1
|
Reis IA, Baldassini WA, Ramírez-Zamudio GD, de Farias IMSC, Chiaratti MR, Pereira Junior S, Nociti RP, Carvalho PHV, Curi RA, Pereira GL, Chardulo LAL, Neto ORM. Muscle tissue transcriptome of F1 Angus-Nellore bulls and steers feedlot finished: impacts on intramuscular fat deposition. BMC Genomics 2024; 25:1178. [PMID: 39633259 PMCID: PMC11616301 DOI: 10.1186/s12864-024-11066-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Castration is a common practice in beef cattle production systems to manage breeding and enhance meat quality by promoting intramuscular fat (IMF) deposition, known as marbling. However, the molecular mechanisms that are influenced by castration in beef cattle are poorly understood. The aim of this study was to identify differentially expressed genes (DEGs) and metabolic pathways that regulate IMF deposition in crossbred cattle by RNA sequencing (RNA-Seq) of skeletal muscle tissue. Six hundred and forty F1 Angus-Nellore bulls and steers (n = 320/group) were submitted to feedlot finishing for 180 days. Sixty Longissimus thoracis muscle samples were collected randomly from each group in the hot carcass (at slaughter) and 48 h post-mortem (at deboning), at between 12th and 13th thoracic vertebrae. Three muscle samples of each group were randomly selected for RNA-Seq analysis, while the post-deboning meat samples were submitted to determination of IMF content. RESULTS Steers had a 2.7-fold greater IMF content than bulls (5.59 vs. 2.07%; P < 0.01). A total of 921 DEGs (FDR < 0.05) were identified in contrast between Bulls versus Steers; of these, 371 were up-regulated, and 550 were down-regulated. Functional transcriptome enrichment analysis revealed differences in biological processes and metabolic pathways related to adipogenesis and lipogenesis, such as insulin resistance, AMPK, cAMP, regulation of lipolysis in adipocytes, and PI3K-Akt signaling pathways. Candidate genes such as FOXO1, PPARG, PCK2, CALM1, LEP, ADIPOQ, FASN, FABP4, PLIN1, PIK3R3, ROCK2, ADCY5, and ADORA1 were regulated in steers, which explains the expressive difference in IMF content when compared to bulls. CONCLUSIONS The current findings suggest the importance of these pathways and genes for lipid metabolism in steers with greater IMF. Notably, this study reveals for the first time the involvement of the PI3K-Akt pathway and associated genes in regulating IMF deposition in F1 Angus-Nellore cattle. Castration influenced DEGs linked to energy metabolism and lipid biosynthesis, highlighting key molecular players responsible for IMF accumulation post-castration in beef cattle.
Collapse
Affiliation(s)
- Irene Alexandre Reis
- College of Agriculture and Veterinary Sciences (FCAV), Department of Animal Science, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Welder Angelo Baldassini
- College of Agriculture and Veterinary Sciences (FCAV), Department of Animal Science, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Jaboticabal, SP, 14884-900, Brazil
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, SP, 18618-681, Brazil
| | | | - Iasmin Myrele Santos Calaça de Farias
- College of Agriculture and Veterinary Sciences (FCAV), Department of Animal Science, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Marcos Roberto Chiaratti
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Sérgio Pereira Junior
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Ricardo Perecin Nociti
- College of Animal Science and Foods Engineering, University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | | | - Rogério Abdallah Curi
- College of Agriculture and Veterinary Sciences (FCAV), Department of Animal Science, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Jaboticabal, SP, 14884-900, Brazil
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, SP, 18618-681, Brazil
| | - Guilherme Luis Pereira
- College of Agriculture and Veterinary Sciences (FCAV), Department of Animal Science, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Jaboticabal, SP, 14884-900, Brazil
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, SP, 18618-681, Brazil
| | - Luis Artur Loyola Chardulo
- College of Agriculture and Veterinary Sciences (FCAV), Department of Animal Science, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Jaboticabal, SP, 14884-900, Brazil
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, SP, 18618-681, Brazil
| | - Otávio Rodrigues Machado Neto
- College of Agriculture and Veterinary Sciences (FCAV), Department of Animal Science, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Jaboticabal, SP, 14884-900, Brazil.
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, SP, 18618-681, Brazil.
