1
|
Miri S, Mottawea W, Leao L, Chiba M, Li Y, Minic Z, Hammami R. Ligilactobacillus-Derived Extracellular Vesicles Inhibit Growth and Virulence of Enteric Pathogens. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10423-z. [PMID: 39680344 DOI: 10.1007/s12602-024-10423-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Bacterial intra-kingdom communication involves the secretion of outer membrane vesicles as signaling carriers to the target cells. However, limited research exists on extracellular vesicles (EVs) from Gram-positive gut bacteria, their interactions with enteric pathogens, and potential inhibitory effects. In this study, we characterized the structure, protein content, and inhibitory effects of EVs from three new potential probiotic gut symbionts, Ligilactobacillus salivarius UO.C109, Ligilactobacillus saerimneri UO.C121, and Ligilactobacillus salivarius UO.C249. EVs were isolated and characterized using three different methods (ultracentrifugation, density gradient purification, and size exclusion chromatography). The purity, dose-dependency, structure, and proteome profiles of the purified EVs were evaluated. Antibacterial and anti-virulence activities of EV subpopulations were assessed against Salmonella enterica serovar Typhimurium and Campylobacter jejuni. EVs from Lg. salivarius UO.C109 and Lg. saerimneri UO.C121 showed inhibitory activity against S. Typhimurium, whereas EVs from Lg. salivarius UO.C249 inhibited the growth of C. jejuni. Notably, purified F3 fraction exhibited the highest inhibitory activity and was enriched in lysin motif (LysM)-containing proteins, peptidoglycan hydrolases, peptidoglycan recognition proteins (PGRPs), and metallopeptidases, which have been shown to play a prominent role in antimicrobial activities against pathogens. F3 had the highest concentration (73.8%) in the 80-90 nm size compared to the other fractions. Gene expression analysis revealed that EVs from Lg. salivarius UO.C109 and Lg. saerimneri UO.C121 downregulated adhesion and invasion factors in S. Typhimurium. Likewise, EVs from Lg. salivarius UO.C249 reduced pathogenicity gene expression in C. jejuni. This study highlighted the potential of gut bacterial EVs as therapeutic agents against enteric pathogens.
Collapse
Affiliation(s)
- Saba Miri
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Walid Mottawea
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Luana Leao
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Mariem Chiba
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Yingxi Li
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Canada
| | - Zoran Minic
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Canada
| | - Riadh Hammami
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Hurtado-Rios JJ, Carrasco-Navarro U, Almanza-Pérez JC, Rincón-Guevara MA, Ponce-Alquicira E. Transcriptional Analysis and Identification of a Peptidoglycan Hydrolase (PGH) and a Ribosomal Protein with Antimicrobial Activity Produced by Lactiplantibacillus paraplantarum. Int J Mol Sci 2024; 25:12650. [PMID: 39684362 DOI: 10.3390/ijms252312650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The growing challenge of antibiotic resistance has intensified the search for new antimicrobial agents. Promising alternatives include peptidoglycan hydrolases (PGHs) and certain ribosomal proteins, both of which exhibit antimicrobial activity. This study focuses on a Lactiplantibacillus paraplantarum strain, isolated from fermented meat, capable of inhibiting pathogens such as Listeria innocua, Salmonella Typhimurium, Escherichia coli, Staphylococcus aureus, and Weissella viridescens. The highest growth and antimicrobial activity were observed at a high nitrogen concentration (5.7 g/L). Two antimicrobial proteins were identified: the 50S ribosomal protein L14 (RP uL14) and 6-phospho-N-acetylmuramidase (MupG), a PGH. Partial purification and characterization of these proteins were achieved using SDS-PAGE, zymography, and LC-MS/MS. Transcriptional data (RT-qPCR) showed that higher nitrogen concentrations enhanced MupG expression, while increased carbon concentrations boosted RP uL14 expression. These findings highlight the importance of nutritional sources in maximizing the production of novel antimicrobial proteins, offering a potential path to develop effective alternatives against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Jessica J Hurtado-Rios
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico City 09340, Mexico
| | - Ulises Carrasco-Navarro
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico City 09340, Mexico
| | - Julio Cesar Almanza-Pérez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico City 09340, Mexico
| | - Monica A Rincón-Guevara
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico City 09340, Mexico
| | - Edith Ponce-Alquicira
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico City 09340, Mexico
| |
Collapse
|
3
|
Mitkowski P, Jagielska E, Sabała I. Engineering of chimeric enzymes with expanded tolerance to ionic strength. Microbiol Spectr 2024; 12:e0354623. [PMID: 38695664 PMCID: PMC11237380 DOI: 10.1128/spectrum.03546-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/26/2024] [Indexed: 06/06/2024] Open
Abstract
Antimicrobial resistance poses a significant global threat, reaching dangerously high levels as reported by the World Health Organization. The emergence and rapid spread of new resistance mechanisms, coupled with the absence of effective treatments in recent decades, have led to thousands of deaths annually from infections caused by drug-resistant microorganisms. Consequently, there is an urgent need for the development of new compounds capable of combating antibiotic-resistant bacteria. A promising class of molecules exhibiting potent bactericidal effects is peptidoglycan hydrolases. Previously, we cloned and characterized the biochemical properties of the M23 catalytic domain of the EnpA (EnpACD) protein from Enterococcus faecalis. Unlike other enzymes within the M23 family, EnpACD demonstrates broad specificity. However, its activity is constrained under low ionic strength conditions. In this study, we present the engineering of three chimeric enzymes comprising EnpACD fused with three distinct SH3b cell wall-binding domains. These chimeras exhibit enhanced tolerance to environmental conditions and sustained activity in bovine and human serum. Furthermore, our findings demonstrate that the addition of SH3b domains influences the activity of the chimeric enzymes, thereby expanding their potential applications in combating antimicrobial resistance.IMPORTANCEThese studies demonstrate that the addition of the SH3b-binding domain to the EnpACD results in generation of chimeras with a broader tolerance to ionic strength and pH values, enabling them to remain active over a wider range of conditions. Such approach offers a relatively straightforward method for obtaining antibacterial enzymes with tailored properties and emphasizes the potential for proteins' engineering with enhanced functionality, contributing to the ongoing efforts to address antimicrobial resistance effectively.
