1
|
Machado RAR, Malan AP, Abolafia J, Ewany J, Bhat AH, Stock SP. Photorhabdus viridis sp. nov. Isolated from Heterorhabditis zealandica Entomopathogenic Nematodes. Curr Microbiol 2024; 81:423. [PMID: 39443328 PMCID: PMC11499390 DOI: 10.1007/s00284-024-03935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
A novel bacterial species, Photorhabdus viridis sp. nov., represented by strain GreenT, isolated from Heterorhabditis zealandica MJ2C entomopathogenic nematodes, is described. Phylogenetic reconstructions using 16S rRNA gene sequences show that strain GreenT is closely related to P. thracensis DSM 15199 T. The 16rRNA gene sequences of these two strains are 98.8% identical. Phylogenetic reconstructions using whole-genome sequences show that strain GreenT is closely related to P. tasmaniensis DSM 22387 T, P. thracensis DSM 15199 T, and P. temperata DSM 14550 T. Digital DNA-DNA hybridization (dDDH) values between strain GreenT and its three more close relative species, P. tasmaniensis DSM 22387 T, P. thracensis DSM 15199 T, and P. temperata DSM 14550 T, are 49%, 59%, and 59%, respectively. In addition, average nucleotide identity (ANI) values between GreenT and P. tasmaniensis DSM 22387 T, P. thracensis DSM 15199 T, and P. temperata DSM 14550 T are 92.4%, 94.4%, and 94.6%, respectively. The novel species also differs in their biochemical capacities from the biochemical capacities of their more closely related taxa. The following biochemical tests may be particularly useful in this context: Arginine dihydrolase, gelatinase, and glucose and mannitol oxidation. Given the clear phylogenetic separation, the sequence divergence values, and the phenotypic differences, we conclude that strain GreenT represents a novel bacterial species, for which we propose the name Photorhabdus viridis sp. nov. with GreenT (= CCM 9407 T = CCOS 2117 T = MJ2CT) as the type strain. Our study contributes to a better understanding of the taxonomy and biodiversity of an important bacterial group with great biotechnological and agricultural potential.
Collapse
Affiliation(s)
- Ricardo A R Machado
- Experimental Biology Research Group, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.
| | - Antoinette P Malan
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, Matieland, South Africa
| | - Joaquín Abolafia
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus 'Las Lagunillas', Jaén, Spain
| | - Jaspher Ewany
- Experimental Biology Research Group, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Aashaq Hussain Bhat
- Department of Biosciences and University Center for Research and Development, Chandigarh University. Gharuan, Mohali, Punjab, 140413, India
| | - S Patricia Stock
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
2
|
Huang X, Li C, Zhang K, Li K, Xie J, Peng Y, Quan M, Sun Y, Hu Y, Xia L, Hu S. Function and Global Regulation of Type III Secretion System and Flagella in Entomopathogenic Nematode Symbiotic Bacteria. Int J Mol Sci 2024; 25:7579. [PMID: 39062822 PMCID: PMC11277461 DOI: 10.3390/ijms25147579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, it is widely accepted that the type III secretion system (T3SS) serves as the transport platform for bacterial virulence factors, while flagella act as propulsion motors. However, there remains a noticeable dearth of comparative studies elucidating the functional disparities between these two mechanisms. Entomopathogenic nematode symbiotic bacteria (ENS), including Xenorhabdus and Photorhabdus, are Gram-negative bacteria transported into insect hosts by Steinernema or Heterorhabdus. Flagella are conserved in ENS, but the T3SS is only encoded in Photorhabdus. There are few reports on the function of flagella and the T3SS in ENS, and it is not known what role they play in the infection of ENS. Here, we clarified the function of the T3SS and flagella in ENS infection based on flagellar inactivation in X. stockiae (flhDC deletion), T3SS inactivation in P. luminescens (sctV deletion), and the heterologous synthesis of the T3SS of P. luminescens in X. stockiae. Consistent with the previous results, the swarming movement of the ENS and the formation of biofilms are dominated by the flagella. Both the T3SS and flagella facilitate ENS invasion and colonization within host cells, with minimal impact on secondary metabolite formation and secretion. Unexpectedly, a proteomic analysis reveals a negative feedback loop between the flagella/T3SS assembly and the type VI secretion system (T6SS). RT-PCR testing demonstrates the T3SS's inhibition of flagellar assembly, while flagellin expression promotes T3SS assembly. Furthermore, T3SS expression stimulates ribosome-associated protein expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shengbiao Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China; (X.H.); (K.L.); (L.X.)
| |
Collapse
|
3
|
Machado RAR, Malan AP, Boss A, Claasen NJ, Bhat AH, Abolafia J. Photorhabdus africana sp. nov. isolated from Heterorhabditis entomopathogenic nematodes. Curr Microbiol 2024; 81:240. [PMID: 38910178 PMCID: PMC11194217 DOI: 10.1007/s00284-024-03744-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/20/2024] [Indexed: 06/25/2024]
Abstract
One Gram-negative, rod-shaped bacterial strain, isolated from an undescribed Heterorhabditis entomopathogenic nematode species was characterized to determine its taxonomic position. The 16S rRNA gene sequences indicate that it belongs to the class Gammaproteobacteria, to the family Morganellaceae, to the genus Photorhabdus, and likely represents a novel bacterial species. This strain, designated here as CRI-LCT, was therefore molecularly, biochemically, and morphologically characterized to describe the novel bacterial species. Phylogenetic reconstructions using 16S rRNA gene sequences show that CRI-LCT is closely related to P. laumondii subsp. laumondii TT01T and to P. laumondii subsp. clarkei BOJ-47T. The 16rRNA gene sequences between CRI-LCT and P. laumondii subsp. laumondii TT01T are 99.1% identical, and between CRI-LCT and P. laumondii subsp. clarkei BOJ-47T are 99.2% identical. Phylogenetic reconstructions using whole genome sequences show that CRI-LCT is closely related to P. laumondii subsp. laumondii TT01T and to P. laumondii subsp. clarkei BOJ-47T. Moreover, digital DNA-DNA hybridization (dDDH) values between CRI-LCT and its two relative species P. laumondii subsp. laumondii TT01T and P. laumondii subsp. clarkei BOJ-47T are 65% and 63%, respectively. In addition, we observed that average nucleotide identity (ANI) values between CRI-LCT and its two relative species P. laumondii subsp. laumondii TT01T and P. laumondii subsp. clarkei BOJ-47T are 95.8% and 95.5%, respectively. These values are below the 70% dDDH and the 95-96% ANI divergence thresholds that delimits prokaryotic species. Based on these genomic divergence values, and the phylogenomic separation, we conclude that CRI-LCT represents a novel bacterial species, for which we propose the name Photorhabdus africana sp. nov. with CRI-LCT (= CCM 9390T = CCOS 2112T) as the type strain. The following biochemical tests allow to differentiate P. africana sp. nov. CRI-LCT from other species of the genus, including its more closely related taxa: β-Galactosidase, citrate utilization, urease and tryptophan deaminase activities, indole and acetoin production, and glucose and inositol oxidation. Our study contributes to a better understanding of the taxonomy and biodiversity of this important bacterial group with great biotechnological and agricultural potential.