| |
Collapse
|
2
|
Bagiyal M, Parsad R, Ahlawat S, Gera R, Chhabra P, Sharma U, Arora R, Sharma R. Review on camel genetic diversity: ecological and economic perspectives. Mamm Genome 2024; 35:621-632. [PMID: 39075281 DOI: 10.1007/s00335-024-10054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Camels, known as the "Ship of the Desert," play a vital role in the ecosystems and economies of arid and semi-arid regions. They provide meat, milk, transportation, and other essential services, and their resilience to harsh environments makes them invaluable. Despite their similarities, camel breeds exhibit notable differences in size, color, and structure, with over 40 million camels worldwide. This number is projected to increase, underscoring their growing significance. Economically, camels are crucial for food production, tourism, and trade, with camel racing being particularly significant in Arab countries. Their unique physiological traits, such as low disease susceptibility and efficient water conservation, further enhance their value. Camel products, especially meat and milk, offer substantial nutritional and therapeutic benefits, contributing to their high demand. Genetic diversity studies have advanced our understanding of camels' adaptation to extreme environments. Functional genomics and whole-genome sequencing have identified genes responsible for these adaptations, aiding breeding programs and conservation efforts. High-throughput sequencing has revealed genetic markers linked to traits like milk production and disease resistance. The development of SNP chips has revolutionized genetic studies by providing a cost-effective alternative to whole-genome sequencing. These tools facilitate large-scale genotyping, essential for conserving genetic diversity and improving breeding strategies. To prevent the depletion of camel genetic diversity, it is crucial to streamline in situ and ex situ conservation efforts to maintain their ecological and economic value. A comprehensive approach to camel conservation and genetic preservation, involving advanced genomic technologies, reproductive biotechniques, and sustainable management practices, will ensure their continued contribution to human societies.
Collapse
Affiliation(s)
- Meena Bagiyal
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ram Parsad
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India.
| | - Ritika Gera
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Upasna Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| |
Collapse
|
3
|
Deng TX, Ma XY, Duan A, Lu XR, Abdel-Shafy H. Genome-wide copy number variant analysis reveals candidate genes associated with milk production traits in water buffalo (Bubalus bubalis). J Dairy Sci 2024; 107:7022-7037. [PMID: 38762109 DOI: 10.3168/jds.2023-24614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/28/2024] [Indexed: 05/20/2024]
Abstract
Buffaloes are vital contributors to the global dairy industry. Understanding the genetic basis of milk production traits in buffalo populations is essential for breeding programs and improving productivity. In this study, we conducted whole-genome resequencing on 387 buffalo genomes from 29 diverse Asian breeds, including 132 river buffaloes, 129 swamp buffaloes, and 126 crossbred buffaloes. We identified 36,548 copy number variants (CNV) spanning 133.29 Mb of the buffalo genome, resulting in 2,100 CNV regions (CNVR), with 1,993 shared CNVR being found within the studied buffalo types. Analyzing CNVR highlighted distinct genetic differentiation between river and swamp buffalo subspecies, verified by evolutionary tree and principal component analyses. Admixture analysis grouped buffaloes into river and swamp categories, with crossbred buffaloes displaying mixed ancestry. To identify candidate genes associated with milk production traits, we employed 3 approaches. First, we used Vst-based population differentiation, revealing 11 genes within CNVR that exhibited significant divergence between different buffalo breeds, including genes linked to milk production traits. Second, expression quantitative loci analysis revealed differentially expressed CNVR-derived genes (DECG) associated with milk production traits. Notably, known milk production-related genes were among these DECG, validating their relevance. Last, a GWAS identified 3 CNVR significantly linked to peak milk yield. Our study provides comprehensive genomic insights into buffalo populations and identifies candidate genes associated with milk production traits. These findings facilitate genetic breeding programs aimed at increasing milk yield and improving quality in this economically important livestock species.
Collapse
Affiliation(s)
- Ting-Xian Deng
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China.
| | - Xiao-Ya Ma
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Anqin Duan
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Xing-Rong Lu
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Hamdy Abdel-Shafy
- Department of Animal Production, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
4
|
Tang Y, Zhang J, Li W, Liu X, Chen S, Mi S, Yang J, Teng J, Fang L, Yu Y. Identification and characterization of whole blood gene expression and splicing quantitative trait loci during early to mid-lactation of dairy cattle. BMC Genomics 2024; 25:445. [PMID: 38711039 DOI: 10.1186/s12864-024-10346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Characterization of regulatory variants (e.g., gene expression quantitative trait loci, eQTL; gene splicing QTL, sQTL) is crucial for biologically interpreting molecular mechanisms underlying loci associated with complex traits. However, regulatory variants in dairy cattle, particularly in specific biological contexts (e.g., distinct lactation stages), remain largely unknown. In this study, we explored regulatory variants in whole blood samples collected during early to mid-lactation (22-150 days after calving) of 101 Holstein cows and analyzed them to decipher the regulatory mechanisms underlying complex traits in dairy cattle. RESULTS We identified 14,303 genes and 227,705 intron clusters expressed in the white blood cells of 101 cattle. The average heritability of gene expression and intron excision ratio explained by cis-SNPs is 0.28 ± 0.13 and 0.25 ± 0.13, respectively. We identified 23,485 SNP-gene expression pairs and 18,166 SNP-intron cluster pairs in dairy cattle during early to mid-lactation. Compared with the 2,380,457 cis-eQTLs reported to be present in blood in the Cattle Genotype-Tissue Expression atlas (CattleGTEx), only 6,114 cis-eQTLs (P < 0.05) were detected in the present study. By conducting colocalization analysis between cis-e/sQTL and the results of genome-wide association studies (GWAS) from four traits, we identified a cis-e/sQTL (rs109421300) of the DGAT1 gene that might be a key marker in early to mid-lactation for milk yield, fat yield, protein yield, and somatic cell score (PP4 > 0.6). Finally, transcriptome-wide association studies (TWAS) revealed certain genes (e.g., FAM83H and TBC1D17) whose expression in white blood cells was significantly (P < 0.05) associated with complex traits. CONCLUSIONS This study investigated the genetic regulation of gene expression and alternative splicing in dairy cows during early to mid-lactation and provided new insights into the regulatory mechanisms underlying complex traits of economic importance.