Collapse
Affiliation(s)
- Paweł Mitkowski
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - Elżbieta Jagielska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - Izabela Sabała
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Wei M, Knight SAB, Fazelinia H, Spruce L, Roof J, Chu E, Kim DY, Bhanap P, Walsh J, Flowers L, Zhu J, Grice EA. An exploration of mechanisms underlying Desemzia incerta colonization resistance to methicillin-resistant Staphylococcus aureus on the skin. mSphere 2024; 9:e0063623. [PMID: 38415632 PMCID: PMC10964421 DOI: 10.1128/msphere.00636-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Colonization of human skin and nares by methicillin-resistant Staphylococcus aureus (MRSA) leads to the community spread of MRSA. This spread is exacerbated by the transfer of MRSA between humans and livestock, particularly swine. Here, we capitalized on the shared features between human and porcine skin, including shared MRSA colonization, to study novel bacterial mediators of MRSA colonization resistance. We focused on the poorly studied bacterial species Desemzia incerta, which we found to exert antimicrobial activity through a secreted product and exhibited colonization resistance against MRSA in an in vivo murine skin model. Using parallel genomic and biochemical investigation, we discovered that D. incerta secretes an antimicrobial protein. Sequential protein purification and proteomics analysis identified 24 candidate inhibitory proteins, including a promising peptidoglycan hydrolase candidate. Aided by transcriptional analysis of D. incerta and MRSA cocultures, we found that exposure to D. incerta leads to decreased MRSA biofilm production. These results emphasize the value of exploring microbial communities across a spectrum of hosts, which can lead to novel therapeutic agents as well as an increased understanding of microbial competition.IMPORTANCEMethicillin-resistant Staphylococcus aureus (MRSA) causes a significant healthcare burden and can be spread to the human population via livestock transmission. Members of the skin microbiome can prevent MRSA colonization via a poorly understood phenomenon known as colonization resistance. Here, we studied the colonization resistance of S. aureus by bacterial inhibitors previously identified from a porcine skin model. We identify a pig skin commensal, Desemzia incerta, that reduced MRSA colonization in a murine model. We employ a combination of genomic, proteomic, and transcriptomic analyses to explore the mechanisms of inhibition between D. incerta and S. aureus. We identify 24 candidate antimicrobial proteins secreted by D. incerta that could be responsible for its antimicrobial activity. We also find that exposure to D. incerta leads to decreased S. aureus biofilm formation. These findings show that the livestock transmission of MRSA can be exploited to uncover novel mechanisms of MRSA colonization resistance.
Collapse
Affiliation(s)
- Monica Wei
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Simon A. B. Knight
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hossein Fazelinia
- Children’s Hospital of Philadelphia, Proteomics Core Facility, Philadelphia, Pennsylvania, USA
| | - Lynn Spruce
- Children’s Hospital of Philadelphia, Proteomics Core Facility, Philadelphia, Pennsylvania, USA
| | - Jennifer Roof
- Children’s Hospital of Philadelphia, Proteomics Core Facility, Philadelphia, Pennsylvania, USA
| | - Emily Chu
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Daniel Y. Kim
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Preeti Bhanap
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jasmine Walsh
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Laurice Flowers
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jun Zhu
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Elizabeth A. Grice
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Prasoodanan P K V, Kumar S, Dhakan DB, Waiker P, Saxena R, Sharma VK. Metagenomic exploration of Andaman region of the Indian Ocean. Sci Rep 2024; 14:2717. [PMID: 38302544 PMCID: PMC10834444 DOI: 10.1038/s41598-024-53190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/28/2024] [Indexed: 02/03/2024] Open
Abstract
Ocean microbiome is crucial for global biogeochemical cycles and primary productivity. Despite numerous studies investigating the global ocean microbiomes, the microbiome composition of the Andaman region of the Indian Ocean remains largely unexplored. While this region harbors pristine biological diversity, the escalating anthropogenic activities along coastal habitats exert an influence on the microbial ecology and impact the aquatic ecosystems. We investigated the microbiome composition in the coastal waters of the Andaman Islands by 16S rRNA gene amplicon and metagenomic shotgun sequencing approaches and compared it with the Tara Oceans Consortium. In the coastal waters of the Andaman Islands, a significantly higher abundance and diversity of Synechococcus species was observed with a higher abundance of photosynthesis pigment-related genes to adapt to variable light conditions and nutrition. In contrast, Prochlorococcus species showed higher abundance in open ocean water samples of the Indian Ocean region, with a relatively limited functional diversity. A higher abundance of antibiotic-resistance genes was also noted in the coastal waters region. We also updated the ocean microbiome gene catalog with 93,172 unique genes from the Andaman coastal water microbiome. This study provides valuable insights into the Indian Ocean microbiome and supplements the global marine microbial ecosystem studies.
