1
|
Karafoulidou E, Kesidou E, Theotokis P, Konstantinou C, Nella MK, Michailidou I, Touloumi O, Polyzoidou E, Salamotas I, Einstein O, Chatzisotiriou A, Boziki MK, Grigoriadis N. Systemic LPS Administration Stimulates the Activation of Non-Neuronal Cells in an Experimental Model of Spinal Muscular Atrophy. Cells 2024; 13:785. [PMID: 38727321 PMCID: PMC11083572 DOI: 10.3390/cells13090785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by deficiency of the survival motor neuron (SMN) protein. Although SMA is a genetic disease, environmental factors contribute to disease progression. Common pathogen components such as lipopolysaccharides (LPS) are considered significant contributors to inflammation and have been associated with muscle atrophy, which is considered a hallmark of SMA. In this study, we used the SMNΔ7 experimental mouse model of SMA to scrutinize the effect of systemic LPS administration, a strong pro-inflammatory stimulus, on disease outcome. Systemic LPS administration promoted a reduction in SMN expression levels in CNS, peripheral lymphoid organs, and skeletal muscles. Moreover, peripheral tissues were more vulnerable to LPS-induced damage compared to CNS tissues. Furthermore, systemic LPS administration resulted in a profound increase in microglia and astrocytes with reactive phenotypes in the CNS of SMNΔ7 mice. In conclusion, we hereby show for the first time that systemic LPS administration, although it may not precipitate alterations in terms of deficits of motor functions in a mouse model of SMA, it may, however, lead to a reduction in the SMN protein expression levels in the skeletal muscles and the CNS, thus promoting synapse damage and glial cells' reactive phenotype.
Collapse
Affiliation(s)
- Eleni Karafoulidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Chrystalla Konstantinou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Maria-Konstantina Nella
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Iliana Michailidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Olga Touloumi
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Eleni Polyzoidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Ilias Salamotas
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel 40700, Israel;
| | - Athanasios Chatzisotiriou
- Department of Physiology, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Marina-Kleopatra Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| |
Collapse
|
2
|
Zhang L, Rashad S, Zhou Y, Niizuma K, Tominaga T. RNF213 loss of function reshapes vascular transcriptome and spliceosome leading to disrupted angiogenesis and aggravated vascular inflammatory responses. J Cereb Blood Flow Metab 2022; 42:2107-2122. [PMID: 35754359 PMCID: PMC9580177 DOI: 10.1177/0271678x221110679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
RNF213 gene mutations are the cause behind Moyamoya disease, a rare cerebrovascular occlusive disease. However, the function of RNF213 in the vascular system and the impact of its loss of function are not yet comprehended. To understand RNF23 function, we performed gene knockdown (KD) in vascular cells and performed various phenotypical analysis as well as extensive transcriptome and epitranscriptome profiling. Our data revealed that RNF213 KD led to disrupted angiogenesis in HUVEC, in part due to downregulation of DNA replication and proliferation pathways. Furthermore, HUVEC cells became sensitive to LPS induced inflammation after RNF213 KD, leading to retarded cell migration and enhanced macrophage transmigration. This was evident at the level of transcriptome as well. Interestingly, RNF213 led to extensive changes in mRNA splicing that were not previously reported. In vascular smooth muscle cells (vSMCs), RNF213 KD led to alteration in cytoskeletal organization, contractility, and vSMCs function related pathways. Finally, RNF213 KD disrupted endothelial-to-vSMCs communication in co-culture models. Overall, our results indicate that RNF213 KD sensitizes endothelial cells to inflammation, leading to altered angiogenesis. Our results shed the light on the important links between RNF213 mutations and inflammatory/immune inducers of MMD and on the unexplored role of epitranscriptome in MMD.