Collapse
Affiliation(s)
- Yongjie Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinning Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wenlong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xueqin Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Siqian Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Siyuan Mi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinyan Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinyan Teng
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8000, Denmark.
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Guo L, DaoLema, Liu B, Dai L, Wang X, Wang X, Cao J, Zhang W. Identification of milk-related genes and regulatory networks in Bactrian camel either supplemented or under grazing. Trop Anim Health Prod 2023; 55:342. [PMID: 37776405 DOI: 10.1007/s11250-023-03749-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
Using gene co-expression networks to understand dynamic characterizations in lactating animals becomes a common method. However, there are rarely reporters focusing on milk traits in Bactrian camel by high-throughput sequencing. We used RNA-seq to generate the camel transcriptome from the blood of 16 lactating Alxa Bactrian camel in different feeding groups. In total, we obtained 1185 milk-related genes correlated with milk yield, milk protein, milk fat, and milk lactose across the WGCNA analysis. Moreover, 364 milk-related genes were differentially expressed between supplementation and grazing feeding groups. The differential expression-camel milk-related genes CMRGs (DE-CMRGs) in supplement direct an intensive gene co-expression network to improve milk performance in lactating camels. This study provides a non-invasive method to identify the camel milk-related genes in camel blood for four primary milk traits and valuable theoretical basis and research ideas for the study of the milk performance regulation mechanism of camelid animals.
Collapse
Affiliation(s)
- Lili Guo
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Inner Mongolia Agricultural University, Hohhot, China
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - DaoLema
- Bactrian Camel Institute of Alsha, Inner Mongolia, 16 Tuerhute Road, Bayanhot, Inner Mongolia, China
| | - Bin Liu
- Inner Mongolia Bionew Technology Co., Ltd., Hohhot, China
| | - Lingli Dai
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Inner Mongolia Agricultural University, Hohhot, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Xue Wang
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Inner Mongolia Agricultural University, Hohhot, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Xiaoshan Wang
- Bactrian Camel Institute of Alsha, Inner Mongolia, 16 Tuerhute Road, Bayanhot, Inner Mongolia, China
| | - Junwei Cao
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| | - Wenguang Zhang
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Inner Mongolia Agricultural University, Hohhot, China.
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
6
|
Yao H, Liang X, Dou Z, Zhao Z, Ma W, Hao Z, Yan H, Wang Y, Wu Z, Chen G, Yang J. Transcriptome analysis to identify candidate genes related to mammary gland development of Bactrian camel ( Camelus bactrianus). Front Vet Sci 2023; 10:1196950. [PMID: 37342620 PMCID: PMC10277799 DOI: 10.3389/fvets.2023.1196950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction The demand for camel milk, which has unique therapeutic properties, is increasing. The mammary gland is the organ in mammals responsible for the production and quality of milk. However, few studies have investigated the genes or pathways related to mammary gland growth and development in Bactrian camels. This study aimed to compare the morphological changes in mammary gland tissue and transcriptome expression profiles between young and adult female Bactrian camels and to explore the potential candidate genes and signaling pathways related to mammary gland development. Methods Three 2 years-old female camels and three 5 years-old adult female camels were maintained in the same environment. The parenchyma of the mammary gland tissue was sampled from the camels using percutaneous needle biopsy. Morphological changes were observed using hematoxylin-eosin staining. High-throughput RNA sequencing was performed using the Illumina HiSeq platform to analyze changes in the transcriptome between young and adult camels. Functional enrichment, pathway enrichment, and protein-protein interaction networks were also analyzed. Gene expression was verified using quantitative real-time polymerase chain reaction (qRT-PCR). Results Histomorphological analysis showed that the mammary ducts and mammary epithelial cells in adult female camels were greatly developed and differentiated from those in young camels. Transcriptome analysis showed that 2,851 differentially expressed genes were obtained in the adult camel group compared to the young camel group, of which 1,420 were upregulated, 1,431 were downregulated, and 2,419 encoded proteins. Functional enrichment analysis revealed that the upregulated genes were significantly enriched for 24 pathways, including the Hedgehog signaling pathway which is closely related to mammary gland development. The downregulated genes were significantly enriched for seven pathways, among these the Wnt signaling pathway was significantly related to mammary gland development. The protein-protein interaction network sorted the nodes according to the degree of gene interaction and identified nine candidate genes: PRKAB2, PRKAG3, PLCB4, BTRC, GLI1, WIF1, DKK2, FZD3, and WNT4. The expression of fifteen genes randomly detected by qRT-PCR showed results consistent with those of the transcriptome analysis. Discussion Preliminary findings indicate that the Hedgehog, Wnt, oxytocin, insulin, and steroid biosynthesis signaling pathways have important effects on mammary gland development in dairy camels. Given the importance of these pathways and the interconnections of the involved genes, the genes in these pathways should be considered potential candidate genes. This study provides a theoretical basis for elucidating the molecular mechanisms associated with mammary gland development and milk production in Bactrian camels.