Collapse
Affiliation(s)
- Vishnu Prasoodanan P K
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Sudhir Kumar
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Darshan B Dhakan
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Prashant Waiker
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Rituja Saxena
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Vineet K Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India.
| |
Collapse
|
6
|
Wei M, Knight SA, Fazelinia H, Spruce L, Roof J, Chu E, Walsh J, Flowers L, Kim DY, Zhu J, Grice EA. An exploration of mechanisms underlying Desemzia incerta colonization resistance to methicillin-resistant Staphylococcus aureus on the skin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561853. [PMID: 37873232 PMCID: PMC10592716 DOI: 10.1101/2023.10.11.561853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Colonization of human skin and nares by methicillin-resistant Staphylococcus aureus (MRSA) leads to community spread of MRSA. This spread is exacerbated by transfer of MRSA between humans and livestock, particularly swine. Here we capitalized on the shared features between human and porcine skin, including shared MRSA colonization, to study novel bacterial mediators of MRSA colonization resistance. We focused on the poorly studied bacterial species Desemzia incerta, which we found to exert antimicrobial activity through a secreted product and exhibited colonization resistance against MRSA in an in vivo murine skin model. Using parallel genomic and biochemical investigation, we discovered that D. incerta secretes an antimicrobial protein. Sequential protein purification and proteomics analysis identified 24 candidate inhibitory proteins, including a promising peptidoglycan hydrolase candidate. Aided by transcriptional analysis of D. incerta and MRSA cocultures, we found that exposure to D. incerta leads to decreased MRSA biofilm production. These results emphasize the value in exploring microbial communities across a spectrum of hosts, which can lead to novel therapeutic agents as well as increased understanding of microbial competition.
Collapse
Affiliation(s)
- Monica Wei
- University of Pennsylvania, Perelman School of Medicine, Department of Dermatology and Microbiology, Philadelphia, Pennsylvania, USA
| | - Simon Ab Knight
- University of Pennsylvania, Perelman School of Medicine, Department of Dermatology and Microbiology, Philadelphia, Pennsylvania, USA
| | - Hossein Fazelinia
- Children's Hospital of Philadelphia, Proteomics Core Facility, Philadelphia, Pennsylvania, USA
| | - Lynn Spruce
- Children's Hospital of Philadelphia, Proteomics Core Facility, Philadelphia, Pennsylvania, USA
| | - Jennifer Roof
- Children's Hospital of Philadelphia, Proteomics Core Facility, Philadelphia, Pennsylvania, USA
| | - Emily Chu
- University of Pennsylvania, Perelman School of Medicine, Department of Dermatology and Microbiology, Philadelphia, Pennsylvania, USA
| | - Jasmine Walsh
- University of Pennsylvania, Perelman School of Medicine, Department of Dermatology and Microbiology, Philadelphia, Pennsylvania, USA
| | - Laurice Flowers
- University of Pennsylvania, Perelman School of Medicine, Department of Dermatology and Microbiology, Philadelphia, Pennsylvania, USA
| | - Daniel Y Kim
- University of Pennsylvania, Perelman School of Medicine, Department of Dermatology and Microbiology, Philadelphia, Pennsylvania, USA
| | - Jun Zhu
- University of Pennsylvania, Perelman School of Medicine, Department of Dermatology and Microbiology, Philadelphia, Pennsylvania, USA
| | - Elizabeth A Grice
- University of Pennsylvania, Perelman School of Medicine, Department of Dermatology and Microbiology, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Kadeřábková N, Mahmood AJS, Furniss RCD, Mavridou DAI. Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope. Adv Microb Physiol 2023; 83:221-307. [PMID: 37507160 PMCID: PMC10517717 DOI: 10.1016/bs.ampbs.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Gram-negative bacteria are uniquely equipped to defeat antibiotics. Their outermost layer, the cell envelope, is a natural permeability barrier that contains an array of resistance proteins capable of neutralizing most existing antimicrobials. As a result, its presence creates a major obstacle for the treatment of resistant infections and for the development of new antibiotics. Despite this seemingly impenetrable armor, in-depth understanding of the cell envelope, including structural, functional and systems biology insights, has promoted efforts to target it that can ultimately lead to the generation of new antibacterial therapies. In this article, we broadly overview the biology of the cell envelope and highlight attempts and successes in generating inhibitors that impair its function or biogenesis. We argue that the very structure that has hampered antibiotic discovery for decades has untapped potential for the design of novel next-generation therapeutics against bacterial pathogens.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Ayesha J S Mahmood
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
8
|
Sandoval-Mosqueda IL, Llorente-Bousquets A, Soto C, Márquez CM, Fadda S, Del Río García JC. Ligilactobacillus murinus Strains Isolated from Mice Intestinal Tract: Molecular Characterization and Antagonistic Activity against Food-Borne Pathogens. Microorganisms 2023; 11:microorganisms11040942. [PMID: 37110365 PMCID: PMC10141155 DOI: 10.3390/microorganisms11040942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Considering the objectives of “One Health” and the Sustainable development Goals “Good health and well-being” for the development of effective strategies to apply against bacterial resistance, food safety dangers, and zoonosis risks, this project explored the isolation and identification of Lactobacillus strains from the intestinal tract of recently weaned mice; as well as the assessment of antibacterial activity against clinical and zoonotic pathogens. For molecular identification, 16S rRNA gene-specific primers were used and, via BLAST-NCBI, 16 Ligilactobacillus murinus, one Ligilactobacillus animalis, and one Streptococcus salivarius strains were identified and registered in GenBank after the confirmation of their identity percentage and the phylogenetic analysis of the 16 Ligilactobacillus murinus strains and their association with Ligilactobacillus animalis. The 18 isolated strains showed antibacterial activity during agar diffusion tests against Listeria monocytogenes ATCC 15313, enteropathogenic Escherichia coli O103, and Campylobacter jejuni ATCC 49943. Electrophoretic and zymographic techniques confirmed the presence of bacteriolytic bands with a relative molecular mass of 107 kDa and another of 24 kDa in Ligilactobacillus murinus strains. UPLC-MS analysis allowed the identification of a 107 kDa lytic protein as an N-acetylmuramoyl-L-amidase involved in cytolysis and considered a bacteriolytic enzyme with antimicrobial activity. The 24 kDa band displayed similarity with a portion of protein with aminopeptidase function. It is expected that these findings will impact the search for new strains and their metabolites with antibacterial activity as an alternative strategy to inhibit pathogens associated with major health risks that help your solution.
