/2020] [Indexed: 05/31/2023]
Abstract
Flower type is an important and extremely complicated trait of chrysanthemum. The corolla tube merged degree (CTMD) and the relative number of ray florets (RNRF) are the two key factors affecting chrysanthemum flower type. However, few reports have clarified the inheritance of these two complex traits, which limits directed breeding for flower-type improvement. In this study, 305 F1 hybrids were obtained from two parents with obvious differences in CTMD and RNRF performance. Using specific-locus amplified fragment sequencing (SLAF-seq) technology, we constructed a high-density genetic linkage map with an average map distance of 0.76 cM. Three major QTLs controlling CTMD and four major QTLs underlying RNRF were repeatedly detected in the 2 years. Moreover, the synteny between the genetic map and other Compositae species was investigated, and weak collinearity was observed. In QTL regions with a high degree of genomic collinearity, eight annotated genes were probed in the Helianthus annuus L. and Lactuca sativa L. var. ramosa Hort. genomes. Furthermore, 20 and 11 unigenes were identified via BLAST searches between the SNP markers of the QTL regions and the C. vestitum and C. lavandulifolium transcriptomes, respectively. These results lay a foundation for molecular marker-assisted breeding and candidate gene exploration in chrysanthemum without a reference assembly.
Collapse
Affiliation(s)
- Xuebin Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, Beijing Forestry University, School of Landscape Architecture, Beijing Forestry University, 35 East Qinghua Road, Beijing, 100083 China
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109 Shandong China
| | - Yuhui Xu
- Biomarker Technologies Co., LTD, Beijing, 101300 China
- LC Science Co., LTD., Hangzhou, 310018 China
| | - Kang Gao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, Beijing Forestry University, School of Landscape Architecture, Beijing Forestry University, 35 East Qinghua Road, Beijing, 100083 China
| | - Guangxun Fan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, Beijing Forestry University, School of Landscape Architecture, Beijing Forestry University, 35 East Qinghua Road, Beijing, 100083 China
| | - Fan Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, Beijing Forestry University, School of Landscape Architecture, Beijing Forestry University, 35 East Qinghua Road, Beijing, 100083 China
| | - Chengyan Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, Beijing Forestry University, School of Landscape Architecture, Beijing Forestry University, 35 East Qinghua Road, Beijing, 100083 China
| | - Silan Dai
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, Beijing Forestry University, School of Landscape Architecture, Beijing Forestry University, 35 East Qinghua Road, Beijing, 100083 China
| | - He Huang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, Beijing Forestry University, School of Landscape Architecture, Beijing Forestry University, 35 East Qinghua Road, Beijing, 100083 China
| | - Huaigen Xin
- Biomarker Technologies Co., LTD, Beijing, 101300 China
| | - Yingying Li
- Biomarker Technologies Co., LTD, Beijing, 101300 China
| |
Collapse
|
24
|
Genomic dissection and expression analysis of stress-responsive genes in C4 panicoid models, Setaria italica and Setaria viridis. J Biotechnol 2020; 318:57-67. [DOI: 10.1016/j.jbiotec.2020.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/23/2020] [Accepted: 05/11/2020] [Indexed: 02/02/2023]
|
25
|
Renganathan VG, Vanniarajan C, Karthikeyan A, Ramalingam J. Barnyard Millet for Food and Nutritional Security: Current Status and Future Research Direction. Front Genet 2020; 11:500. [PMID: 32655612 PMCID: PMC7325689 DOI: 10.3389/fgene.2020.00500] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/22/2020] [Indexed: 01/09/2023] Open
Abstract
Barnyard millet (Echinochloa species) has become one of the most important minor millet crops in Asia, showing a firm upsurge in world production. The genus Echinochloa comprises of two major species, Echinochloa esculenta and Echinochloa frumentacea, which are predominantly cultivated for human consumption and livestock feed. They are less susceptible to biotic and abiotic stresses. Barnyard millet grain is a good source of protein, carbohydrate, fiber, and, most notably, contains more micronutrients (iron and zinc) than other major cereals. Despite its nutritional and agronomic benefits, barnyard millet has remained an underutilized crop. Over the past decades, very limited attempts have been made to study the features of this crop. Hence, more concerted research efforts are required to characterize germplasm resources, identify trait-specific donors, develop mapping population, and discover QTL/gene (s). The recent release of genome and transcriptome sequences of wild and cultivated Echinochloa species, respectively has facilitated in understanding the genetic architecture and decoding the rapport between genotype and phenotype of micronutrients and agronomic traits in this crop. In this review, we highlight the importance of barnyard millet in the current scenario and discuss the up-to-date status of genetic and genomics research and the research gaps to be worked upon by suggesting directions for future research to make barnyard millet a potential crop in contributing to food and nutritional security.