Collapse
Affiliation(s)
- Ricardo A R Machado
- Experimental Biology Research Group, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.
| | - Antoinette P Malan
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Anja Boss
- Experimental Biology Research Group, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Nicholle J Claasen
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Aashaq Hussain Bhat
- Department of Biosciences and University Center for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
- Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Joaquín Abolafia
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus 'Las Lagunillas', Jaén, Spain
| |
Collapse
|
4
|
Fodor A, Hess C, Ganas P, Boros Z, Kiss J, Makrai L, Dublecz K, Pál L, Fodor L, Sebestyén A, Klein MG, Tarasco E, Kulkarni MM, McGwire BS, Vellai T, Hess M. Antimicrobial Peptides (AMP) in the Cell-Free Culture Media of Xenorhabdus budapestensis and X. szentirmaii Exert Anti-Protist Activity against Eukaryotic Vertebrate Pathogens including Histomonas meleagridis and Leishmania donovani Species. Antibiotics (Basel) 2023; 12:1462. [PMID: 37760758 PMCID: PMC10525888 DOI: 10.3390/antibiotics12091462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Anti-microbial peptides provide a powerful toolkit for combating multidrug resistance. Combating eukaryotic pathogens is complicated because the intracellular drug targets in the eukaryotic pathogen are frequently homologs of cellular structures of vital importance in the host organism. The entomopathogenic bacteria (EPB), symbionts of entomopathogenic-nematode species, release a series of non-ribosomal templated anti-microbial peptides. Some may be potential drug candidates. The ability of an entomopathogenic-nematode/entomopathogenic bacterium symbiotic complex to survive in a given polyxenic milieu is a coevolutionary product. This explains that those gene complexes that are responsible for the biosynthesis of different non-ribosomal templated anti-microbial protective peptides (including those that are potently capable of inactivating the protist mammalian pathogen Leishmania donovanii and the gallinaceous bird pathogen Histomonas meleagridis) are co-regulated. Our approach is based on comparative anti-microbial bioassays of the culture media of the wild-type and regulatory mutant strains. We concluded that Xenorhabdus budapestensis and X. szentirmaii are excellent sources of non-ribosomal templated anti-microbial peptides that are efficient antagonists of the mentioned pathogens. Data on selective cytotoxicity of different cell-free culture media encourage us to forecast that the recently discovered "easy-PACId" research strategy is suitable for constructing entomopathogenic-bacterium (EPB) strains producing and releasing single, harmless, non-ribosomal templated anti-microbial peptides with considerable drug, (probiotic)-candidate potential.
Collapse
Affiliation(s)
- András Fodor
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter. sétány 1C, H-1117 Budapest, Hungary; (Z.B.); (T.V.)
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine (Vetmeduni Vienna), 1210 Vienna, Austria; (C.H.); (P.G.)
| | - Petra Ganas
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine (Vetmeduni Vienna), 1210 Vienna, Austria; (C.H.); (P.G.)
| | - Zsófia Boros
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter. sétány 1C, H-1117 Budapest, Hungary; (Z.B.); (T.V.)
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Páter Károly utca 1, H-2100 Gödöllő, Hungary;
| | - János Kiss
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Páter Károly utca 1, H-2100 Gödöllő, Hungary;
| | | | - Károly Dublecz
- Institute of Physiology and Nutrition, Georgikon Campus, Hungarian University of Agriculture and Life Sciences (MATE), Deák Ferenc utca 16, H-8360 Keszthely, Hungary; (K.D.); (L.P.)
| | - László Pál
- Institute of Physiology and Nutrition, Georgikon Campus, Hungarian University of Agriculture and Life Sciences (MATE), Deák Ferenc utca 16, H-8360 Keszthely, Hungary; (K.D.); (L.P.)
| | - László Fodor
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, H-1143 Budapest, Hungary;
| | - Anna Sebestyén
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary;
| | - Michael G. Klein
- USDA-ARS & Department of Entomology, The Ohio State University, 13416 Claremont Ave, Cleveland, OH 44130, USA;
| | - Eustachio Tarasco
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, Via Amendola 165/A, 70126 Bari, Italy;
| | - Manjusha M. Kulkarni
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (M.M.K.); (B.S.M.)
| | - Bradford S. McGwire
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (M.M.K.); (B.S.M.)
| | - Tibor Vellai
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter. sétány 1C, H-1117 Budapest, Hungary; (Z.B.); (T.V.)
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine (Vetmeduni Vienna), 1210 Vienna, Austria; (C.H.); (P.G.)
| |
Collapse
|
5
|
Machado RAR, Bhat AH, Castaneda-Alvarez C, Půža V, San-Blas E. Photorhabdus aballayi sp. nov. and Photorhabdus luminescens subsp. venezuelensis subsp. nov., isolated from Heterorhabditis amazonensis entomopathogenic nematodes. Int J Syst Evol Microbiol 2023; 73. [PMID: 37171451 DOI: 10.1099/ijsem.0.005872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Six Gram-negative, rod-shaped bacterial strains isolated from Heterorhabditis amazonensis entomopathogenic nematodes were characterized to determine their taxonomic position. 16S rRNA and gyrB gene sequences indicate that they belong to the class Gammaproteobacteria, family Morganellaceae and genus Photorhabdus, and that some of them are conspecifics. Two of them, APURET and JART, were selected for further molecular characterization using whole genome- and whole-proteome-based phylogenetic reconstructions and sequence comparisons. Phylogenetic reconstructions using whole genome and whole proteome sequences show that strains APURET and JART are closely related to Photorhabdus luminescens subsp. luminescens ATCC 29999T and to P. luminescens subsp. mexicana MEX47-22T. Moreover, digital DNA-DNA hybridization (dDDH) values between APURET and P. luminescens subsp. luminescens ATCC 29999T, APURET and P. luminescens subsp. mexicana MEX47-22T, and APURET and JART are 61.6, 61.2 and 64.1 %, respectively. These values are below the 70 % divergence threshold that delimits prokaryotic species. dDDH scores between JART and P. luminescens subsp. luminescens ATCC 29999T and between JART and P. luminescens subsp. mexicana MEX47-22T are 71.9 and 74.8 %, respectively. These values are within the 70 and 79 % divergence thresholds that delimit prokaryotic subspecies. Based on these genomic divergence values, APURET and JART represent two different taxa, for which we propose the names: Photorhabdus aballayi sp. nov. with APURET (=CCM 9236T =CCOS 2019T) as type strain and Photorhabdus luminescens subsp. venezuelensis subsp. nov. with JART (=CCM 9235T =CCOS 2021T) as type strain. Our study contributes to a better understanding of the biodiversity of an important bacterial group with enormous biotechnological and agricultural potential.
Collapse
Affiliation(s)
- Ricardo A R Machado
- Experimental Biology Research Group, Institute of Biology. University of Neuchâtel, Neuchâtel, Switzerland
| | - Aashaq Hussain Bhat
- Experimental Biology Research Group, Institute of Biology. University of Neuchâtel, Neuchâtel, Switzerland
- Department of Biosciences, University Center for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Carlos Castaneda-Alvarez
- Experimental Biology Research Group, Institute of Biology. University of Neuchâtel, Neuchâtel, Switzerland
- Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas. Universidad de Chile, Santiago, Chile
| | - Vladimir Půža
- Biology Centre CAS, Institute of Entomology, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Ernesto San-Blas
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales (ICA3), Universidad de O'Higgins, San Fernando, Chile
| |
Collapse
|
6
|
Du AQ, Ying TT, Zhou ZY, Yu WC, Hu GA, Luo X, Ma MJ, Yu YL, Wang H, Wei B. Non-ribosomal peptide biosynthetic potential of the nematode symbiont Photorhabdus. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:917-925. [PMID: 35998886 DOI: 10.1111/1758-2229.13118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Photorhabdus, the symbiotic bacteria of Heterorhabditis nematodes, has been reported to possess many non-ribosomal peptide synthetase (NRPS) biosynthesis gene clusters (BGCs). To provide an in-depth assessment of the non-ribosomal peptide biosynthetic potential of Photorhabdus, we compared the distribution of BGCs in 81 Photorhabdus strains, confirming the predominant presence (44.80%) of NRPS BGCs in Photorhabdus. All 990 NRPS BGCs were clustered into 275 gene cluster families (GCFs) and only 13 GCFs could be annotated with known BGCs, suggesting their great diversity and novelty. These NRPS BGCs encoded 351 novel peptides containing more than four amino acids, and 173 of them showed high sequence similarity to known BGCs encoding bioactive peptides, implying the promising potential of Photorhabdus to produce valuable peptides. Sequence similarity networking of adenylation (A-) domains suggested that the substrate specificity of A-domains was not directly correlated with the sequence similarity. The molecular similarity network of predicted metabolite scaffolds of NRPS BGCs and reported peptides from Photorhabdus and a relevant database demonstrated that the non-ribosomal peptide biosynthetic potential of Photorhabdus was largely untapped and revealed the core peptides deserving intensive studies. Our present study provides valuable information for the targeted discovery of novel non-ribosomal peptides from Photorhabdus.