Collapse
Affiliation(s)
- Ivonne Lizeth Sandoval-Mosqueda
- Posgrado, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico, km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastian Xhala, Cuautitlán Izcalli 54714, Mexico
| | - Adriana Llorente-Bousquets
- Ingeniería y Tecnología, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastian Xhala, Cuautitlán Izcalli 54714, Mexico
| | - Carlos Soto
- Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastian Xhala, Cuautitlán Izcalli 54714, Mexico
| | - Crisóforo Mercado Márquez
- Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastian Xhala, Cuautitlán Izcalli 54714, Mexico
| | - Silvina Fadda
- Centro de Referencia para Lactobacilos, Batalla de Chacabuco 145 sur, San Miguel de Tucumán T4000, Argentina
| | - Juan Carlos Del Río García
- Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastian Xhala, Cuautitlán Izcalli 54714, Mexico
| |
Collapse
|
9
|
Enzymatic modification and adsorption of hydrophobic zein proteins on lactic acid bacteria stabilize Pickering emulsions. Food Res Int 2022; 161:111783. [DOI: 10.1016/j.foodres.2022.111783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/08/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022]
|
10
|
Razew A, Schwarz JN, Mitkowski P, Sabala I, Kaus-Drobek M. One fold, many functions-M23 family of peptidoglycan hydrolases. Front Microbiol 2022; 13:1036964. [PMID: 36386627 PMCID: PMC9662197 DOI: 10.3389/fmicb.2022.1036964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2023] Open
Abstract
Bacterial cell walls are the guards of cell integrity. They are composed of peptidoglycan that provides rigidity to sustain internal turgor and ensures isolation from the external environment. In addition, they harbor the enzymatic machinery to secure cell wall modulations needed throughout the bacterial lifespan. The main players in this process are peptidoglycan hydrolases, a large group of enzymes with diverse specificities and different mechanisms of action. They are commonly, but not exclusively, found in prokaryotes. Although in most cases, these enzymes share the same molecular function, namely peptidoglycan hydrolysis, they are leveraged to perform a variety of physiological roles. A well-investigated family of peptidoglycan hydrolases is M23 peptidases, which display a very conserved fold, but their spectrum of lytic action is broad and includes both Gram- positive and Gram- negative bacteria. In this review, we summarize the structural, biochemical, and functional studies concerning the M23 family of peptidases based on literature and complement this knowledge by performing large-scale analyses of available protein sequences. This review has led us to gain new insight into the role of surface charge in the activity of this group of enzymes. We present relevant conclusions drawn from the analysis of available structures and indicate the main structural features that play a crucial role in specificity determination and mechanisms of latency. Our work systematizes the knowledge of the M23 family enzymes in the context of their unique antimicrobial potential against drug-resistant pathogens and presents possibilities to modulate and engineer their features to develop perfect antibacterial weapons.
Collapse
Affiliation(s)
| | | | | | - Izabela Sabala
- Laboratory of Protein Engineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Kaus-Drobek
- Laboratory of Protein Engineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
11
|
Lu M, Chen Y, Li L, Ma Y, Tong Z, Guo D, Sun P, An D. Analysis and Evaluation of the Flagellin Activity of Bacillus amyloliquefaciens Ba168 Antimicrobial Proteins against Penicillium expansum. Molecules 2022; 27:4259. [PMID: 35807503 PMCID: PMC9268043 DOI: 10.3390/molecules27134259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Blue mold caused by Penicillium expansum is one of the most common apple diseases, and it is becoming a serious threat in apple production. The strain Bacillus amyloliquefaciens Ba168 showed high levels of antimicrobial activity in our previous study. To analyze the antimicrobial protein of Ba168, a high-resolution LC-MS/MS proteomic analysis was performed. A total of 1155 proteins were identified from 5233 unique peptides. A total of 16 potential antimicrobial-activity-related proteins were identified; 10 of these proteins have direct antimicrobial effects, while 6 of these proteins are associated with the formation of antimicrobial substances. Then, an antifungal protein of Ba168 was isolated and purified by the sequential chromatography of DEAE Bio-sep FF anion exchange and Sephadex G-75. The single protein, named BP8-2, showed antifungal activity towards Penicillium expansum. The peptide mass fingerprinting of the protein band of BP8-2 had a high similarity with the amino acid sequences of flagellin protein. The results showed that BP8-2 significantly inhibited the growth of P. expansum and slowed the spread of apple blue mold. The results indicated that flagellin is one of the important antimicrobial substances from Ba168.