Collapse
Affiliation(s)
- Huaibing Yao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Xiaorui Liang
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Zhihua Dou
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Zhongkai Zhao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Wanpeng Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, China
| | - Zelin Hao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Hui Yan
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Yuzhuo Wang
- Xinjiang Altai Regional Animal Husbandry Veterinary Station, Altay, China
| | - Zhuangyuan Wu
- Xinjiang Altai Regional Animal Husbandry Veterinary Station, Altay, China
| | - Gangliang Chen
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
- Bactrian Camel Academy of Xinjiang, Wangyuan Camel Milk Limited Company, Altay, China
| | - Jie Yang
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| |
Collapse
|
7
|
Chang C, Yang Y, Zhou L, Baiyin B, Liu Z, Guo L, Ma F, Wang J, Chai Y, Shi C, Zhang W. Candidate Genes and Gene Networks Change with Age in Japanese Black Cattle by Blood Transcriptome Analysis. Genes (Basel) 2023; 14:504. [PMID: 36833431 PMCID: PMC9956108 DOI: 10.3390/genes14020504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Age is an important physiological factor that affects the metabolism and immune function of beef cattle. While there have been many studies using the blood transcriptome to study the effects of age on gene expression, few have been reported on beef cattle. To this end, we used the blood transcriptomes of Japanese black cattle at different ages as the study subjects and screened 1055, 345, and 1058 differential expressed genes (DEGs) in the calf vs. adult, adult vs. old, and calf vs. old comparison groups, respectively. The weighted co-expression network consisted of 1731 genes. Finally, blue, brown, and yellow age-specific modules were obtained, in which genes were enriched in signaling pathways related to growth and development and immune metabolic dysfunction, respectively. Protein-protein interaction (PPI) analysis showed gene interactions in each specific module, and 20 of the highest connectivity genes were chosen as potential hub genes. Finally, we identified 495, 244, and 1007 genes by exon-wide selection signature (EWSS) analysis of different comparison groups. Combining the results of hub genes, we found that VWF, PARVB, PRKCA, and TGFB1I1 could be used as candidate genes for growth and development stages of beef cattle. CORO2B and SDK1 could be used as candidate marker genes associated with aging. In conclusion, by comparing the blood transcriptome of calves, adult cattle, and old cattle, the candidate genes related to immunity and metabolism affected by age were identified, and the gene co-expression network of different age stages was constructed. It provides a data basis for exploring the growth, development, and aging of beef cattle.
Collapse
Affiliation(s)
- Chencheng Chang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yanda Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Le Zhou
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Batu Baiyin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zaixia Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lili Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Fengying Ma
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jie Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuan Chai
- College of Agronomy Animal Husbandry and Bioengineering, Xing’an Vocational and Technical College, Ulanhot 137400, China
| | - Caixia Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| |
Collapse
|
8
|
Yang J, Tang Y, Liu X, Zhang J, Zahoor Khan M, Mi S, Wang C, Yu Y. Characterization of peripheral white blood cells transcriptome to unravel the regulatory signatures of bovine subclinical mastitis resistance. Front Genet 2022; 13:949850. [PMID: 36204322 PMCID: PMC9530456 DOI: 10.3389/fgene.2022.949850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Subclinical bovine mastitis is a pathogenic infection of the breast characterized by a marked decrease in milk production and quality. As it has no obvious clinical symptoms, diagnosis and treatment are challenging. Therefore, searching for biomarkers in cows’ peripheral white blood cells is valuable for preventing and treating subclinical mastitis. Thus, in this study, the transcriptome of peripheral blood from healthy and subclinical mastitis cows was characterized to find the regulatory signatures of bovine subclinical mastitis using RNA-seq. A total of 287 differentially expressed genes (DEGs) and 70 differentially expressed lncRNAs (DELs) were detected, and 37 DELs were documented near known Quantitative Trait Loci (QTL) associated with the mastitis of cows. Bioinformatic analysis indicated that lncRNAs MSTRG25101.2, MSTRG.56327.1, and MSTRG.18968.1, which are adjacent to the SCS QTL and SCC QTL, may be candidate lncRNAs that influence the pathogenesis of mastitis in cows by up-regulating the expression of genes TLR4, NOD2, CXCL8, and OAS2. Moreover, the alternative splicing (AS) pattern of transcriptional sequence differences between healthy cows and subclinical mastitis cows suggested a molecular mechanism of mastitis resistance and susceptibility. A total of 2,212 differential alternative splicing (DAS) events, corresponding to 1,621 unique DAS genes, were identified in both groups and significantly enriched in immune and inflammatory pathways. Of these, 29 DAS genes were subject to regulation by 32 alternative splicing SNPs, showing diverse and specific splicing patterns and events. It is hypothesized that the PIK3C2B and PPRPF8 splice variants associated with AS SNPs (rs42705933 and rs133847062) may be risk factors for susceptibility to bovine subclinical mastitis. Altogether, these key blood markers associated with resistance to subclinical mastitis and SNPs associated with alternative splicing of genes provide the basis for genetic breeding for resistance to subclinical mastitis in cows.