Collapse
Affiliation(s)
- Ao-Qi Du
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Ti-Ti Ying
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Zhen-Yi Zhou
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Wen-Chao Yu
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Gang-Ao Hu
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Xian Luo
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Man-Jing Ma
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Yan-Lei Yu
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Hong Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Bin Wei
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
7
|
The Odilorhabdin Antibiotic Biosynthetic Cluster and Acetyltransferase Self-Resistance Locus Are Niche and Species Specific. mBio 2022; 13:e0282621. [PMID: 35012352 PMCID: PMC8749412 DOI: 10.1128/mbio.02826-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Antibiotic resistance is an increasing threat to human health. A direct link has been established between antimicrobial self-resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Natural odilorhabdins (ODLs) constitute a new family of 10-mer linear cationic peptide antibiotics inhibiting bacterial translation by binding to the 30S subunit of the ribosome. These bioactive secondary metabolites are produced by entomopathogenic bacterial symbiont Xenorhabdus (Morganellaceae), vectored by the soil-dwelling nematodes. ODL-producing Xenorhabdus nematophila symbionts have mechanisms of self-protection. In this study, we cloned the 44.5-kb odl biosynthetic gene cluster (odl-BGC) of the symbiont by recombineering and showed that the N-acetyltransferase-encoding gene, oatA, is responsible for ODL resistance. In vitro acetylation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses showed that OatA targeted the side chain amino group of ODL rare amino acids, leading to a loss of translation inhibition and antibacterial properties. Functional, genomic, and phylogenetic analyses of oatA revealed an exclusive cis-link to the odilorhabdin BGC, found only in X. nematophila and a specific phylogenetic clade of Photorhabdus. This work highlights the coevolution of antibiotic production and self-resistance as ancient features of this unique tripartite complex of host-vector-symbiont interactions without odl-BGC dissemination by lateral gene transfer. IMPORTANCE Odilorhabdins (ODLs) constitute a novel antibiotic family with promising properties for treating problematic multidrug-resistant Gram-negative bacterial infections. ODLs are 10-mer linear cationic peptides inhibiting bacterial translation by binding to the small subunit of the ribosome. These natural peptides are produced by Xenorhabdus nematophila, a bacterial symbiont of entomopathogenic nematodes well known to produce large amounts of specialized secondary metabolites. Like other antimicrobial producers, ODL-producing Xenorhabdus nematophila has mechanisms of self-protection. In this study, we cloned the ODL-biosynthetic gene cluster of the symbiont by recombineering and showed that the N-acetyltransferase-encoding gene, oatA, is responsible for ODL resistance. In vitro acetylation and LC-MS/MS analyses showed that OatA targeted the side chain amino group of ODL rare amino acids, leading to a loss of translation inhibition and antibacterial properties. Functional, genomic, and phylogenetic analyses of oatA revealed the coevolution of antibiotic production and self-resistance as ancient feature of this particular niche in soil invertebrates without resistance dissemination.
Collapse
|
8
|
Selective Toxicity of Secondary Metabolites from the Entomopathogenic Bacterium Photorhabdus luminescens sonorensis against Selected Plant Parasitic Nematodes of the Tylenchina Suborder. Microbiol Spectr 2022; 10:e0257721. [PMID: 35138171 PMCID: PMC8826726 DOI: 10.1128/spectrum.02577-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Entomopathogenic Photorhabdus bacteria (Enterobacteriaceae: Gamma-proteobacteria), the natural symbionts of Heterorhabditis nematodes, are a rich source for the discovery of biologically active secondary metabolites (SMs). This study describes the isolation of three nematicidal SMs from in vitro culture supernatants of the Arizona-native Photorhabdus luminescenssonorensis strain Caborca by bioactivity-guided fractionation. Nuclear magnetic resonance spectroscopy and comparison to authentic synthetic standards identified these bioactive metabolites as trans-cinnamic acid (t-CA), (4E)-5-phenylpent-4-enoic acid (PPA), and indole. PPA and t-CA displayed potent, concentration-dependent nematicidal activities against the root-knot nematode (Meloidogyne incognita) and the citrus nematode (Tylenchulus semipenetrans), two economically and globally important plant parasitic nematodes (PPNs) that are ubiquitous in the United States. Southwest. Indole showed potent, concentration-dependent nematistatic activity by inducing the temporary rigid paralysis of the same targeted nematodes. While paralysis was persistent in the presence of indole, the nematodes recovered upon removal of the compound. All three SMs were found to be selective against the tested PPNs, exerting little effects on non-target species such as the bacteria-feeding nematode Caenorhabditis elegans or the entomopathogenic nematodes Steinernema carpocapsae, Heterorhabditis bacteriophora, and Hymenocallis sonorensis. Moreover, none of these SMs showed cytotoxicity against normal or neoplastic human cells. The combination of t-CA + PPA + indole had a synergistic nematicidal effect on both targeted PPNs. Two-component mixtures prepared from these SMs revealed complex, compound-, and nematode species-dependent interactions. These results justify further investigations into the chemical ecology of Photorhabdus SMs, and recommend t-CA, PPA and indole, alone or in combinations, as lead compounds for the development of selective and environmentally benign nematicides against the tested PPNs. IMPORTANCE Two phenylpropanoid and one alkaloid secondary metabolites were isolated and identified from culture filtrates of Photorhabdus l. sonorensis strain Caborca. The three identified metabolites showed selective nematicidal and/or nematistatic activities against two important plant parasitic nematodes, the root-knot nematode (Meloidogyne incognita) and the citrus nematode (Tylenchulus semipenetrans). The mixture of all three metabolites had a synergistic nematicidal effect on both targeted nematodes, while other combinations showed compound- and nematode-dependent interactions.
Collapse
|
9
|
Machado RA, Bhat AH, Abolafia J, Muller A, Bruno P, Fallet P, Arce CC, Turlings TC, Bernal JS, Kajuga J, Waweru B, Toepfer S. Multi-locus phylogenetic analyses uncover species boundaries and reveal the occurrence of two new entomopathogenic nematode species, Heterorhabditis ruandica n. sp. and Heterorhabditis zacatecana n. sp. J Nematol 2021; 53:e2021-89. [PMID: 34790901 PMCID: PMC8588743 DOI: 10.21307/jofnem-2021-089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 11/17/2022] Open
Abstract
Species of the nematode genus Heterorhabditis are important biological control agents against agricultural pests. The taxonomy of this group is still unclear as it currently relies on phylogenetic reconstructions based on a few genetic markers with little resolutive power, specially of closely related species. To fill this knowledge gap, we sequenced several phylogenetically relevant genetic loci and used them to reconstruct phylogenetic trees, to calculate sequence similarity scores, and to determine signatures of species- and population-specific genetic polymorphism. In addition, we revisited the current literature related to the description, synonymisation, and declaration as species inquirendae of Heterorhabditis species to compile taxonomically relevant morphological and morphometric characters, characterized new nematode isolates at the morphological and morphometrical level, and conducted self-crossing and cross-hybridization experiments. The results of this study show that the sequences of the mitochondrial cytochrome C oxidase subunit I (COI) gene provide better phylogenetic resolutive power than the sequences of nuclear rRNA genes and that this gene marker can phylogenetically resolve closely related species and even populations of the same species with high precision. Using this gene marker, we found two new species, Heterorhabditis ruandica n. sp. and Heterorhabditis zacatecana n. sp. A detailed characterization of these species at the morphological and morphometric levels and nematode reproduction assays revealed that the threshold for species delimitation in this genus, using COI sequences, is 97% to 98%. Our study illustrates the importance of rigorous morphological and morphometric characterization and multi-locus sequencing for the description of new species within the genus Heterorhabditis, serves to clarify the phylogenetic relationships of this important group of biological control agents, and can inform future species descriptions to advance our efforts towards developing more tools for sustainable and environmentally friendly agriculture.