Collapse
Affiliation(s)
- Vellaichamy Gandhimeyyan Renganathan
- Department of Plant Breeding and Genetics, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
- Department of Biotechnology, Centre of Innovation, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Chockalingam Vanniarajan
- Department of Plant Breeding and Genetics, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Adhimoolam Karthikeyan
- Department of Biotechnology, Centre of Innovation, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Jegadeesan Ramalingam
- Department of Biotechnology, Centre of Innovation, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
| |
Collapse
|
26
|
Yabe S, Iwata H. Genomics-assisted breeding in minor and pseudo-cereals. BREEDING SCIENCE 2020; 70:19-31. [PMID: 32351301 PMCID: PMC7180141 DOI: 10.1270/jsbbs.19100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/22/2019] [Indexed: 05/20/2023]
Abstract
Minor and pseudo-cereals, which can grow with lower input and often produce specific nutrients compared to major cereal crops, are attracting worldwide attention. Since these crops generally have a large genetic diversity in a breeding population, rapid genetic improvement can be possible by the application of genomics-assisted breeding methods. In this review, we discuss studies related to biparental quantitative trait locus (QTL) mapping, genome-wide association study, and genomic selection for minor and pseudo-cereals. Especially, we focus on the current progress in a pseudo-cereal, buckwheat. Prospects for the practical utilization of genomics-assisted breeding in minor and pseudo-cereals are discussed including the issues to overcome especially for these crops.
Collapse
Affiliation(s)
- Shiori Yabe
- Institute of Crop Science, NARO, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8518 Japan
| | - Hiroyoshi Iwata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657 Japan
| |
Collapse
|
27
|
Deo TG, Ferreira RCU, Lara LAC, Moraes ACL, Alves-Pereira A, de Oliveira FA, Garcia AAF, Santos MF, Jank L, de Souza AP. High-Resolution Linkage Map With Allele Dosage Allows the Identification of Regions Governing Complex Traits and Apospory in Guinea Grass ( Megathyrsus maximus). FRONTIERS IN PLANT SCIENCE 2020; 11:15. [PMID: 32161603 PMCID: PMC7054243 DOI: 10.3389/fpls.2020.00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/08/2020] [Indexed: 05/11/2023]
Abstract
Forage grasses are mainly used in animal feed to fatten cattle and dairy herds, and guinea grass (Megathyrsus maximus) is considered one of the most productive of the tropical forage crops that reproduce by seeds. Due to the recent process of domestication, this species has several genomic complexities, such as autotetraploidy and aposporous apomixis. Consequently, approaches that relate phenotypic and genotypic data are incipient. In this context, we built a linkage map with allele dosage and generated novel information of the genetic architecture of traits that are important for the breeding of M. maximus. From a full-sib progeny, a linkage map containing 858 single nucleotide polymorphism (SNP) markers with allele dosage information expected for an autotetraploid was obtained. The high genetic variability of the progeny allowed us to map 10 quantitative trait loci (QTLs) related to agronomic traits, such as regrowth capacity and total dry matter, and 36 QTLs related to nutritional quality, which were distributed among all homology groups (HGs). Various overlapping regions associated with the quantitative traits suggested QTL hotspots. In addition, we were able to map one locus that controls apospory (apo-locus) in HG II. A total of 55 different gene families involved in cellular metabolism and plant growth were identified from markers adjacent to the QTLs and APOSPORY locus using the Panicum virgatum genome as a reference in comparisons with the genomes of Arabidopsis thaliana and Oryza sativa. Our results provide a better understanding of the genetic basis of reproduction by apomixis and traits important for breeding programs that considerably influence animal productivity as well as the quality of meat and milk.