Collapse
Affiliation(s)
- Meihuan Lu
- Microbiology Institute of Shaanxi, Xi’an 710043, China; (M.L.); (L.L.); (Y.M.); (Z.T.)
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, China; (Y.C.); (D.G.)
| | - Yahan Chen
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, China; (Y.C.); (D.G.)
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Lijun Li
- Microbiology Institute of Shaanxi, Xi’an 710043, China; (M.L.); (L.L.); (Y.M.); (Z.T.)
| | - Yinghui Ma
- Microbiology Institute of Shaanxi, Xi’an 710043, China; (M.L.); (L.L.); (Y.M.); (Z.T.)
| | - Zefang Tong
- Microbiology Institute of Shaanxi, Xi’an 710043, China; (M.L.); (L.L.); (Y.M.); (Z.T.)
| | - Dongsheng Guo
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, China; (Y.C.); (D.G.)
| | - Pingping Sun
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Derong An
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, China; (Y.C.); (D.G.)
| |
Collapse
|
12
|
Roba A, Carlier E, Godessart P, Naili C, De Bolle X. A histidine auxotroph mutant is defective for cell separation and allows the identification of crucial factors for cell division in Brucella abortus. Mol Microbiol 2022; 118:145-154. [PMID: 35748337 DOI: 10.1111/mmi.14956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
The pathogenic bacterium Brucella abortus invades and multiplies inside host cells. To grow inside host cells, B. abortus requires a functional histidine biosynthesis pathway. Here, we show that a B. abortus histidine auxotroph mutant also displays an unexpected chaining phenotype. The intensity of this phenotype varies according to the culture medium and is exacerbated inside host cells. Chains of bacteria consist of contiguous peptidoglycan, and likely result from the defective cleavage of peptidoglycan at septa. Genetic suppression of the chaining phenotype unearthed two essential genes with a role in B. abortus cell division, dipM and cdlP. Loss of function of dipM and cdlP generates swelling at the division site. While DipM is strictly localized at the division site, CdlP is localized at the growth pole and the division site. Altogether, the unexpected chaining phenotype of a hisB mutant allowed the discovery of new crucial actors in cell division in B. abortus.
Collapse
Affiliation(s)
- Agnès Roba
- Research Unit in Biology of Microorganisms, Narilis, University of Namur, Namur, Belgium
| | - Elodie Carlier
- Research Unit in Biology of Microorganisms, Narilis, University of Namur, Namur, Belgium
| | - Pierre Godessart
- Research Unit in Biology of Microorganisms, Narilis, University of Namur, Namur, Belgium
| | - Cerine Naili
- Research Unit in Biology of Microorganisms, Narilis, University of Namur, Namur, Belgium
| | - Xavier De Bolle
- Research Unit in Biology of Microorganisms, Narilis, University of Namur, Namur, Belgium
| |
Collapse
|
13
|
Zhang H, Chen J, Liu Y, Xu Q, Inam M, He C, Jiang X, Jia Y, Ma H, Kong L. Discovery of a novel antibacterial protein CB6-C to target methicillin-resistant Staphylococcus aureus. Microb Cell Fact 2022; 21:4. [PMID: 34983528 PMCID: PMC8725309 DOI: 10.1186/s12934-021-01726-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Given a serious threat of multidrug-resistant bacterial pathogens to global healthcare, there is an urgent need to find effective antibacterial compounds to treat drug-resistant bacterial infections. In our previous studies, Bacillus velezensis CB6 with broad-spectrum antibacterial activity was obtained from the soil of Changbaishan, China. In this study, with methicillin-resistant Staphylococcus aureus as an indicator bacterium, an antibacterial protein was purified by ammonium sulfate precipitation, Sephadex G-75 column, QAE-Sephadex A 25 column and RP-HPLC, which demonstrated a molecular weight of 31.405 kDa by SDS-PAGE. LC–MS/MS analysis indicated that the compound was an antibacterial protein CB6-C, which had 88.5% identity with chitosanase (Csn) produced by Bacillus subtilis 168. An antibacterial protein CB6-C showed an effective antimicrobial activity against gram-positive bacteria (in particular, the MIC for MRSA was 16 μg/mL), low toxicity, thermostability, stability in different organic reagents and pH values, and an additive effect with conventionally used antibiotics. Mechanistic studies showed that an antibacterial protein CB6-C exerted anti-MRSA activity through destruction of lipoteichoic acid (LTA) on the cell wall. In addition, an antibacterial protein CB6-C was efficient in preventing MRSA infections in in vivo models. In conclusion, this protein CB6-C is a newly discovered antibacterial protein and has the potential to become an effective antibacterial agent due to its high therapeutic index, safety, nontoxicity and great stability.