Collapse
Affiliation(s)
- Ricardo A.R. Machado
- Experimental Biology Research Group. Institute of Biology. Faculty of Sciences. University of Neuchâtel. Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Aashaq Hussain Bhat
- Department of Zoology, Government Degree College. Billawar-184204, Kathua, Jammu, Jammu and Kashmir, India
| | - Joaquín Abolafia
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus ‘Las Lagunillas’ s/n, Edificio B3, 23071 Jaén, Spain
| | - Arthur Muller
- Experimental Biology Research Group. Institute of Biology. Faculty of Sciences. University of Neuchâtel. Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Pamela Bruno
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology. Faculty of Sciences, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Patrick Fallet
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology. Faculty of Sciences, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Carla C.M. Arce
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology. Faculty of Sciences, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Ted C.J. Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology. Faculty of Sciences, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Julio S. Bernal
- Department of Entomology, Texas A&M University, College Station, TX
| | - Joelle Kajuga
- Department of Crop Innovations & Technology Transfer. Rwanda Agriculture and Animal Resources Development Board, 5016 Kigali-Rwanda
| | - Bancy Waweru
- Department of Crop Innovations & Technology Transfer. Rwanda Agriculture and Animal Resources Development Board, 5016 Kigali-Rwanda
| | | |
Collapse
|
10
|
Machado RAR, Somvanshi VS, Muller A, Kushwah J, Bhat CG. Photorhabdus hindustanensis sp. nov., Photorhabdus akhurstii subsp. akhurstii subsp. nov. , and Photorhabdus akhurstii subsp. bharatensis subsp. nov. , isolated from Heterorhabditis entomopathogenic nematodes. Int J Syst Evol Microbiol 2021; 71. [PMID: 34524954 DOI: 10.1099/ijsem.0.004998] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Two Gram-negative, rod-shaped bacteria, H1T and H3T, isolated from the digestive tract of Heterorhabditis entomopathogenic nematodes were biochemically and molecularly characterized to determine their taxonomic positions. The 16S rRNA gene sequences of these strains indicate that they belong to the Gammaproteobacteria, to the family Morganellaceae, and to the Photorhabdus genus. Deeper analyses using whole genome-based phylogenetic reconstructions show that strains H1T and H3T are closely related to P. akhurstii DSM 15138T, to P. hainanensis DSM 22397T, and to P. namnaonensis PB45.5T. In silico genomic comparisons confirm these observations and show that strain H1T shares 70.6, 66.8, and 63.5 % digital DNA-DNA hybridization (dDDH) with P. akhurstii DSM 15138T, P. hainanensis DSM 22397T, and P. namnaonensis PB45.5T, respectively, and that strain H3T shares 76.6, 69.4, and 59.2 % dDDH with P. akhurstii DSM 15138T, P. hainanensis DSM 22397T, and P. namnaonensis PB45.5T, respectively. Physiological and biochemical characterization reveals that these two strains differ from most of the validly described Photorhabdus species and from their more closely related taxa. Given the clear phylogenetic separations, that the threshold to discriminate species and subspecies is 70 and 79% dDDH, respectively, and that strains H1T and H3T differ physiologically and biochemically from their more closely related taxa, we propose to classify H1T and H3T into new taxa as follows: H3T as a new subspecies within the species P. akhurstii, and H1T as a new species within the Photorhabdus genus, in spite that H1T shares 70.6 % dDDH with P. akhurstii DSM 15138T, score that is slightly higher than the 70 % threshold that delimits species boundaries. The reason for this is that H1T and P. akhurstii DSM 15138T cluster apart in the phylogenetic trees and that dDDH scores between strain H1T and other P. akhurstii strains are lower than 70 %. Hence, the following names are proposed: Photorhabdus hindustanensis sp. nov. with the type strain H1T (=IARI-SGMG3T,=KCTC 82683T=CCM 9150T=CCOS 1975T) and P. akhurstii subsp. bharatensis subsp. nov. with the type strain H3T (=IARI-SGHR2T=KCTC 82684T=CCM 9149T=CCOS 1976T). These propositions automatically create P. akhurstii subsp. akhurstii subsp. nov. with DSM 15138T as the type strain (currently classified as P. akhurstii).
Collapse
Affiliation(s)
- Ricardo A R Machado
- Experimental Biology Research Group, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Vishal S Somvanshi
- Division of Nematology, Indian Council of Agricultural Research, Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India
| | - Arthur Muller
- Experimental Biology Research Group, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Jyoti Kushwah
- Division of Nematology, Indian Council of Agricultural Research, Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India
| | - Chaitra G Bhat
- Division of Nematology, Indian Council of Agricultural Research, Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India
| |
Collapse
|
11
|
Dose B, Niehs SP, Scherlach K, Shahda S, Flórez LV, Kaltenpoth M, Hertweck C. Biosynthesis of Sinapigladioside, an Antifungal Isothiocyanate from Burkholderia Symbionts. Chembiochem 2021; 22:1920-1924. [PMID: 33739557 PMCID: PMC8252389 DOI: 10.1002/cbic.202100089] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Indexed: 11/15/2022]
Abstract
Sinapigladioside is a rare isothiocyanate-bearing natural product from beetle-associated bacteria (Burkholderia gladioli) that might protect beetle offspring against entomopathogenic fungi. The biosynthetic origin of sinapigladioside has been elusive, and little is known about bacterial isothiocyanate biosynthesis in general. On the basis of stable-isotope labeling, bioinformatics, and mutagenesis, we identified the sinapigladioside biosynthesis gene cluster in the symbiont and found that an isonitrile synthase plays a key role in the biosynthetic pathway. Genome mining and network analyses indicate that related gene clusters are distributed across various bacterial phyla including producers of both nitriles and isothiocyanates. Our findings support a model for bacterial isothiocyanate biosynthesis by sulfur transfer into isonitrile precursors.
Collapse
Affiliation(s)
- Benjamin Dose
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Sarah P. Niehs
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Kirstin Scherlach
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Sophie Shahda
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Laura V. Flórez
- Department for Evolutionary EcologyInstitute of Organismic and Molecular EvolutionJohannes Gutenberg UniversityJohann-Joachim-Becher-Weg 1355128MainzGermany
| | - Martin Kaltenpoth
- Department for Evolutionary EcologyInstitute of Organismic and Molecular EvolutionJohannes Gutenberg UniversityJohann-Joachim-Becher-Weg 1355128MainzGermany
| | - Christian Hertweck
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
12
|
Machado RAR, Muller A, Ghazal SM, Thanwisai A, Pagès S, Bode HB, Hussein MA, Khalil KM, Tisa LS. Photorhabdus heterorhabditis subsp. aluminescens subsp. nov., Photorhabdus heterorhabditis subsp. heterorhabditis subsp. nov., Photorhabdus australis subsp. thailandensis subsp. nov., Photorhabdus australis subsp. australis subsp. nov., and Photorhabdus aegyptia sp. nov. isolated from Heterorhabditis entomopathogenic nematodes. Int J Syst Evol Microbiol 2021; 71. [PMID: 33464198 DOI: 10.1099/ijsem.0.004610] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Three Gram-stain-negative, rod-shaped, non-spore-forming bacteria, BA1T, Q614T and PB68.1T, isolated from the digestive system of Heterorhabditis entomopathogenic nematodes, were biochemically and molecularly characterized to clarify their taxonomic affiliations. The 16S rRNA gene sequences of these strains suggest that they belong to the Gammaproteobacteria, to the family Morganellacea, and to the genus Photorhabdus. Deeper analyses using whole genome-based phylogenetic reconstructions suggest that BA1T is closely related to Photorhabdus akhursti, that Q614T is closely related to Photorhabdus heterorhabditis, and that PB68.1T is closely related to Photorhabdus australis. In silico genomic comparisons confirm these observations: BA1T and P. akhursti 15138T share 68.8 % digital DNA-DNA hybridization (dDDH), Q614T and P. heterorhabditis SF41T share 75.4 % dDDH, and PB68.1T and P. australis DSM 17609T share 76.6 % dDDH. Physiological and biochemical characterizations reveal that these three strains also differ from all validly described Photorhabdus species and from their more closely related taxa, contrary to what was previously suggested. We therefore propose to classify BA1T as a new species within the genus Photorhabdus, Q614T as a new subspecies within P. heterorhabditis, and PB68.1T as a new subspecies within P. australis. Hence, the following names are proposed for these strains: Photorhabdus aegyptia sp. nov. with the type strain BA1T(=DSM 111180T=CCOS 1943T=LMG 31957T), Photorhabdus heterorhabditis subsp. aluminescens subsp. nov. with the type strain Q614T (=DSM 111144T=CCOS 1944T=LMG 31959T) and Photorhabdus australis subsp. thailandensis subsp. nov. with the type strain PB68.1T (=DSM 111145T=CCOS 1942T). These propositions automatically create Photorhabdus heterorhabditis subsp. heterorhabditis subsp. nov. with SF41T as the type strain (currently classified as P. heterorhabditis) and Photorhabdus australis subsp. australis subsp. nov. with DSM17609T as the type strain (currently classified as P. australis).