Collapse
Affiliation(s)
- Thamiris G. Deo
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
| | - Rebecca C. U. Ferreira
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
| | - Letícia A. C. Lara
- Genetics Department, Escola Superior de Agricultura “Luiz de Queiroz,” University of São Paulo, Piracicaba, Brazil
| | - Aline C. L. Moraes
- Plant Biology Department, Biology Institute, University of Campinas, Campinas, Brazil
| | | | - Fernanda A. de Oliveira
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
| | - Antonio A. F. Garcia
- Genetics Department, Escola Superior de Agricultura “Luiz de Queiroz,” University of São Paulo, Piracicaba, Brazil
| | - Mateus F. Santos
- Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | - Liana Jank
- Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | - Anete P. de Souza
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
- Plant Biology Department, Biology Institute, University of Campinas, Campinas, Brazil
| |
Collapse
|
28
|
QTL mapping of yield component traits on bin map generated from resequencing a RIL population of foxtail millet (Setaria italica). BMC Genomics 2020; 21:141. [PMID: 32041544 PMCID: PMC7011527 DOI: 10.1186/s12864-020-6553-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 02/04/2020] [Indexed: 01/19/2023] Open
Abstract
Background Foxtail millet (Setaria italica) has been developed into a model genetical system for deciphering architectural evolution, C4 photosynthesis, nutritional properties, abiotic tolerance and bioenergy in cereal grasses because of its advantageous characters with the small genome size, self-fertilization, short growing cycle, small growth stature, efficient genetic transformation and abundant diverse germplasm resources. Therefore, excavating QTLs of yield component traits, which are closely related to aspects mentioned above, will further facilitate genetic research in foxtail millet and close cereal species. Results Here, 164 Recombinant inbreed lines from a cross between Longgu7 and Yugu1 were created and 1,047,978 SNPs were identified between both parents via resequencing. A total of 3413 bin markers developed from SNPs were used to construct a binary map, containing 3963 recombinant breakpoints and totaling 1222.26 cM with an average distance of 0.36 cM between adjacent markers. Forty-seven QTLs were identified for four traits of straw weight, panicle weight, grain weight per plant and 1000-grain weight. These QTLs explained 5.5–14.7% of phenotypic variance. Thirty-nine favorable QTL alleles were found to inherit from Yugu1. Three stable QTLs were detected in multi-environments, and nine QTL clusters were identified on Chromosome 3, 6, 7 and 9. Conclusions A high-density genetic map with 3413 bin markers was constructed and three stable QTLs and 9 QTL clusters for yield component traits were identified. The results laid a powerful foundation for fine mapping, identifying candidate genes, elaborating molecular mechanisms and application in foxtail millet breeding programs by marker-assisted selection.
Collapse
|
29
|
Jaiswal V, Gupta S, Gahlaut V, Muthamilarasan M, Bandyopadhyay T, Ramchiary N, Prasad M. Genome-Wide Association Study of Major Agronomic Traits in Foxtail Millet (Setaria italica L.) Using ddRAD Sequencing. Sci Rep 2019; 9:5020. [PMID: 30903013 PMCID: PMC6430830 DOI: 10.1038/s41598-019-41602-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/05/2019] [Indexed: 12/17/2022] Open
Abstract
Foxtail millet (Setaria italica), the second largest cultivated millet crop after pearl millet, is utilized for food and forage globally. Further, it is also considered as a model crop for studying agronomic, nutritional and biofuel traits. In the present study, a genome-wide association study (GWAS) was performed for ten important agronomic traits in 142 foxtail millet core eco-geographically diverse genotypes using 10 K SNPs developed through GBS-ddRAD approach. Number of SNPs on individual chromosome ranged from 844 (chromosome 5) to 2153 (chromosome 8) with an average SNP frequency of 25.9 per Mb. The pairwise linkage disequilibrium (LD) estimated using the squared-allele frequency correlations was found to decay rapidly with the genetic distance of 177 Kb. However, for individual chromosome, LD decay distance ranged from 76 Kb (chromosome 6) to 357 Kb (chromosome 4). GWAS identified 81 MTAs (marker-trait associations) for ten traits across the genome. High confidence MTAs for three important agronomic traits including FLW (flag leaf width), GY (grain yield) and TGW (thousand-grain weight) were identified. Significant pyramiding effect of identified MTAs further supplemented its importance in breeding programs. Desirable alleles and superior genotypes identified in the present study may prove valuable for foxtail millet improvement through marker-assisted selection.