Collapse
Affiliation(s)
- Jinyan Yang
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongjie Tang
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xueqin Liu
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinning Zhang
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Zahoor Khan
- Department of Animal Sciences, Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | - Siyuan Mi
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chuduan Wang
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ying Yu
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Ying Yu,
| |
Collapse
|
9
|
Zhang J, Li W, Tang Y, Liu X, Zhang H, Zhou Y, Wang Y, Xiao W, Yu Y. Testing Two Somatic Cell Count Cutoff Values for Bovine Subclinical Mastitis Detection Based on Milk Microbiota and Peripheral Blood Leukocyte Transcriptome Profile. Animals (Basel) 2022; 12:ani12131694. [PMID: 35804592 PMCID: PMC9264859 DOI: 10.3390/ani12131694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Somatic cell count (SCC) is an important indicator of the health state of bovine udders. However, the exact cut-off value used for differentiating the cows with healthy quarters from the cows with subclinical mastitis remains controversial. Here, we collected composite milk (milk from four udder quarters) and peripheral blood samples from individual cows in two different dairy farms and used 16S rRNA gene sequencing combined with RNA-seq to explore the differences in the milk microbial composition and transcriptome of cows with three different SCC levels (LSCC: <100,000 cells/mL, MSCC: 100,000−200,000 cells/mL, HSCC: >200,000 cells/mL). Results showed that the milk microbial profiles and gene expression profiles of samples derived from cows in the MSCC group were indeed relatively easily discriminated from those from cows in the LSCC group. Discriminative analysis also uncovered some differentially abundant microbiota at the genus level, such as Bifidobacterium and Lachnospiraceae_AC2044_group, which were more abundant in milk samples from cows with SCC below 100,000 cells/mL. As for the transcriptome profiling, 79 differentially expressed genes (DEGs) were found to have the same direction of regulation in two sites, and functional analyses also showed that biological processes involved in inflammatory responses were more active in MSCC and HSCC cows. Overall, these results showed a similarity between the milk microbiota and gene expression profiles of MSCC and HSCC cows, which presented further evidence that 100,000 cells/ml is a more optimal cut-off value than 200,000 cells/mL for intramammary infection detection at the cow level.
Collapse
Affiliation(s)
- Jinning Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.L.); (Y.T.); (X.L.); (H.Z.); (Y.Z.); (Y.W.)
| | - Wenlong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.L.); (Y.T.); (X.L.); (H.Z.); (Y.Z.); (Y.W.)
| | - Yongjie Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.L.); (Y.T.); (X.L.); (H.Z.); (Y.Z.); (Y.W.)
| | - Xueqin Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.L.); (Y.T.); (X.L.); (H.Z.); (Y.Z.); (Y.W.)
| | - Hailiang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.L.); (Y.T.); (X.L.); (H.Z.); (Y.Z.); (Y.W.)
| | - Yueling Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.L.); (Y.T.); (X.L.); (H.Z.); (Y.Z.); (Y.W.)
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.L.); (Y.T.); (X.L.); (H.Z.); (Y.Z.); (Y.W.)
| | - Wei Xiao
- Beijing Animal Husbandry Station, Beijing 100029, China
- Correspondence: (W.X.); (Y.Y.)
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.L.); (Y.T.); (X.L.); (H.Z.); (Y.Z.); (Y.W.)
- Correspondence: (W.X.); (Y.Y.)