Collapse
Affiliation(s)
- Ricardo A R Machado
- Experimental Biology Research Group, Institute of Biology. University of Neuchâtel, Neuchâtel, Switzerland
| | - Arthur Muller
- Experimental Biology Research Group, Institute of Biology. University of Neuchâtel, Neuchâtel, Switzerland
| | - Shimaa M Ghazal
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Cairo, Egypt.,Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sylvie Pagès
- INRAe, Université de Montpellier, UMR1333-DGIMI, 34095 Montpellier Cedex 05, France
| | - Helge B Bode
- Molekulare Biotechnologie, Fachbereich Biowissenschaften & Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main & Senckenberg Gesellschaft für Naturforschung, Frankfurt, Germany
| | - Mona A Hussein
- Department of Pests and Plant Protection, Agricultural and Biological Division, National Research Centre, Dokki, Cairo, Egypt
| | - Kamal M Khalil
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Cairo, Egypt
| | - Louis S Tisa
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
13
|
Shi YM, Bode HB. Chemical language and warfare of bacterial natural products in bacteria-nematode-insect interactions. Nat Prod Rep 2019; 35:309-335. [PMID: 29359226 DOI: 10.1039/c7np00054e] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: up to November 2017 Organismic interaction is one of the fundamental principles for survival in any ecosystem. Today, numerous examples show the interaction between microorganisms like bacteria and higher eukaryotes that can be anything between mutualistic to parasitic/pathogenic symbioses. There is also increasing evidence that microorganisms are used by higher eukaryotes not only for the supply of essential factors like vitamins but also as biological weapons to protect themselves or to kill other organisms. Excellent examples for such systems are entomopathogenic nematodes of the genera Heterorhabditis and Steinernema that live in mutualistic symbiosis with bacteria of the genera Photorhabdus and Xenorhabdus, respectively. Although these systems have been used successfully in organic farming on an industrial scale, it was only shown during the last 15 years that several different natural products (NPs) produced by the bacteria play key roles in the complex life cycle of the bacterial symbionts, the nematode host and the insect prey that is killed by and provides nutrients for the nematode-bacteria pair. Since the bacteria can switch from mutualistic to pathogenic lifestyle, interacting with two different types of higher eukaryotes, and since the full system with all players can be established in the lab, they are promising model systems to elucidate the natural function of microbial NPs. This review summarizes the current knowledge as well as open questions for NPs from Photorhabdus and Xenorhabdus and tries to assign their roles in the tritrophic relationship.
Collapse
Affiliation(s)
- Yi-Ming Shi
- Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main 60438, Germany
| | | |
Collapse
|
14
|
Tobias NJ, Parra-Rojas C, Shi YN, Shi YM, Simonyi S, Thanwisai A, Vitta A, Chantratita N, Hernandez-Vargas EA, Bode HB. Cyclo(tetrahydroxybutyrate) production is sufficient to distinguish between Xenorhabdus and Photorhabdus isolates in Thailand. Environ Microbiol 2019; 21:2921-2932. [PMID: 31102315 DOI: 10.1111/1462-2920.14685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 11/29/2022]
Abstract
Bacteria of the genera Photorhabdus and Xenorhabdus produce a plethora of natural products to support their similar symbiotic life cycles. For many of these compounds, the specific bioactivities are unknown. One common challenge in natural product research when trying to prioritize research efforts is the rediscovery of identical (or highly similar) compounds from different strains. Linking genome sequence to metabolite production can help in overcoming this problem. However, sequences are typically not available for entire collections of organisms. Here, we perform a comprehensive metabolic screening using HPLC-MS data associated with a 114-strain collection (58 Photorhabdus and 56 Xenorhabdus) across Thailand and explore the metabolic variation among the strains, matched with several abiotic factors. We utilize machine learning in order to rank the importance of individual metabolites in determining all given metadata. With this approach, we were able to prioritize metabolites in the context of natural product investigations, leading to the identification of previously unknown compounds. The top three highest ranking features were associated with Xenorhabdus and attributed to the same chemical entity, cyclo(tetrahydroxybutyrate). This work also addresses the need for prioritization in high-throughput metabolomic studies and demonstrates the viability of such an approach in future research.
Collapse
Affiliation(s)
- Nicholas J Tobias
- Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325, Frankfurt am Main, Germany
| | - César Parra-Rojas
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438, Frankfurt am Main, Germany
| | - Yan-Ni Shi
- Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Yi-Ming Shi
- Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Svenja Simonyi
- Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Apichat Vitta
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | | | - Helge B Bode
- Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe-Universität Frankfurt, 60438, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Zhou Q, Bräuer A, Adihou H, Schmalhofer M, Saura P, Grammbitter GLC, Kaila VRI, Groll M, Bode HB. Molecular mechanism of polyketide shortening in anthraquinone biosynthesis of Photorhabdus luminescens. Chem Sci 2019; 10:6341-6349. [PMID: 31341589 PMCID: PMC6601290 DOI: 10.1039/c9sc00749k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/08/2019] [Indexed: 12/31/2022] Open
Abstract
Anthraquinones, produced by a type II polyketide synthase in Photorhabdus luminescens, are derived from polyketide chain shortening.
Anthraquinones, a widely distributed class of aromatic natural products, are produced by a type II polyketide synthase system in the Gram-negative bacterium Photorhabdus luminescens. Heterologous expression of the antABCDEFGHI anthraquinone biosynthetic gene cluster in Escherichia coli identified AntI as an unusual lyase, catalysing terminal polyketide shortening prior to formation of the third aromatic ring. Functional in vitro and in vivo analysis of AntI using X-ray crystallography, structure-based mutagenesis, and molecular simulations revealed that AntI converts a defined octaketide to the tricyclic anthraquinone ring via retro-Claisen and Dieckmann reactions. Thus, AntI catalyses a so far unobserved multistep reaction in this PKS system.
Collapse
Affiliation(s)
- Qiuqin Zhou
- Molekulare Biotechnologie , Fachbereich Biowissenschaften , Buchmann Institute for Molecular Life Sciences (BMLS) , Goethe Universität Frankfurt , Max-von-Laue-Str. 15, Max-von-Laue-Str. 9 , 60438 Frankfurt am Main , Germany .
| | - Alois Bräuer
- Center for Integrated Protein Science Munich (CIPSM) , Department of Chemistry , Technische Universität München , Lichtenbergstraße 4 , 85748 Garching , Germany .
| | - Hélène Adihou
- Molekulare Biotechnologie , Fachbereich Biowissenschaften , Buchmann Institute for Molecular Life Sciences (BMLS) , Goethe Universität Frankfurt , Max-von-Laue-Str. 15, Max-von-Laue-Str. 9 , 60438 Frankfurt am Main , Germany .
| | - Maximilian Schmalhofer
- Center for Integrated Protein Science Munich (CIPSM) , Department of Chemistry , Technische Universität München , Lichtenbergstraße 4 , 85748 Garching , Germany .
| | - Patricia Saura
- Center for Integrated Protein Science Munich (CIPSM) , Department of Chemistry , Technische Universität München , Lichtenbergstraße 4 , 85748 Garching , Germany .
| | - Gina L C Grammbitter
- Molekulare Biotechnologie , Fachbereich Biowissenschaften , Buchmann Institute for Molecular Life Sciences (BMLS) , Goethe Universität Frankfurt , Max-von-Laue-Str. 15, Max-von-Laue-Str. 9 , 60438 Frankfurt am Main , Germany .
| | - Ville R I Kaila
- Center for Integrated Protein Science Munich (CIPSM) , Department of Chemistry , Technische Universität München , Lichtenbergstraße 4 , 85748 Garching , Germany .
| | - Michael Groll
- Center for Integrated Protein Science Munich (CIPSM) , Department of Chemistry , Technische Universität München , Lichtenbergstraße 4 , 85748 Garching , Germany .
| | - Helge B Bode
- Molekulare Biotechnologie , Fachbereich Biowissenschaften , Buchmann Institute for Molecular Life Sciences (BMLS) , Goethe Universität Frankfurt , Max-von-Laue-Str. 15, Max-von-Laue-Str. 9 , 60438 Frankfurt am Main , Germany .