Collapse
Affiliation(s)
- Vandana Jaiswal
- School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sarika Gupta
- School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vijay Gahlaut
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Mehanathan Muthamilarasan
- National Institute of Plant Genome Research, New Delhi, 110067, India
- ICAR-National Research Centre on Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi, 110012, India
| | | | - Nirala Ramchiary
- School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| |
Collapse
|
30
|
Jaiswal V, Bandyopadhyay T, Gahlaut V, Gupta S, Dhaka A, Ramchiary N, Prasad M. Genome-wide association study (GWAS) delineates genomic loci for ten nutritional elements in foxtail millet (Setaria italica L.). J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2018.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Sun J, Luu NS, Chen Z, Chen B, Cui X, Wu J, Zhang Z, Lu T. Generation and Characterization of a Foxtail Millet ( Setaria italica) Mutant Library. FRONTIERS IN PLANT SCIENCE 2019; 10:369. [PMID: 31001298 PMCID: PMC6455083 DOI: 10.3389/fpls.2019.00369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/11/2019] [Indexed: 05/20/2023]
Abstract
Foxtail millet (Setaria italica) is attractive to plant scientists as a model plant because of several distinct characteristics, such as its short stature, rapid life cycle, sufficient seed production per plant, self-compatibility, true diploid nature, high photosynthetic efficiency, small genome size, and tolerance to abiotic and biotic stress. However, the study on the genetic resources of foxtail millet largely lag behind those of the other model plants such as Arabidopsis, rice and maize. Mutagenized populations cannot only create new germplasm resources, but also provide materials for gene function research. In this manuscript, an ethyl methanesulfonate (EMS)-induced foxtail millet population comprising ∼15,000 individual M1 lines was established. Total 1353 independent lines with diverse abnormal phenotypes of leaf color, plant morphologies and panicle shapes were identified in M2. Resequencing of sixteen randomly selected M2 plants showed an average estimated mutation density of 1 loci/213 kb. Moreover, we provided an example for rapid cloning of the WP1 gene by a map-based cloning method. A white panicle mutant, named as wp1.a, exhibited significantly reduced chlorophyll (Chl) and carotenoid contents in leaf and panicle. Map-based cloning results showed an eight-base pair deletion located at the sixth exon of wp1.a in LOC101786849, which caused the premature termination. WP1 encoded phytoene synthase. Moreover, the sequencing analysis and cross test verified that a white panicle mutant wp1.b was an allelic mutant of wp1.a. The filed phenotypic observation and gene cloning example showed that our foxtail millet EMS-induced mutant population would be used as an important resource for functional genomics studies of foxtail millet.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tiegang Lu
- *Correspondence: Zhiguo Zhang, Tiegang Lu,
| |
Collapse
|
32
|
Microsatellite markers of finger millet (Eleusine coracana (L.) Gaertn) and foxtail millet (Setaria italica (L.) Beauv) provide resources for cross-genome transferability and genetic diversity analyses in other millets. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Odonkor S, Choi S, Chakraborty D, Martinez-Bello L, Wang X, Bahri BA, Tenaillon MI, Panaud O, Devos KM. QTL Mapping Combined With Comparative Analyses Identified Candidate Genes for Reduced Shattering in Setaria italica. FRONTIERS IN PLANT SCIENCE 2018; 9:918. [PMID: 30073004 PMCID: PMC6060267 DOI: 10.3389/fpls.2018.00918] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/11/2018] [Indexed: 05/13/2023]
Abstract
Setaria (L.) P. Beauv is a genus of grasses that belongs to the Poaceae (grass) family, subfamily Panicoideae. Two members of the Setaria genus, Setaria italica (foxtail millet) and S. viridis (green foxtail), have been studied extensively over the past few years as model species for C4-photosynthesis and to facilitate genome studies in complex Panicoid bioenergy grasses. We exploited the available genetic and genomic resources for S. italica and its wild progenitor, S. viridis, to study the genetic basis of seed shattering. Reduced shattering is a key trait that underwent positive selection during domestication. Phenotyping of F2:3 and recombinant inbred line (RIL) populations generated from a cross between S. italica accession B100 and S. viridis accession A10 identified the presence of additive main effect quantitative trait loci (QTL) on chromosomes V and IX. As expected, enhanced seed shattering was contributed by the wild S. viridis. Comparative analyses pinpointed Sh1 and qSH1, two shattering genes previously identified in sorghum and rice, as potentially underlying the QTL on Setaria chromosomes IX and V, respectively. The Sh1 allele in S. italica was shown to carry a PIF/Harbinger MITE in exon 2, which gave rise to an alternatively spliced transcript that lacked exon 2. This MITE was universally present in S. italica accessions around the world and absent from the S. viridis germplasm tested, strongly suggesting a single origin of foxtail millet domestication. The qSH1 gene carried two MITEs in the 5'UTR. Presence of one or both MITEs was strongly associated with cultivated germplasm. If the MITE insertion(s) in qSH1 played a role in reducing shattering in S. italica accessions, selection for the variants likely occurred after the domestication of foxtail millet.