Collapse
Affiliation(s)
- Haipeng Zhang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.,The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Jingrui Chen
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Yuehua Liu
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.,The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Qijun Xu
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Muhammad Inam
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.,The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Chengguang He
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Xiuyun Jiang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.,Changchun Sci-Tech University, Shuangyang District, Changchun, 130600, China
| | - Yu Jia
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Hongxia Ma
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China. .,The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China. .,The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.
| | - Lingcong Kong
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China. .,The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.
| |
Collapse
|
14
|
Vieira MS, Duarte da Silva J, Ferro CG, Cunha PC, Vidigal PMP, Canêdo da Silva C, Oliveira de Paula S, Dias RS. A highly specific Serratia-infecting T7-like phage inhibits biofilm formation in two different genera of the Enterobacteriaceae family. Res Microbiol 2021; 172:103869. [PMID: 34333135 DOI: 10.1016/j.resmic.2021.103869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 07/07/2021] [Accepted: 07/17/2021] [Indexed: 11/18/2022]
Abstract
Due to the emergence of multidrug-resistant bacteria, bacteriophages have become a viable alternative in controlling bacterial growth or biofilm formation. Biofilm is formed by extracellular polymeric substances (EPS) and is one of the factors responsible for increasing bacterial resistance. Bacteriophages have been studied as a bacterial control agent by use of phage enzymes or due to their bactericidal activities. A specific phage against Serratia marcescens was isolated in this work and was evaluated its biological and genomic aspects. The object of this study was UFV01, a bacteriophage belonging to the Podoviridae family, genus Teseptimavirus (group of lytic viruses), specific to the species Serratia marcescens, which may be related to several amino acid substitutions in the virus tail fibers. Despite this high specificity, the phage reduced the biofilm formation of several Escherichia coli strains without infecting them. UFV01 presents a relationship with phages of the genus Teseptimavirus, although it does not infect any of the Escherichia coli strains evaluated, as these others do. All the characteristics make the phage an interesting alternative in biofilm control in hospital environments since small breaks in the biofilm matrix can lead to a complete collapse.
Collapse
Affiliation(s)
- Marcella Silva Vieira
- Laboratório de Imunovirologia Molecular, Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P. H. Rolf, 36570-900, Viçosa, Brazil
| | - Jéssica Duarte da Silva
- Laboratório de Imunovirologia Molecular, Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P. H. Rolf, 36570-900, Viçosa, Brazil
| | - Camila Geovana Ferro
- Laboratório de Virologia Vegetal, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 13418-900, Piracicaba, Brazil
| | - Paloma Cavalcante Cunha
- Laboratório de Imunovirologia Molecular, Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P. H. Rolf, 36570-900, Viçosa, Brazil
| | - Pedro Marcus P Vidigal
- Núcleo de Análise de Biomoléculas, Universidade Federal de Viçosa, Vila Gianetti, 36570-900, Viçosa, Brazil
| | - Cynthia Canêdo da Silva
- Laboratório de Microbiologia Ambiental Aplicada, Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P. H. Rolf, 36570-900, Viçosa, Brazil
| | - Sérgio Oliveira de Paula
- Laboratório de Imunovirologia Molecular, Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P. H. Rolf, 36570-900, Viçosa, Brazil
| | - Roberto Sousa Dias
- Laboratório de Imunovirologia Molecular, Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P. H. Rolf, 36570-900, Viçosa, Brazil.
| |
Collapse
|
15
|
The Lysozyme Inhibitor Thionine Acetate Is Also an Inhibitor of the Soluble Lytic Transglycosylase Slt35 from Escherichia coli. Molecules 2021; 26:molecules26144189. [PMID: 34299465 PMCID: PMC8307938 DOI: 10.3390/molecules26144189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022] Open
Abstract
Lytic transglycosylases such as Slt35 from E. coli are enzymes involved in bacterial cell wall remodelling and recycling, which represent potential targets for novel antibacterial agents. Here, we investigated a series of known glycosidase inhibitors for their ability to inhibit Slt35. While glycosidase inhibitors such as 1-deoxynojirimycin, castanospermine, thiamet G and miglitol had no effect, the phenothiazinium dye thionine acetate was found to be a weak inhibitor. IC50 values and binding constants for thionine acetate were similar for Slt35 and the hen egg white lysozyme. Molecular docking simulations suggest that thionine binds to the active site of both Slt35 and lysozyme, although it does not make direct interactions with the side-chain of the catalytic Asp and Glu residues as might be expected based on other inhibitors. Thionine acetate also increased the potency of the beta-lactam antibiotic ampicillin against a laboratory strain of E. coli.
Collapse
|
16
|
Shah SMA, Taju SW, Dlamini BB, Ou YY. DeepSIRT: A deep neural network for identification of sirtuin targets and their subcellular localizations. Comput Biol Chem 2021; 93:107514. [PMID: 34058657 DOI: 10.1016/j.compbiolchem.2021.107514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 09/30/2022]
Abstract
Sirtuins are a family of proteins that play a key role in regulating a wide range of cellular processes including DNA regulation, metabolism, aging/longevity, cell survival, apoptosis, and stress resistance. Sirtuins are protein deacetylases and include in the class III family of histone deacetylase enzymes (HDACs). The class III HDACs contains seven members of the sirtuin family from SIRT1 to SIRT7. The seven members of the sirtuin family have various substrates and are present in nearly all subcellular localizations including the nucleus, cytoplasm, and mitochondria. In this study, a deep neural network approach using one-dimensional Convolutional Neural Networks (CNN) was proposed to build a prediction model that can accurately identify the outcome of the sirtuin protein by targeting their subcellular localizations. Therefore, the function and localization of sirtuin targets were analyzed and annotated to compartmentalize into distinct subcellular localizations. We further reduced the sequence similarity between protein sequences and three feature extraction methods were applied in datasets. Finally, the proposed method has been tested and compared with various machine-learning algorithms. The proposed method is validated on two independent datasets and showed an average of up to 85.77 % sensitivity, 97.32 % specificity, and 0.82 MCC for seven members of the sirtuin family of proteins.