| |
Collapse
|
16
|
Hapeshi A, Benarroch JM, Clarke DJ, Waterfield NR. Iso-propyl stilbene: a life cycle signal? MICROBIOLOGY-SGM 2019; 165:516-526. [PMID: 30882293 DOI: 10.1099/mic.0.000790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Members of the Gram-negative bacterial genus Photorhabdus are all highly insect pathogenic and exist in an obligate symbiosis with the entomopathogenic nematode worm Heterorhabditis. All members of the genus produce the small-molecule 3,5-dihydroxy-4-isopropyl-trans-stilbene (IPS) as part of their secondary metabolism. IPS is a multi-potent compound that has antimicrobial, antifungal, immunomodulatory and anti-cancer activities and also plays an important role in symbiosis with the nematode. In this study we have examined the response of Photorhabdus itself to exogenous ectopic addition of IPS at physiologically relevant concentrations. We observed that the bacteria had a measureable phenotypic response, which included a decrease in bioluminescence and pigment production. This was reflected in changes in its transcriptomic response, in which we reveal a reduction in transcript levels of genes relating to many fundamental cellular processes, such as translation and oxidative phosphorylation. Our observations suggest that IPS plays an important role in the biology of Photorhabdus bacteria, fulfilling roles in quorum sensing, antibiotic-competition advantage and maintenance of the symbiotic developmental cycle.
Collapse
Affiliation(s)
- Alexia Hapeshi
- Microbiology and Infection Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jonatan Mimon Benarroch
- Microbiology and Infection Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - David James Clarke
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Nicholas Robin Waterfield
- Microbiology and Infection Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
17
|
Perez CE, Crawford JM. Characterization of a Hybrid Nonribosomal Peptide–Carbohydrate Biosynthetic Pathway in Photorhabdus luminescens. Biochemistry 2019; 58:1131-1140. [DOI: 10.1021/acs.biochem.8b01120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Corey E. Perez
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, United States
| |
Collapse
|
18
|
Eroglu C, Cimen H, Ulug D, Karagoz M, Hazir S, Cakmak I. Acaricidal effect of cell-free supernatants from Xenorhabdus and Photorhabdus bacteria against Tetranychus urticae (Acari: Tetranychidae). J Invertebr Pathol 2018; 160:61-66. [PMID: 30528928 DOI: 10.1016/j.jip.2018.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/15/2022]
Abstract
The effects of secondary metabolites produced by the following symbiotic bacteria, Xenorhabdus szentirmaii, X. nematophila, X. bovienii, X. cabanillasii, Photorhabdus luminescens and P. temperata, associated with entomopathogenic nematodes, were investigated against various developmental stages of Tetranychus urticae (Acari: Tetranychidae) using cell-free bacterial supernatants in Petri dishes. In addition, the effects of the most active bacterial supernatant(s) found in Petri dish experiments were tested on T. urticae in pot experiments. All studies were conducted at 25 ± 1 °C temperature, 70 ± 5% relative humidity and a light cycle of 16 h in a climate room. The result of the Petri dish experiments showed that the supernatants had little or no effect on the egg stage, as less than 4% mortality was recorded. Depending on the bacterial supernatant, mortality in the other stages was 46-97% for larvae, 30-96% for protonymphs, 41-92% for deutonymphs, 92-100% for adult males and 46-93% for adult females. Control mortalities ranged from 1-7% for larvae, 2-9% for protonymphs, 4-10% for deutonymphs, 6-10% for adult males and 4-8% for adult females. Among supernatants tested, X. szentirmaii and X. nematophila were the most efficacious with mortality greater than 90% on the mobile stages of T. urticae. According to the results from pot experiments, the supernatants of X. szentirmaii and X. nematophila, singularly and in combination, significantly reduced the T. urticae population. However, the mixture of X. szentirmaii and X. nematophila supernatants did not increase efficiency to reduce T. urticae population compared to each supernatant alone. Further studies are warranted to find the active compound(s) in the supernatants of X. szentirmaii or and X. nematophila and assess whether the supernatant(s) has the potential of being a practical and economical control agent for T. urticae.
Collapse
Affiliation(s)
- Ceren Eroglu
- Department of Plant Protection, Faculty of Agriculture, Adnan Menderes University, Aydin, Turkey
| | - Harun Cimen
- Department of Biology, Faculty of Arts and Science, Adnan Menderes University, Aydin, Turkey
| | - Derya Ulug
- Department of Biology, Faculty of Arts and Science, Adnan Menderes University, Aydin, Turkey
| | - Mehmet Karagoz
- Department of Plant Protection, Faculty of Agriculture, Adnan Menderes University, Aydin, Turkey
| | - Selcuk Hazir
- Department of Biology, Faculty of Arts and Science, Adnan Menderes University, Aydin, Turkey
| | - Ibrahim Cakmak
- Department of Plant Protection, Faculty of Agriculture, Adnan Menderes University, Aydin, Turkey.
| |
Collapse
|
19
|
Tobias NJ, Linck A, Bode HB. Natural Product Diversification Mediated by Alternative Transcriptional Starting. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nicholas J. Tobias
- Fachbereich Biowissenschaften; Merck Stiftungsprofessur für Molekulare Biotechnologie; Goethe-Universität Frankfurt; Frankfurt am Main Germany
| | - Annabell Linck
- Fachbereich Biowissenschaften; Merck Stiftungsprofessur für Molekulare Biotechnologie; Goethe-Universität Frankfurt; Frankfurt am Main Germany
| | - Helge B. Bode
- Fachbereich Biowissenschaften; Merck Stiftungsprofessur für Molekulare Biotechnologie; Goethe-Universität Frankfurt; Frankfurt am Main Germany
- Buchmann Institute for Molecular Life Sciences; Goethe-Universität Frankfurt; Frankfurt am Main Germany
| |
Collapse
|
20
|
Tobias NJ, Linck A, Bode HB. Natural Product Diversification Mediated by Alternative Transcriptional Starting. Angew Chem Int Ed Engl 2018; 57:5699-5702. [PMID: 29508935 DOI: 10.1002/anie.201713199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Indexed: 11/08/2022]
Abstract
Photorhabdus luminescens dedicates a significant proportion of its genome to the production of natural products. These products and the structural variation in their derivatives may occur by a number of well-described mechanisms, such as module skipping or precursor promiscuity. Cappable-seq was used to identify transcriptional start sites of many of the gene clusters present in P. luminescens TTO1. We discovered that variations associated with the non-ribosomal peptide synthetase Kol, which is responsible for kolossin A production, possessed a number of internal transcripts that lead to synthesis of the smaller kolossin derivatives kolossin B and C. The data here support a new mechanism of natural product biosynthetic variation whereby mRNA may code for shorter NRPS enzymes in addition to full-length proteins, resulting in the production of smaller peptide derivatives.
Collapse
Affiliation(s)
- Nicholas J Tobias
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Annabell Linck
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Helge B Bode
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
21
|
STOCK SPATRICIA, KUSAKABE AYAKO, OROZCO ROUSELA. Secondary Metabolites Produced by Heterorhabditis Symbionts and Their Application in Agriculture: What We Know and What to Do Next. J Nematol 2018. [DOI: 10.21307/jofnem-2017-084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
22
|
Stock SP, Kusakabe A, Orozco RA. Secondary Metabolites Produced by Heterorhabditis Symbionts and Their Application in Agriculture: What We Know and What to Do Next. J Nematol 2017; 49:373-383. [PMID: 29353924 PMCID: PMC5770283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Indexed: 06/07/2023] Open
Abstract
Gram-negative Photorhabdus bacteria have a dual lifestyle: they are mutualists of Heterorhabditis nematodes and are pathogens of insects. Together, this nematode-bacterium partnership has been used to successfully control a wide range of agricultural insect pests. Photorhabdus produce a diverse array of small molecules that play key biological roles in regulating their dual roles. In particular, several secondary metabolites (SM) produced by this bacterium are known to play a critical role in the maintenance of a monoxenic infection in the insect host and are also known to prevent contamination of the cadaver from soil microbes and/or predation by arthropods. A few of the SM this bacteria produce have been isolated and identified, and their biological activities have also been tested in laboratory assays. Over the past two decades, analyses of the genomes of several Photorhabdus spp. have revealed the presence of SM numerous gene clusters that comprise more than 6% of these bacteria genomes. Furthermore, genome mining and characterization of biosynthetic pathways, have uncovered the richness of these compounds, which are predicted to vary across different Photorhabdus spp. and strains. Although progress has been made in the identification and function of SM genes and gene clusters, the targeted testing for the bioactivity of molecules has been scarce or mostly focused on medical applications. In this review, we summarize the current knowledge of Photorhabdus SM, emphasizing on their activity against plant pathogens and parasites. We further discuss their potential in the management of agricultural pests and the steps that need to be taken for the implementation of Photorhabdus SM in pest management.