Collapse
Affiliation(s)
- Sandra Odonkor
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| | - Soyeon Choi
- Department of Genetics, University of Georgia, Athens, GA, United States
| | | | - Liliam Martinez-Bello
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Xuewen Wang
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
- Department of Genetics, University of Georgia, Athens, GA, United States
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Bochra A. Bahri
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
- Department of Plant Biology, University of Georgia, Athens, GA, United States
- Laboratory of Bioagressors and Integrated Protection in Agriculture (LR14AGR02), The National Agronomic Institute of Tunisia, University of Carthage, Tunis, Tunisia
| | - Maud I. Tenaillon
- UMR8120 Génétique Quantitative et Evolution Le Moulon, Institut National de la Recherche Agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, Paris, France
| | - Olivier Panaud
- Laboratoire Génome et Développement des Plantes, UMR UPVD/CNRS, Université de Perpignan Via Domitia, Perpignan, France
| | - Katrien M. Devos
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
34
|
Hu H, Mauro-Herrera M, Doust AN. Domestication and Improvement in the Model C4 Grass, Setaria. FRONTIERS IN PLANT SCIENCE 2018; 9:719. [PMID: 29896214 PMCID: PMC5986938 DOI: 10.3389/fpls.2018.00719] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/14/2018] [Indexed: 05/17/2023]
Abstract
Setaria viridis (green foxtail) and its domesticated relative S. italica (foxtail millet) are diploid C4 panicoid grasses that are being developed as model systems for studying grass genomics, genetics, development, and evolution. According to archeological evidence, foxtail millet was domesticated from green foxtail approximately 9,000 to 6,000 YBP in China. Under long-term human selection, domesticated foxtail millet developed many traits adapted to human cultivation and agricultural production. In comparison with its wild ancestor, foxtail millet has fewer vegetative branches, reduced grain shattering, delayed flowering time and less photoperiod sensitivity. Foxtail millet is the only present-day crop in the genus Setaria, although archeological records suggest that other species were domesticated and later abandoned in the last 10,000 years. We present an overview of domestication in foxtail millet, by reviewing recent studies on the genetic regulation of several domesticated traits in foxtail millet and discuss how the foxtail millet and green foxtail system could be further developed to both better understand its domestication history, and to provide more tools for future breeding efforts.
Collapse
Affiliation(s)
| | | | - Andrew N. Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
35
|
Yoshitsu Y, Takakusagi M, Abe A, Takagi H, Uemura A, Yaegashi H, Terauchi R, Takahata Y, Hatakeyama K, Yokoi S. QTL-seq analysis identifies two genomic regions determining the heading date of foxtail millet, Setaria italica (L.) P.Beauv. BREEDING SCIENCE 2017; 67:518-527. [PMID: 29398946 PMCID: PMC5790050 DOI: 10.1270/jsbbs.17061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/30/2017] [Indexed: 05/29/2023]
Abstract
Heading date is an important event to ensure successful seed production. Although foxtail millet (Setaria italica (L.) P.Beauv.) is an important foodstuff in semiarid regions around the world, the genetic basis determining heading date is unclear. To identify genomic regions regulating days to heading (DTH), we conducted a QTL-seq analysis based on combining whole-genome re-sequencing and bulked-segregant analysis of an F2 population derived from crosses between the middle-heading cultivar Shinanotsubuhime and the early-heading cultivar Yuikogane. Under field conditions, transgressive segregation of DTH toward late heading was observed in the F2 population. We made three types of bulk samples: Y-bulk (early-heading), S-bulk (late-heading) and L-bulk (extremely late-heading). By genome-wide comparison of SNPs in the Y-bulk vs. the S-bulk and the Y-bulk vs. the L-bulk, we identified two QTLs associated with DTH. The first QTL, qDTH2, was detected on chromosome 2 from the Y-bulk and S-bulk comparison. The second QTL, qDTH7, was detected on chromosome 7 from the Y-bulk and L-bulk comparison. The Shinanotsubuhime allele for qDTH2 caused late heading in the F2 population, whereas the Yuikogane allele for qDTH7 led to extremely late heading. These results suggest that allelic differences in both qDTH2 and qDTH7 determine regional adaptability in S. italica.