Collapse
Affiliation(s)
- Liyin Zhang
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sherif Rashad
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuan Zhou
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Lao A, Chen Y, Sun Y, Wang T, Lin K, Liu J, Wu J. Transcriptomic analysis provides a new insight: Oleuropein reverses high glucose-induced osteogenic inhibition in bone marrow mesenchymal stem cells via Wnt10b activation. Front Bioeng Biotechnol 2022; 10:990507. [PMID: 36091442 PMCID: PMC9459378 DOI: 10.3389/fbioe.2022.990507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Adverse events of diabetes mellitus (DM) include bone damages, such as the increased incidence of osteoporosis and bone fractures, which are known as diabetic osteopathy. The pathogenic mechanism of diabetic osteopathy is complex, and hyperglycemia is a vital cause involved in it. Bone marrow mesenchymal stem cells (BMSCs) exert a significant effect on bone formation. Therefore, in this paper, transcriptomic changes of BMSCs cultured in high glucose (35 mM) for 30 days are mainly investigated. In addition, 794 up-regulated genes and 1,162 down-regulated genes were identified. Then, biological functions of the differentially expressed genes in the high glucose microenvironment were investigated by two kinds of functional analyses. Gene Set Enrichment Analysis was also applied to focus on the significant gene sets and it is found that Wnt10b expression witnessed a remarkable decrease in BMSCs under the high glucose microenvironment. At last, in vitro experiments revealed that oleuropein effectively reversed high glucose-induced osteogenic inhibition via activating Wnt10b in BMSCs.
Collapse
Affiliation(s)
- An Lao
- Department of Stomatology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Chen
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yiting Sun
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Tiange Wang
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kaili Lin
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Kaili Lin, ; Jiaqiang Liu, ; Jianyong Wu,
| | - Jiaqiang Liu
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Kaili Lin, ; Jiaqiang Liu, ; Jianyong Wu,
| | - Jianyong Wu
- Department of Stomatology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Kaili Lin, ; Jiaqiang Liu, ; Jianyong Wu,
| |
Collapse
|
4
|
Wang D, Wen JY, Wu D, Ying ZY, Wen ZM, Peng HQ, Geng C, Feng YB, Sui ZG, Lv HY, Wu J, Xu B. LPS-pretreated MSC-conditioned medium optimized with 10-kDa filter attenuates the injury of H9c2 cardiomyocytes in a model of hypoxia/reoxygenation. Can J Physiol Pharmacol 2022; 100:651-664. [PMID: 35533248 DOI: 10.1139/cjpp-2021-0745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mesenchymal stem cell-derived conditioned medium (MSC-CM) improves cardiac function, which is partly attributed to released paracrine factors. Since such cardioprotection is moderate and transient, it's essential to optimize MSC-CM effective components to alleviate myocardial injury. To optimize MSC-CM, MSCs were treated with or without lipopolysaccharides (LPSs) for 48 h (serum-free), and the supernatant was collected. Then, LPS-CM (MSC stimulated by LPS) was further treated with LPS remover (LPS Re-CM) or was concentrated with a 10-kDa cutoff filter (10 kDa-CM). ELISA showed that all pretreatments increased levels of VEGF, HGF, and IGF except LPS remover; 10 kDa-CM was superior to other-CM. CCK-8 displayed that viability of injured H9c2 cells enhanced with the increase of MSC-CM concentration. We also found 10 kDa-CM significantly alleviated H9c2 hypoxia/reoxygenation (H/R) injury, as evidenced by increased Bcl-2/Bax ratio, decreased the levels of LDH and cTn. TEM, TUNEL, and H&E staining confirmed 10 kDa-CM inhibited H/R-induced H9c2 morphological changes. Proteomic analysis identified 41 differentially expressed proteins in 10 kDa-CM, among which anti-inflammation, pro-angiogenesis, and anti-apoptosis were related to cardiac protection. This study indicates that 10 kDa-CM protects H9c2 cardiomyocytes from H/R injury by preserving most of the protective factors, such as VEGF, HGF, and IGF, in MSC-CM.