Collapse
Affiliation(s)
- S Patricia Stock
- Department of Entomology, University of Arizona, Tucson, AZ 85721
- Entomology and Insect Science Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721
| | - Ayako Kusakabe
- Entomology and Insect Science Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721
| | - Rousel A Orozco
- Entomology and Insect Science Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
23
|
Entomopathogenic bacteria Photorhabdus luminescens as drug source against Leishmania amazonensis. Parasitology 2017; 145:1065-1074. [PMID: 29157317 DOI: 10.1017/s0031182017002001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Leishmaniasis is a widely spread and zoonotic disease with serious problems as low effectiveness of drugs, emergence of parasite resistance and severe adverse reactions. In recent years, considerable attention has been given to secondary metabolites produced by Photorhabdus luminescens, an entomopathogenic bacterium. Here, we assessed the leishmanicidal activity of P. luminescens culture fluids. Initially, promastigotes of Leishmania amazonensis were incubated with cell free conditioned medium of P. luminescens and parasite survival was monitored. Different pre-treatments of the conditioned medium revealed that the leishmanicidal activity is due to a secreted peptide smaller than 3 kDa. The Photorhabdus-derived leishmanicidal toxin (PLT) was enriched from conditioned medium and its effect on mitochondrial membrane potential of promastigotes, was determined. Moreover, the biological activity of PLT against amastigotes was evaluated. PLT inhibited the parasite growth and showed significant leishmanicidal activity against promastigote and amastigotes of L. amazonensis. PLT also caused mitochondrial dysfunction in parasites, but low toxicity to mammalian cell and human erythrocytes. Moreover, the anti-amastigote activity was independent of nitric oxide production. In summary, our results highlight that P. luminescens secretes Leishmania-toxic peptide(s) that are promising novel drugs for therapy against leishmaniasis.
Collapse
|
24
|
Tobias NJ, Wolff H, Djahanschiri B, Grundmann F, Kronenwerth M, Shi YM, Simonyi S, Grün P, Shapiro-Ilan D, Pidot SJ, Stinear TP, Ebersberger I, Bode HB. Natural product diversity associated with the nematode symbionts Photorhabdus and Xenorhabdus. Nat Microbiol 2017; 2:1676-1685. [PMID: 28993611 DOI: 10.1038/s41564-017-0039-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/08/2017] [Indexed: 12/25/2022]
Abstract
Xenorhabdus and Photorhabdus species dedicate a large amount of resources to the production of specialized metabolites derived from non-ribosomal peptide synthetase (NRPS) or polyketide synthase (PKS). Both bacteria undergo symbiosis with nematodes, which is followed by an insect pathogenic phase. So far, the molecular basis of this tripartite relationship and the exact roles that individual metabolites and metabolic pathways play have not been well understood. To close this gap, we have significantly expanded the database for comparative genomics studies in these bacteria. Clustering the genes encoded in the individual genomes into hierarchical orthologous groups reveals a high-resolution picture of functional evolution in this clade. It identifies groups of genes-many of which are involved in secondary metabolite production-that may account for the niche specificity of these bacteria. Photorhabdus and Xenorhabdus appear very similar at the DNA sequence level, which indicates their close evolutionary relationship. Yet, high-resolution mass spectrometry analyses reveal a huge chemical diversity in the two taxa. Molecular network reconstruction identified a large number of previously unidentified metabolite classes, including the xefoampeptides and tilivalline. Here, we apply genomic and metabolomic methods in a complementary manner to identify and elucidate additional classes of natural products. We also highlight the ability to rapidly and simultaneously identify potentially interesting bioactive products from NRPSs and PKSs, thereby augmenting the contribution of molecular biology techniques to the acceleration of natural product discovery.
Collapse
Affiliation(s)
- Nicholas J Tobias
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, 60438, Germany
| | - Hendrik Wolff
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, 60438, Germany
| | - Bardya Djahanschiri
- Department of Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe-Universität Frankfurt, Frankfurt am Main, 60438, Germany
| | - Florian Grundmann
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, 60438, Germany
| | - Max Kronenwerth
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, 60438, Germany
| | - Yi-Ming Shi
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, 60438, Germany
| | - Svenja Simonyi
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, 60438, Germany
| | - Peter Grün
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, 60438, Germany
| | - David Shapiro-Ilan
- USDA-ARS, SEA, SE Fruit and Tree Nut Research Unit, 21 Dunbar Road, Byron, GA, 31008, USA
| | - Sacha J Pidot
- Department of Microbiology and Immunology, University of Melbourne, at the Doherty Institute for Infection and Immunity, Parkville, Victoria, 3010, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, University of Melbourne, at the Doherty Institute for Infection and Immunity, Parkville, Victoria, 3010, Australia
| | - Ingo Ebersberger
- Department of Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe-Universität Frankfurt, Frankfurt am Main, 60438, Germany.,Senckenberg Climate and Research Centre (BIK-F), Frankfurt am Main, 60325, Germany
| | - Helge B Bode
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, 60438, Germany. .,Buchmann Institute for Molecular Life Sciences, Goethe-Universität Frankfurt, Frankfurt am Main, 60438, Germany.
| |
Collapse
|
25
|
Permanent Draft Genome Sequence of Photorhabdus temperata Strain Hm, an Entomopathogenic Bacterium Isolated from Nematodes. GENOME ANNOUNCEMENTS 2017; 5:5/37/e00974-17. [PMID: 28912324 PMCID: PMC5597765 DOI: 10.1128/genomea.00974-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Photorhabdus temperata strain Hm is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. Here, we report a 5.0-Mbp draft genome sequence for P. temperata strain Hm with a G+C content of 44.1% and containing 4,226 candidate protein-encoding genes.
Collapse
|
26
|
Hirschmann M, Grundmann F, Bode HB. Identification and occurrence of the hydroxamate siderophores aerobactin, putrebactin, avaroferrin and ochrobactin C as virulence factors from entomopathogenic bacteria. Environ Microbiol 2017; 19:4080-4090. [DOI: 10.1111/1462-2920.13845] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/10/2017] [Accepted: 06/21/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Merle Hirschmann
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie; Goethe-Universität Frankfurt; Frankfurt am Main Germany
| | - Florian Grundmann
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie; Goethe-Universität Frankfurt; Frankfurt am Main Germany
| | - Helge B. Bode
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie; Goethe-Universität Frankfurt; Frankfurt am Main Germany
- Buchmann Institute for Molecular Life Sciences (BMLS); Goethe-Universität Frankfurt; Frankfurt am Main Germany
| |
Collapse
|
27
|
Park HB, Perez CE, Barber KW, Rinehart J, Crawford JM. Genome mining unearths a hybrid nonribosomal peptide synthetase-like-pteridine synthase biosynthetic gene cluster. eLife 2017; 6. [PMID: 28431213 PMCID: PMC5384830 DOI: 10.7554/elife.25229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/28/2017] [Indexed: 01/03/2023] Open
Abstract
Nonribosomal peptides represent a large class of metabolites with pharmaceutical relevance. Pteridines, such as pterins, folates, and flavins, are heterocyclic metabolites that often serve as redox-active cofactors. The biosynthetic machineries for construction of these distinct classes of small molecules operate independently in the cell. Here, we discovered an unprecedented nonribosomal peptide synthetase-like-pteridine synthase hybrid biosynthetic gene cluster in Photorhabdus luminescens using genome synteny analysis. P. luminescens is a Gammaproteobacterium that undergoes phenotypic variation and can have both pathogenic and mutualistic roles. Through extensive gene deletion, pathway-targeted molecular networking, quantitative proteomic analysis, and NMR, we show that the genetic locus affects the regulation of quorum sensing and secondary metabolic enzymes and encodes new pteridine metabolites functionalized with cis-amide acyl-side chains, termed pepteridine A (1) and B (2). The pepteridines are produced in the pathogenic phenotypic variant and represent the first reported metabolites to be synthesized by a hybrid NRPS-pteridine pathway. These studies expand our view of the combinatorial biosynthetic potential available in bacteria.