Collapse
Affiliation(s)
- Yuki Yoshitsu
- Faculty of Agriculture, Iwate University,
Morioka, Iwate 020-8550,
Japan
| | - Masato Takakusagi
- Kenpoku Agricultural Research Institute, Iwate Agricultural Research Center,
Karumai, Iwate 028-6222,
Japan
| | - Akira Abe
- Iwate Biotechnology Research Center,
Kitakami, Iwate 024-0003,
Japan
| | - Hiroki Takagi
- Iwate Biotechnology Research Center,
Kitakami, Iwate 024-0003,
Japan
- Ishikawa Prefectural University,
Nonoichi, Ishikawa 921-8836,
Japan
| | - Aiko Uemura
- Iwate Biotechnology Research Center,
Kitakami, Iwate 024-0003,
Japan
| | - Hiroki Yaegashi
- Iwate Biotechnology Research Center,
Kitakami, Iwate 024-0003,
Japan
| | - Ryohei Terauchi
- Iwate Biotechnology Research Center,
Kitakami, Iwate 024-0003,
Japan
| | - Yoshihito Takahata
- Faculty of Agriculture, Iwate University,
Morioka, Iwate 020-8550,
Japan
| | | | - Shuji Yokoi
- Faculty of Agriculture, Iwate University,
Morioka, Iwate 020-8550,
Japan
- Graduate School of Life and Environmental Science, Osaka Prefecture University,
Sakai, Osaka 599-8531,
Japan
| |
Collapse
|
36
|
Jia G, Wang H, Tang S, Zhi H, Liu S, Wen Q, Qiao Z, Diao X. Detection of genomic loci associated with chromosomal recombination using high-density linkage mapping in Setaria. Sci Rep 2017; 7:15180. [PMID: 29123199 PMCID: PMC5680217 DOI: 10.1038/s41598-017-15576-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/30/2017] [Indexed: 01/08/2023] Open
Abstract
Meiotic recombination is essential to sexual reproduction and the generation of genetic diversity. Variation in recombination rates is presently of particular interest due to efforts being made to increase the rate of genetic gain in agricultural crops by breaking up large linkage disequilibrium blocks containing both beneficial and detrimental alleles. Here, a high-density genetic linkage map of Setaria was constructed using tunable genotyping by sequencing (tGBS) analysis of a population of recombinant inbred lines (RILs). Several regions of the Setaria genome exhibited significant levels of segregation distortion (SD), and recombination crossovers (COs) were also detected. The regions with high SD generally tended to have fewer COs, particularly for pericentromeric chromosomal areas. Recombination crossovers detected in Setaria were unevenly distributed across the genome and occurred more often in intergenic regions. Quantitative trait loci (QTLs) contributing towards the recombination frequency (Type I) and occurrence of COs in designated loci (Type II) were identified, and Type II QTLs garnered higher statistical power. The result of this study suggest that QTLs analysis of Type II traits using RILs might provide an opportunity to further understand meiotic recombination using high throughput genome sequencing and genotyping technologies.