| |
Collapse
|
10
|
Luigi-Sierra MG, Fernández A, Martínez A, Guan D, Delgado JV, Álvarez JF, Landi V, Such FX, Jordana J, Saura M, Amills M. Genomic patterns of homozygosity and inbreeding depression in Murciano-Granadina goats. J Anim Sci Biotechnol 2022; 13:35. [PMID: 35264251 PMCID: PMC8908635 DOI: 10.1186/s40104-022-00684-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/19/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Inbreeding depression can adversely affect traits related to fitness, reproduction and productive performance. Although current research suggests that inbreeding levels are generally low in most goat breeds, the impact of inbreeding depression on phenotypes of economic interest has only been investigated in a few studies based on genealogical data. RESULTS We genotyped 1040 goats with the Goat SNP50 BeadChip. This information was used to estimate different molecular inbreeding coefficients and characterise runs of homozygosity and homozygosity patterns. We detected 38 genomic regions with increased homozygosity as well as 8 ROH hotspots mapping to chromosomes 1, 2, 4, 6, 14, 16 and 17. Eight hundred seventeen goats with available records for dairy traits were analysed to evaluate the potential consequences of inbreeding depression on milk phenotypes. Four regions on chromosomes 8 and 25 were significantly associated with inbreeding depression for the natural logarithm of the somatic cell count. Notably, these regions contain several genes related with immunity, such as SYK, IL27, CCL19 and CCL21. Moreover, one region on chromosome 2 was significantly associated with inbreeding depression for milk yield. CONCLUSIONS Although genomic inbreeding levels are low in Murciano-Granadina goats, significant evidence of inbreeding depression for the logarithm of the somatic cell count, a phenotype closely associated with udder health and milk yield, have been detected in this population. Minimising inbreeding would be expected to augment economic gain by increasing milk yield and reducing the incidence of mastitis, which is one of the main causes of dairy goat culling.
Collapse
Affiliation(s)
- María Gracia Luigi-Sierra
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Almudena Fernández
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain
| | - Amparo Martínez
- Departamento de Genética, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Dailu Guan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | | | | | - Vincenzo Landi
- Department of Veterinary Medicine, University of Bari ''Aldo Moro", 62 per Casamassima km. 3, 70010, Valenzano, SP, Italy
| | - Francesc Xavier Such
- Group of Research in Ruminants (G2R), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Jordi Jordana
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - María Saura
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain.
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
11
|
Marina H, Pelayo R, Suárez-Vega A, Gutiérrez-Gil B, Esteban-Blanco C, Arranz JJ. Genome-wide association studies (GWAS) and post-GWAS analyses for technological traits in Assaf and Churra dairy breeds. J Dairy Sci 2021; 104:11850-11866. [PMID: 34454756 DOI: 10.3168/jds.2021-20510] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/05/2021] [Indexed: 12/30/2022]
Abstract
This study aimed to perform a GWAS to identify genomic regions associated with milk and cheese-making traits in Assaf and Churra dairy sheep breeds; second, it aimed to identify possible positional and functional candidate genes and their interactions through post-GWAS studies. For 2,020 dairy ewes from 2 breeds (1,039 Spanish Assaf and 981 Churra), milk samples were collected and analyzed to determine 6 milk production and composition traits and 6 traits related to milk coagulation properties and cheese yield. The genetic profiles of the ewes were obtained using a genotyping chip array that included 50,934 SNP markers. For both milk and cheese-making traits, separate single-breed GWAS were performed using GCTA software. The set of positional candidate genes identified via GWAS was subjected to guilt-by-association-based prioritization analysis with ToppGene software. Totals of 84 and 139 chromosome-wise significant associations for the 6 milk traits and the 6 cheese-making traits were identified in this study. No significant SNPs were found in common between the 2 studied breeds, possibly due to their genetic heterogeneity of the phenotypes under study. Additionally, 63 and 176 positional candidate genes were located in the genomic intervals defined as confidence regions in relation to the significant SNPs identified for the analyzed traits for Assaf and Churra breeds. After the functional prioritization analysis, 71 genes were identified as promising positional and functional candidate genes and proposed as targets of future research to identify putative causative variants in relation to the traits under examination. In addition, this multitrait study allowed us to identify variants that have a pleiotropic effect on both milk production and cheese-related traits. The incorporation of variants among the proposed functional and positional candidate genes into genomic selection strategies represent an interesting approach for achieving rapid genetic gains, specifically for those traits difficult to measure, such as cheese-making traits.
Collapse
Affiliation(s)
- H Marina
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León 24071, Spain
| | - R Pelayo
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León 24071, Spain
| | - A Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León 24071, Spain
| | - B Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León 24071, Spain
| | - C Esteban-Blanco
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León 24071, Spain
| | - J J Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León 24071, Spain.
| |
Collapse
|
12
|
Busato S, Bionaz M. When Two plus Two Is More than Four: Evidence for a Synergistic Effect of Fatty Acids on Peroxisome Proliferator-Activated Receptor Activity in a Bovine Hepatic Model. Genes (Basel) 2021; 12:genes12081283. [PMID: 34440457 PMCID: PMC8393910 DOI: 10.3390/genes12081283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
The inclusion of fat in livestock diets represents a valuable and cost-effective way to increase the animal’s caloric intake. Beyond their caloric value, fatty acids can be understood in terms of their bioactivity, via the modulation of the ligand-dependent nuclear peroxisome proliferator-activated receptors (PPAR). Isotypes of PPAR regulate important metabolic processes in both monogastric and ruminant animals, including the metabolism of fatty acids (FA), the production of milk fat, and the immune response; however, information on the modulation of bovine PPAR by fatty acids is limited. The objective of this study was to expand our understanding on modulation of bovine PPAR by FA, both when used individually and in combination, in an immortalized cell culture model of bovine liver. Of the 10 FA included in the study, the greatest activation of the PPAR reporter was detected with saturated FA C12:0, C16:0, and C18:0, as well as phytanic acid, and the unsaturated FA C16:1 and C18:1. When supplemented in mixtures of 2 FA, the most effective combination was C12:0 + C16:0, while in mixtures of 3 FA, the greatest activation was caused by combinations of C12:0 with C16:0 and either C18:0, C16:1, or C18:1. Some mixtures display a synergistic effect that leads to PPAR activation greater than the sum of their parts, which may be explained by structural dynamics within the PPAR ligand-binding pocket. Our results provide fundamental information for the development of tailored dietary plans that focus on the use of FA mixtures for nutrigenomic purposes.