Collapse
Affiliation(s)
- Hyun Bong Park
- Department of Chemistry, Yale University, New Haven, United States.,Chemical Biology Institute, Yale University, West Haven, United States
| | - Corey E Perez
- Department of Chemistry, Yale University, New Haven, United States.,Chemical Biology Institute, Yale University, West Haven, United States
| | - Karl W Barber
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States.,Systems Biology Institute, Yale University, West Haven, United States
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States.,Systems Biology Institute, Yale University, West Haven, United States
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, United States.,Chemical Biology Institute, Yale University, West Haven, United States.,Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, United States
| |
Collapse
|
28
|
Park Y, Kang S, Sadekuzzaman M, Kim H, Jung JK, Kim Y. Identification and bacterial characteristics of Xenorhabdus hominickii ANU101 from an entomopathogenic nematode, Steinernema monticolum. J Invertebr Pathol 2017; 144:74-87. [PMID: 28193447 DOI: 10.1016/j.jip.2017.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/12/2017] [Accepted: 02/08/2017] [Indexed: 12/15/2022]
Abstract
An entomopathogenic nematode, Steinernema monticolum, was collected in Korea. Its identity was confirmed by morphological and molecular characters. Its symbiotic bacterium, Xenorhabdus hominickii ANU101, was isolated and assessed in terms of bacterial characteristics. Sixty-eight different carbon sources were utilized by X. hominickii ANU101 out of 95 different sources from a Biolog assay. Compared to other Xenorhabdus species, X. hominickii ANU101 was relatively susceptible to high temperatures and did not grow above 34°C. Furthermore, its growth rate was much slower than other Xenorhabdus species. X. hominickii exhibited insecticidal activities against coleopteran, dipteran, and lepidopteran insect pests. The bacterial virulence was not correlated with its host nematode virulence with respect to relative insecticidal activity against target insects. X. hominickii ANU101 exhibited antibiotics tolerance. The bacterium possesses four different plasmids (Xh-P1 (104,132bp), Xh-P2 (95,975bp), Xh-P3 (88,536bp), and Xh-P4 (11,403bp)) and encodes 332 open reading frames. Subsequent predicted genes include toxin/antitoxins comprising a multidrug export ATP-binding/permease. This study reports bacterial characters of X. hominickii and its entomopathogenicity.
Collapse
Affiliation(s)
- Youngjin Park
- Department of Bioresource Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Sangjin Kang
- Bongwha County, 1111 Bonghwa-ro, Bonghwa 36239, Republic of Korea
| | - Md Sadekuzzaman
- Department of Bioresource Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Hyeonghwan Kim
- Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, RDA, Wanju 55365, Republic of Korea
| | - Jin-Kyo Jung
- Division of Crop Cultivation and Environment Research, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon 16429, Republic of Korea
| | - Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong 36729, Republic of Korea.
| |
Collapse
|
29
|
Heinrich AK, Glaeser A, Tobias NJ, Heermann R, Bode HB. Heterogeneous regulation of bacterial natural product biosynthesis via a novel transcription factor. Heliyon 2016; 2:e00197. [PMID: 27957552 PMCID: PMC5133734 DOI: 10.1016/j.heliyon.2016.e00197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/19/2016] [Accepted: 11/11/2016] [Indexed: 11/25/2022] Open
Abstract
Biological diversity arises among genetically equal subpopulations in the same environment, a phenomenon called phenotypic heterogeneity. The life cycle of the enteric bacterium Photorhabdus luminescens involves a symbiotic interaction with nematodes as well as a pathogenic association with insect larvae. P. luminescens exists in two distinct phenotypic forms designated as primary (1°) and secondary (2°). In contrast to 1° cells, 2° cells are non-pigmented due to the absence of natural compounds, especially anthraquinones (AQs). We identified a novel type of transcriptional regulator, AntJ, which activates expression of the antA-I operon responsible for AQ production. AntJ heterogeneously activates the AQ production in single P. luminescens 1° cells, and blocks AQ production in 2° cells. AntJ contains a proposed ligand-binding WYL-domain, which is widespread among bacteria. AntJ is one of the rare examples of regulators that mediate heterogeneous gene expression by altering activity rather than copy number in single cells.
Collapse
Affiliation(s)
- Antje K Heinrich
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Angela Glaeser
- Bereich Mikrobiologie, Biozentrum Martinsried, Ludwig-Maximilians-Universität München, München, Germany
| | - Nicholas J Tobias
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Ralf Heermann
- Bereich Mikrobiologie, Biozentrum Martinsried, Ludwig-Maximilians-Universität München, München, Germany
| | - Helge B Bode
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
30
|
Tobias NJ, Heinrich AK, Eresmann H, Wright PR, Neubacher N, Backofen R, Bode HB. Photorhabdus‐nematode symbiosis is dependent onhfq‐mediated regulation of secondary metabolites. Environ Microbiol 2016; 19:119-129. [DOI: 10.1111/1462-2920.13502] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/16/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Nicholas J. Tobias
- Fachbereich BiowissenschaftenMerck Stiftungsprofessur für Molekulare Biotechnologie, Goethe Universität FrankfurtFrankfurt am Main Germany
| | - Antje K. Heinrich
- Fachbereich BiowissenschaftenMerck Stiftungsprofessur für Molekulare Biotechnologie, Goethe Universität FrankfurtFrankfurt am Main Germany
| | - Helena Eresmann
- Fachbereich BiowissenschaftenMerck Stiftungsprofessur für Molekulare Biotechnologie, Goethe Universität FrankfurtFrankfurt am Main Germany
| | - Patrick R. Wright
- Department of Computer ScienceBioinformatics Group, Albert Ludwigs University FreiburgFreiburg Germany
| | - Nick Neubacher
- Fachbereich BiowissenschaftenMerck Stiftungsprofessur für Molekulare Biotechnologie, Goethe Universität FrankfurtFrankfurt am Main Germany
| | - Rolf Backofen
- Department of Computer ScienceBioinformatics Group, Albert Ludwigs University FreiburgFreiburg Germany
- BIOSS Centre for Biological Signaling Studies, University of FreiburgFreiburg Germany
| | - Helge B. Bode
- Fachbereich BiowissenschaftenMerck Stiftungsprofessur für Molekulare Biotechnologie, Goethe Universität FrankfurtFrankfurt am Main Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität FrankfurtFrankfurt am Main Germany
| |
Collapse
|
31
|
Bozhüyük KAJ, Zhou Q, Engel Y, Heinrich A, Pérez A, Bode HB. Natural Products from Photorhabdus and Other Entomopathogenic Bacteria. Curr Top Microbiol Immunol 2016; 402:55-79. [PMID: 28091935 DOI: 10.1007/82_2016_24] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although the first natural products (NP) from Photorhabdus and Xenorhabdus bacteria have been known now for almost 30 years, a huge variety of new compounds have been identified in the last 5-10 years, mainly due to the application of modern mass spectrometry. Additionally, application of molecular methods that allow the activation of NP production in several different strains as well as efficient heterologous expression methods have led to the production and validation of many new compounds. In this chapter we discuss the benefit of using Photorhabdus as a model system for microbial chemical ecology. We also examine non-ribosomal peptide synthetases as the most important pathway for NP production. Finally, we discuss the origin and function of all currently known NPs and the development of the molecular and chemical tools used to identify these NPs faster.
Collapse
Affiliation(s)
- Kenan A J Bozhüyük
- Merck Endowed Chair for Molecular Biotechnology, Department of Biosciences and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Qiuqin Zhou
- Merck Endowed Chair for Molecular Biotechnology, Department of Biosciences and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Yvonne Engel
- Merck Endowed Chair for Molecular Biotechnology, Department of Biosciences and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Antje Heinrich
- Merck Endowed Chair for Molecular Biotechnology, Department of Biosciences and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Alexander Pérez
- Merck Endowed Chair for Molecular Biotechnology, Department of Biosciences and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Helge B Bode
- Merck Endowed Chair for Molecular Biotechnology, Department of Biosciences and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|