Collapse
Affiliation(s)
- Dan Wang
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China.,Ordos Central Hospital, 586048, Department of Pharmacy, Ordos, Inner Mongolia, China;
| | - Jing-Yi Wen
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China;
| | - Di Wu
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China;
| | - Zi-Yue Ying
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China;
| | - Zhi-Min Wen
- The Second Affiliated Hospital of Dalian Medical University, Department of Clinical Laboratory, Dalian, Liaoning, China;
| | - Hui-Qian Peng
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China;
| | - Cong Geng
- The Second Affiliated Hospital of Dalian Medical University, Department of Clinical Laboratory, Dalian, Liaoning, China;
| | - Yuan-Bo Feng
- KU Leuven University Hospitals Leuven, 60182, Leuven, Flanders, Belgium;
| | - Zhi-Gang Sui
- Chinese Academy of Science, Dalian, Liaoning, China;
| | - Hui-Yi Lv
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China;
| | - Jun Wu
- The Second Affiliated Hospital of Dalian Medical University, Department of Echocardiography, Dalian, Liaoning, China;
| | - Bing Xu
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China, 116023;
| |
Collapse
|
5
|
Pioli PD, Casero D, Montecino-Rodriguez E, Morrison SL, Dorshkind K. Plasma Cells Are Obligate Effectors of Enhanced Myelopoiesis in Aging Bone Marrow. Immunity 2019; 51:351-366.e6. [PMID: 31303400 DOI: 10.1016/j.immuni.2019.06.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 04/10/2019] [Accepted: 06/12/2019] [Indexed: 12/25/2022]
Abstract
Aging results in increased myelopoiesis, which is linked to the increased incidence of myeloid leukemias and production of myeloid-derived suppressor cells. Here, we examined the contribution of plasma cells (PCs) to age-related increases in myelopoiesis, as PCs exhibit immune regulatory function and sequester in bone marrow (BM). PC number was increased in old BM, and they exhibited high expression of genes encoding inflammatory cytokines and pathogen sensors. Antibody-mediated depletion of PCs from old mice reduced the number of myeloid-biased hematopoietic stem cells and mature myeloid cells to levels in young animals, but lymphopoiesis was not rejuvenated, indicating that redundant mechanisms inhibit that process. PCs also regulated the production of inflammatory factors from BM stromal cells, and disruption of the PC-stromal cell circuitry with inhibitors of the cytokines IL-1 and TNF-α attenuated myelopoiesis in old mice. Thus, the age-related increase in myelopoiesis is driven by an inflammatory network orchestrated by PCs.
Collapse
Affiliation(s)
- Peter D Pioli
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - David Casero
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | - Sherie L Morrison
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Kenneth Dorshkind
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
6
|
Huang K, Liu Y, Huang Y, Li L, Cooper L, Ruan J, Zhao Z. Intelligent biology and medicine in 2015: advancing interdisciplinary education, collaboration, and data science. BMC Genomics 2016; 17 Suppl 7:524. [PMID: 27556295 PMCID: PMC5001210 DOI: 10.1186/s12864-016-2893-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We summarize the 2015 International Conference on Intelligent Biology and Medicine (ICIBM 2015) and the editorial report of the supplement to BMC Genomics. The supplement includes 20 research articles selected from the manuscripts submitted to ICIBM 2015. The conference was held on November 13-15, 2015 at Indianapolis, Indiana, USA. It included eight scientific sessions, three tutorials, four keynote presentations, three highlight talks, and a poster session that covered current research in bioinformatics, systems biology, computational biology, biotechnologies, and computational medicine.
Collapse
Affiliation(s)
- Kun Huang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210 USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Yufei Huang
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, TX 78249 USA
| | - Lang Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Lee Cooper
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322 USA
- Department of Biomedical Engineering, Emory University / Georgia Institute of Technology, Atlanta, GA 30322 USA
| | - Jianhua Ruan
- Department of Computer Science, The University of Texas at San Antonio, San Antonio, TX 78249 USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| |
Collapse
|