Collapse
Affiliation(s)
- Syed Muazzam Ali Shah
- Department of Computer Science & Engineering, Yuan Ze University, Chungli, 32003, Taiwan
| | - Semmy Wellem Taju
- Department of Computer Science & Engineering, Yuan Ze University, Chungli, 32003, Taiwan
| | - Bongani Brian Dlamini
- Department of Computer Science & Engineering, Yuan Ze University, Chungli, 32003, Taiwan
| | - Yu-Yen Ou
- Department of Computer Science & Engineering, Yuan Ze University, Chungli, 32003, Taiwan.
| |
Collapse
|
17
|
Shiratori T, Suzuki S, Kakizawa Y, Ishida KI. Phagocytosis-like cell engulfment by a planctomycete bacterium. Nat Commun 2019; 10:5529. [PMID: 31827088 PMCID: PMC6906331 DOI: 10.1038/s41467-019-13499-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 11/08/2019] [Indexed: 11/25/2022] Open
Abstract
Phagocytosis is a key eukaryotic feature, conserved from unicellular protists to animals, that enabled eukaryotes to feed on other organisms. It could also be a driving force behind endosymbiosis, a process by which α-proteobacteria and cyanobacteria evolved into mitochondria and plastids, respectively. Here we describe a planctomycete bacterium, 'Candidatus Uab amorphum', which is able to engulf other bacteria and small eukaryotic cells through a phagocytosis-like mechanism. Observations via light and electron microscopy suggest that this bacterium digests prey cells in specific compartments. With the possible exception of a gene encoding an actin-like protein, analysis of the 'Ca. Uab amorphum' genomic sequence does not reveal any genes homologous to eukaryotic phagocytosis genes, suggesting that cell engulfment in this microorganism is probably not homologous to eukaryotic phagocytosis. The discovery of this "phagotrophic" bacterium expands our understanding of the cellular complexity of prokaryotes, and may be relevant to the origin of eukaryotic cells.
Collapse
Affiliation(s)
- Takashi Shiratori
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-0053, Japan.
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan.
| | - Shigekatsu Suzuki
- National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-0053, Japan
| | - Yukako Kakizawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-0053, Japan
| | - Ken-Ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-0053, Japan
| |
Collapse
|
18
|
Complete Genome Sequence of Lactic Acid Bacterium Pediococcus acidilactici Strain ATCC 8042, an Autolytic Anti-bacterial Peptidoglycan Hydrolase Producer. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0037-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Opoku-Temeng C, Onyedibe KI, Aryal UK, Sintim HO. Proteomic analysis of bacterial response to a 4-hydroxybenzylidene indolinone compound, which re-sensitizes bacteria to traditional antibiotics. J Proteomics 2019; 202:103368. [PMID: 31028946 DOI: 10.1016/j.jprot.2019.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/21/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Halogenated 4-hydroxybenzylidene indolinones have been shown to re-sensitize methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE) to methicillin and vancomycin respectively. The mechanism of antibiotic re-sensitization was however not previously studied. Here, we probe the scope of antibiotic re-sensitization and present the global proteomics analysis of S. aureus treated with GW5074, a 4-hydroxybenzylidene indolinone compound. With a minimum inhibitory concentration (MIC) of 8 μg/mL against S. aureus, GW5074 synergized with beta-lactam antibiotics like ampicillin, carbenicillin and cloxacillin, the DNA synthesis inhibitor, ciprofloxacin, the protein synthesis inhibitor, gentamicin and the folate acid synthesis inhibitor, trimethoprim. Global proteomics analysis revealed that GW5074 treatment resulted in significant downregulation of enzymes involved in the purine biosynthesis. S. aureus proteins involved in amino acid metabolism and peptide transport were also observed to be downregulated. Interestingly, anti-virulence targets such as AgrC (a quorum sensing-related histidine kinase), AgrA (a quorum sensing-related response regulator) as well as downstream targets, such as hemolysins, lipases and proteases in S. aureus were also downregulated by GW5074. We observed that the peptidoglycan hydrolase, SceD was significantly upregulated. The activity of GW5074 on S. aureus suggests that the compound primes bacteria for the antibacterial action of ineffective antibiotics. SIGNIFICANCE: Antibiotic resistance continues to present significant challenges to the treatment of bacterial infections. Given that antibiotic resistance is a natural phenomenon and that it has become increasingly difficult to discover novel antibiotics, efforts to improve the activity of existing agents are worth pursuing. A few small molecules that re-sensitize resistant bacteria to traditional antibiotics have been described but the molecular details that underpin how these compounds work to re-sensitize bacteria remain largely unknown. In this report, global label-free quantitative proteomics was used to identify changes in the proteome that occurs when GW5074, a compound that re-sensitize MRSA to methicillin, is administered to S. aureus. The identification of pathways that are impacted by GW5074 could help identify novel targets for antibiotic re-sensitization.