Collapse
|
13
|
Wang S, Wu P, Wang K, Ji X, Chen D, Jiang A, Liu Y, Xiao W, Jiang Y, Zhu L, Xu X, Li M, Li X, Tang G. Transcriptome Analysis Reveals Key Genes and Pathways Associated with Mummify Piglets. Genome 2021; 64:1029-1040. [PMID: 34139142 DOI: 10.1139/gen-2021-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
China is the country with the largest pork consumption in the world. However, the incidence of high mummify piglets (3-5%) is one of the important factors that cause the slow improvement of pig reproductive capacity, and the genetic mechanism is still unclear. This study aimed to identify candidate genes related to high mummify piglets. RNA-seq technology was used to comparative transcriptome profiling of blood from high piglets mummified and healthy sow at different stages of pregnancy (35d, 56d, 77d and 98d). A total of 137 to 420 DEGs were detected in each stage. Seven differentially expressed genes were significantly differentially expressed at various stages. IL-9R, TLR8, ABLIM3, FSH-α, ASCC1, PRKCZ, and GCK may play an important role in course of mummify piglets. The differential genes we identified between the groups were mainly enriched in immune and inflammation regulation, and others were mainly enriched in reproduction. Considering the function of candidate genes, IL-9R and TLR8 were suggested as the most promising candidate genes involved in mummify piglet traits. We speculate that during pregnancy, it may be the combined effects of the above-mentioned inflammation, immune response, and reproduction-related signal pathways that affect the occurrence of mummifying piglets, and further affect pig reproduction.
Collapse
Affiliation(s)
- Shujie Wang
- Sichuan Agricultural University, 12529, Chengdu, Sichuan, China;
| | - Pingxian Wu
- Sichuan Agricultural University, 12529, Chengdu, Sichuan, China;
| | - Kai Wang
- Sichuan Agricultural University, 12529, Chengdu, Sichuan, China;
| | - Xiang Ji
- Sichuan Agricultural University, 12529, Chengdu, Sichuan, China;
| | - Dong Chen
- Sichuan Agricultural University, 12529, Chengdu, Sichuan, China;
| | - Anan Jiang
- Sichuan Agricultural University - Chengdu Campus, 506176, Chengdu, Sichuan, China;
| | - Yihui Liu
- Sichuan Animal Husbandry Station, Chengdu, Sichuan, China;
| | - Weihang Xiao
- Sichuan Agricultural University - Chengdu Campus, 506176, Chengdu, Sichuan, China;
| | - Yanzhi Jiang
- College of Life Science, Sichuan Agricultural University, Ya'an, China;
| | - Li Zhu
- Sichuan Agricultural University - Chengdu Campus, 506176, Chengdu, Sichuan, China;
| | - Xu Xu
- Sichuan Provincial Animal Husbandry and Food Bureau, 177358, Chengdu, Sichuan, China;
| | - Mingzhou Li
- Sichuan Agricultural University, 12529, Chengdu, Sichuan, China;
| | - Xuewei Li
- Sichuan Agricultural University - Chengdu Campus, 506176, Chengdu, Sichuan, China;
| | - Guoqing Tang
- Sichuan Agricultural University - Chengdu Campus, 506176, Chengdu, Sichuan, China;
| |
Collapse
|
14
|
Different expression of lipid metabolism-related genes in Shandong black cattle and Luxi cattle based on transcriptome analysis. Sci Rep 2020; 10:21915. [PMID: 33318614 PMCID: PMC7736358 DOI: 10.1038/s41598-020-79086-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/02/2020] [Indexed: 12/03/2022] Open
Abstract
To provide new ideas for improving meat quality and generating new breeds of cattle, the important candidate genes affecting fat deposition in two kinds of cattle were identified. Eighteen months Shandong black cattle (n = 3) and Luxi cattle (n = 3) were randomly assigned into two environmental. The longissimus dorsi muscles of Shandong Black Cattle and Luxi Cattle were collected and analyzed by fatty acid determination, high-throughput sequencing transcriptomics, qRT-PCR expression profile and western blot. The ratio of unsaturated fatty acids to saturated fatty acids was 1.37:1 and 1.24:1 in the muscle tissues of Shandong black cattle and Luxi cattle, respectively. The results of RNA-Seq analysis revealed 1320 DEGs between the longissimus dorsi of Shandong black cattle and Luxi cattle. A total of 867 genes were upregulated, and the other 453 genes were downregulated. With GO enrichment analysis, it was found that the identified DEGs were significantly enriched in regulation of the Wnt signaling pathway, negative regulation of the Wnt signaling pathway, cAMP metabolic process, fat cell differentiation and among other functions. We found that regulation of lipolysis in adipocytes was the significant enrichment pathway of upregulated genes and downregulated genes, PPAR signaling pathway and AMPK signaling pathway are highly representative pathways of lipid metabolism in Shandong black cattle. Network analysis showed that PPARGC1A, ADCY4, ANKRD6, COL1A1, FABP4, ADIPOQ, PLIN1, PLIN2, and LIPE genes were correlated with key loci genes in multiple metabolic pathways. Meanwhile we found that FABP4 and ADIPOQ had 7 common regulatory factors in different genes, which were PLIN1, PLIN2, PPARGC1A, RXRA, PCK1, LEPR, LEP. These genes were involved in regulation of lipolysis in adipocytes, adipocytokine signaling pathway, PPAR signaling pathway. FABP4 and ADIPOQ were selected as important candidate marker genes for fat deposition based on the results.