Collapse
Affiliation(s)
- Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Haigang Wang
- Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences, Taiyuan, 030031, People's Republic of China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Sichen Liu
- Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences, Taiyuan, 030031, People's Republic of China
| | - Qifen Wen
- Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences, Taiyuan, 030031, People's Republic of China
| | - Zhijun Qiao
- Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences, Taiyuan, 030031, People's Republic of China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China.
| |
Collapse
|
37
|
Wang J, Wang Z, Du X, Yang H, Han F, Han Y, Yuan F, Zhang L, Peng S, Guo E. A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq. PLoS One 2017. [PMID: 28644843 PMCID: PMC5482450 DOI: 10.1371/journal.pone.0179717] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Foxtail millet (Setaria italica), a very important grain crop in China, has become a new model plant for cereal crops and biofuel grasses. Although its reference genome sequence was released recently, quantitative trait loci (QTLs) controlling complex agronomic traits remains limited. The development of massively parallel genotyping methods and next-generation sequencing technologies provides an excellent opportunity for developing single-nucleotide polymorphisms (SNPs) for linkage map construction and QTL analysis of complex quantitative traits. In this study, a high-throughput and cost-effective RAD-seq approach was employed to generate a high-density genetic map for foxtail millet. A total of 2,668,587 SNP loci were detected according to the reference genome sequence; meanwhile, 9,968 SNP markers were used to genotype 124 F2 progenies derived from the cross between Hongmiaozhangu and Changnong35; a high-density genetic map spanning 1648.8 cM, with an average distance of 0.17 cM between adjacent markers was constructed; 11 major QTLs for eight agronomic traits were identified; five co-dominant DNA markers were developed. These findings will be of value for the identification of candidate genes and marker-assisted selection in foxtail millet.
Collapse
Affiliation(s)
- Jun Wang
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, Shanxi, China
- Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, China
- * E-mail: (JW); (EG)
| | - Zhilan Wang
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, Shanxi, China
- Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, China
| | - Xiaofen Du
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, Shanxi, China
- Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, China
| | - Huiqing Yang
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, Shanxi, China
- Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, China
| | - Fang Han
- Research Institute of Agriculture Sciences of Yanan, Yanan, Shaanxi, China
| | - Yuanhuai Han
- Shanxi Agricultural University, Taigu, Shanxi, China
| | - Feng Yuan
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, Shanxi, China
- Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, China
| | - Linyi Zhang
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, Shanxi, China
- Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, China
| | - Shuzhong Peng
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, Shanxi, China
- Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, China
| | - Erhu Guo
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, Shanxi, China
- Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, China
- * E-mail: (JW); (EG)
| |
Collapse
|
38
|
Li J, Wang DD, Xu XS, Bai L, Peng B, Pu YJ, Tian HL, Qin XM, Zhang FS, Ma CG. Utilization of UPLC/Q-TOF-MS-Based Metabolomics and AFLP-Based Marker-Assisted Selection to Facilitate/Assist Conventional Breeding of Polygala tenuifolia. Chem Biodivers 2017; 14. [PMID: 28608948 DOI: 10.1002/cbdv.201700163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/08/2017] [Indexed: 11/12/2022]
Abstract
As one of the most important traditional Chinese medicine, the quality of Polygala tenuifolia is difficult to control and a new method must be established to facilitate/assist the breeding of P. tenuifolia. In this study, UPLC/Q-TOF-MS-based metabolomics analysis was performed to determine the chemical composition and screen metabolite biomarkers according to agronomic traits. A total of 29 compounds and 18 metabolite biomarkers were found. AFLP-based marker-assisted selection (MAS) was used to identify molecular marker bands and screen characteristic bands associated with specific agronomic traits. 184 bands and 76 characteristic AFLP bands were found. The correlation network between compounds and characteristic AFLP bands was built, so we may directly breed certain P. tenuifolia herbs with special agronomic traits (or characteristic AFLP bands), which exhibit specific pharmacological functions depending on the content of the active compounds. The proposed method of metabolomics coupled with MAS could facilitate/assist the breeding of P. tenuifolia.