Collapse
Affiliation(s)
- Clement Opoku-Temeng
- Graduate Program in Biochemistry, University of Maryland, College Park, MD 20742, USA; Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Kenneth Ikenna Onyedibe
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Uma K Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Herman O Sintim
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
20
|
Irazoki O, Hernandez SB, Cava F. Peptidoglycan Muropeptides: Release, Perception, and Functions as Signaling Molecules. Front Microbiol 2019; 10:500. [PMID: 30984120 PMCID: PMC6448482 DOI: 10.3389/fmicb.2019.00500] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
Peptidoglycan (PG) is an essential molecule for the survival of bacteria, and thus, its biosynthesis and remodeling have always been in the spotlight when it comes to the development of antibiotics. The peptidoglycan polymer provides a protective function in bacteria, but at the same time is continuously subjected to editing activities that in some cases lead to the release of peptidoglycan fragments (i.e., muropeptides) to the environment. Several soluble muropeptides have been reported to work as signaling molecules. In this review, we summarize the mechanisms involved in muropeptide release (PG breakdown and PG recycling) and describe the known PG-receptor proteins responsible for PG sensing. Furthermore, we overview the role of muropeptides as signaling molecules, focusing on the microbial responses and their functions in the host beyond their immunostimulatory activity.
Collapse
Affiliation(s)
| | | | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
21
|
da Silva Duarte V, Dias RS, Kropinski AM, da Silva Xavier A, Ferro CG, Vidigal PMP, da Silva CC, de Paula SO. A T4virus prevents biofilm formation by Trueperella pyogenes. Vet Microbiol 2018; 218:45-51. [PMID: 29685220 DOI: 10.1016/j.vetmic.2018.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/02/2018] [Accepted: 03/19/2018] [Indexed: 01/01/2023]
Abstract
Trueperella pyogenes is an opportunistic pathogen of many animal species. It causes economic losses worldwide, through mastitis, metritis and mainly endometritis in dairy cows. The ability of this bacterium to form biofilms is implicated in chronic infections through hampering immune system recognition and antibiotic penetration. Since it is difficult to eradicate T. pyogenes infections with antibiotics, phage therapy presents itself as a non-toxic, effective and economically viable alternative. The present study evaluated the use of the bacteriophage vB_EcoM-UFV13 (UFV13) in the prevention of T. pyogenes biofilm development. Based upon two different approaches (crystal violet and sessile cell counting) we observed that only a multiplicity of infection (MOI) of 10 showed a statistically significant reduction in biofilm formation. Although the exact mechanisms of biofilm disruption and cell-adhesion inhibition have not been determined, genome sequence analysis of the Escherichia phage UFV13 revealed a repertoire of virion-associated peptidoglycan hydrolases (VAPGHs). The present study presents new findings regarding the disruption of biofilm formation of a Gram-positive bacterium. Subsequent transcriptomic and proteomic research will help us to understand the exact interaction mechanisms between UFV13 and T. pyogenes.
Collapse
Affiliation(s)
- Vinícius da Silva Duarte
- Department of Microbiology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Roberto Sousa Dias
- Department of Microbiology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Andrew M Kropinski
- Departments of Food Science, and Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1 Canada.
| | | | - Camila Geovana Ferro
- Department of Plant Pathology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Pedro M P Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Center of Biological Sciences, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Cynthia Canedo da Silva
- Department of Microbiology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Sérgio Oliveira de Paula
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
22
|
Carbohydrate recognition and lysis by bacterial peptidoglycan hydrolases. Curr Opin Struct Biol 2017; 44:87-100. [PMID: 28109980 DOI: 10.1016/j.sbi.2017.01.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/23/2016] [Accepted: 01/02/2017] [Indexed: 01/26/2023]
Abstract
The major component of bacterial cell wall is peptidoglycan (PG), a complex polymer formed by long glycan chains cross-linked by peptide stems. PG is in constant equilibrium requiring well-orchestrated coordination between synthesis and degradation. The resulting cell-wall fragments can be recycled, act as messengers for bacterial communication, as effector molecules in immune response or as signaling molecules triggering antibiotics resistance. Tailoring and recycling of PG requires the cleavage of different covalent bonds of the PG sacculi by a diverse set of specific enzymes whose activities are strictly regulated. Here, we review the molecular mechanisms that govern PG remodeling focusing on the structural information available for the bacterial lytic enzymes and the mechanisms by which they recognize their substrates.
Collapse
|
23
|
In Silico Prediction of Gamma-Aminobutyric Acid Type-A Receptors Using Novel Machine-Learning-Based SVM and GBDT Approaches. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2375268. [PMID: 27579307 PMCID: PMC4992803 DOI: 10.1155/2016/2375268] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 06/08/2016] [Accepted: 06/19/2016] [Indexed: 11/17/2022]
Abstract
Gamma-aminobutyric acid type-A receptors (GABAARs) belong to multisubunit membrane spanning ligand-gated ion channels (LGICs) which act as the principal mediators of rapid inhibitory synaptic transmission in the human brain. Therefore, the category prediction of GABAARs just from the protein amino acid sequence would be very helpful for the recognition and research of novel receptors. Based on the proteins' physicochemical properties, amino acids composition and position, a GABAAR classifier was first constructed using a 188-dimensional (188D) algorithm at 90% cd-hit identity and compared with pseudo-amino acid composition (PseAAC) and ProtrWeb web-based algorithms for human GABAAR proteins. Then, four classifiers including gradient boosting decision tree (GBDT), random forest (RF), a library for support vector machine (libSVM), and k-nearest neighbor (k-NN) were compared on the dataset at cd-hit 40% low identity. This work obtained the highest correctly classified rate at 96.8% and the highest specificity at 99.29%. But the values of sensitivity, accuracy, and Matthew's correlation coefficient were a little lower than those of PseAAC and ProtrWeb; GBDT and libSVM can make a little better performance than RF and k-NN at the second dataset. In conclusion, a GABAAR classifier was successfully constructed using only the protein sequence information.
Collapse
|