Collapse
Affiliation(s)
- Juan Li
- Pharmacy Department, Shanxi Pharmaceutical Vocational College, Taiyuan, 030031, P. R. China
| | - Dan-Dan Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, P. R. China.,College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Xiao-Shuang Xu
- School of Electrical and Information Engineering, Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, 213001, P. R. China
| | - Lu Bai
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, P. R. China.,College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Bing Peng
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, 100010, P. R. China
| | - Ya-Jie Pu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, P. R. China.,College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Hong-Ling Tian
- Research Institute of Economics Crop, Shanxi Academy of Agriculture Science, Fenyang, 032200, P. R. China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, P. R. China
| | - Fu-Sheng Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, P. R. China
| | - Cun-Gen Ma
- Shanxi University of Traditional Chinese Medicine, Taiyuan, 030024, P. R. China
| |
Collapse
|
39
|
Identification of QTLs for 14 Agronomically Important Traits in Setaria italica Based on SNPs Generated from High-Throughput Sequencing. G3-GENES GENOMES GENETICS 2017; 7:1587-1594. [PMID: 28364039 PMCID: PMC5427501 DOI: 10.1534/g3.117.041517] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Foxtail millet (Setaria italica) is an important crop possessing C4 photosynthesis capability. The S. italica genome was de novo sequenced in 2012, but the sequence lacked high-density genetic maps with agronomic and yield trait linkages. In the present study, we resequenced a foxtail millet population of 439 recombinant inbred lines (RILs) and developed high-resolution bin map and high-density SNP markers, which could provide an effective approach for gene identification. A total of 59 QTL for 14 agronomic traits in plants grown under long- and short-day photoperiods were identified. The phenotypic variation explained ranged from 4.9 to 43.94%. In addition, we suggested that there may be segregation distortion on chromosome 6 that is significantly distorted toward Zhang gu. The newly identified QTL will provide a platform for sequence-based research on the S. italica genome, and for molecular marker-assisted breeding.
Collapse
|
40
|
|
41
|
Pant SR, Irigoyen S, Doust AN, Scholthof KBG, Mandadi KK. Setaria: A Food Crop and Translational Research Model for C 4 Grasses. FRONTIERS IN PLANT SCIENCE 2016; 7:1885. [PMID: 28018413 PMCID: PMC5156725 DOI: 10.3389/fpls.2016.01885] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/29/2016] [Indexed: 05/23/2023]
Affiliation(s)
- Shankar R. Pant
- Texas A&M AgriLife Research and Extension Center, Texas A&M University SystemWeslaco, TX, USA
| | - Sonia Irigoyen
- Texas A&M AgriLife Research and Extension Center, Texas A&M University SystemWeslaco, TX, USA
| | - Andrew N. Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State UniversityStillwater, OK, USA
| | - Karen-Beth G. Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M UniversityCollege Station, TX, USA
| | - Kranthi K. Mandadi
- Texas A&M AgriLife Research and Extension Center, Texas A&M University SystemWeslaco, TX, USA
- Department of Plant Pathology and Microbiology, Texas A&M UniversityCollege Station, TX, USA
| |
Collapse
|
42
|
Huang P, Shyu C, Coelho CP, Cao Y, Brutnell TP. Setaria viridis as a Model System to Advance Millet Genetics and Genomics. FRONTIERS IN PLANT SCIENCE 2016; 7:1781. [PMID: 27965689 PMCID: PMC5124564 DOI: 10.3389/fpls.2016.01781] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/11/2016] [Indexed: 05/18/2023]
Abstract
Millet is a common name for a group of polyphyletic, small-seeded cereal crops that include pearl, finger and foxtail millet. Millet species are an important source of calories for many societies, often in developing countries. Compared to major cereal crops such as rice and maize, millets are generally better adapted to dry and hot environments. Despite their food security value, the genetic architecture of agronomically important traits in millets, including both morphological traits and climate resilience remains poorly studied. These complex traits have been challenging to dissect in large part because of the lack of sufficient genetic tools and resources. In this article, we review the phylogenetic relationship among various millet species and discuss the value of a genetic model system for millet research. We propose that a broader adoption of green foxtail (Setaria viridis) as a model system for millets could greatly accelerate the pace of gene discovery in the millets, and summarize available and emerging resources in S. viridis and its domesticated relative S. italica. These resources have value in forward genetics, reverse genetics and high throughput phenotyping. We describe methods and strategies to best utilize these resources to facilitate the genetic dissection of complex traits. We envision that coupling cutting-edge technologies and the use of S. viridis for gene discovery will accelerate genetic research in millets in general. This will enable strategies and provide opportunities to increase productivity, especially in the semi-arid tropics of Asia and Africa where millets are staple food crops.
Collapse
|