Collapse
|
15
|
Sun HZ, Zhu Z, Zhou M, Wang J, Dugan MER, Guan LL. Gene co-expression and alternative splicing analysis of key metabolic tissues to unravel the regulatory signatures of fatty acid composition in cattle. RNA Biol 2020; 18:854-862. [PMID: 32931715 DOI: 10.1080/15476286.2020.1824060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Increasing the healthy/unhealthy fatty acid (FA) ratio in meat is one of the urgent tasks required to address consumer concerns. However, the regulatory mechanisms ultimately resulting in FA profiles vary among animals and remain largely unknown. In this study, using ~1.2 Tb high-quality RNA-Seq-based transcriptomic data of 188 samples from four key metabolic tissues (rumen, liver, muscle, and backfat) together with the contents of 49 FAs in backfat, the molecular regulatory mechanisms of these tissues contributing to FA formation in cattle were explored. Using this large dataset, the alternative splicing (AS) events, one of the transcriptional regulatory mechanisms in four tissues were identified. The highly conserved and absent AS events were detected in rumen tissue, which may contribute to its functional differences compared with the other three tissues. In addition, the healthy/unhealthy FA ratio related AS events, differential expressed (DE) genes, co-expressed genes, and their functions in four tissues were analysed. Eight key genes were identified from the integrated analysis of DE, co-expressed, and AS genes between animals with high and low healthy/unhealthy FA ratios. This study provides an applicable pipeline for AS events based on comprehensive RNA-Seq analysis and improves our understanding of the regulatory mechanism of FAs in beef cattle.
Collapse
Affiliation(s)
- Hui-Zeng Sun
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Zhi Zhu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Department of Animal Science, Southwest University, Chongqing, P.R. China
| | - Mi Zhou
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jian Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Michael E R Dugan
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Cesarani A, Gaspa G, Pauciullo A, Degano L, Vicario D, Macciotta NPP. Genome-wide analysis of homozygosity regions in european simmental bulls. J Anim Breed Genet 2020; 138:69-79. [PMID: 33263211 DOI: 10.1111/jbg.12502] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/08/2020] [Accepted: 07/18/2020] [Indexed: 01/15/2023]
Abstract
The study of Runs of Homozygosity (ROH) is a useful approach for the characterization of the genome of livestock populations. Due to their high relationship with autozygosity, ROH allow to make inference about population genetic history, to estimate the level of inbreeding, to assess within breed heterogeneity and to detect the footprints of selection on livestock genomes. Aim of this study was to investigate the distribution of runs of homozygosity in bulls belonging to five European Simmental populations and to assess the relationship between three production traits (milk yield, fat and protein contents) and autozygosity. ROH count, distribution and ROH-based coefficient of inbreeding (FROH ) were calculated for 3,845 Simmental bulls of five different European countries: Austria (AT), Switzerland (CH), Czech Republic (CZ), Germany (DE) and Italy (IT). Average values of ROH number per animal, and total genome length covered by ROH were 77.8 ± 20.7 and 205 ± 74.4 Mb, respectively. Bulls from AT, DE and IT exhibited similar ROH characteristics. Swiss animals showed the highest (12.6%), while CZ the lowest (4.6%) FROH coefficient. The relationship between ROH occurrence and milk production traits was investigated through a genome-wide ROH-traits association analysis (GWRA). A total of 34 regions previously associated with milk traits (yield and/or composition) were identified by GWRA. Results of the present research highlight a mixed genetic background in the 5 European Simmental populations, with the possible presence of three subgroups. Moreover, a strong relationship between autozygosity and production traits has been detected.
Collapse
Affiliation(s)
- Alberto Cesarani
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.,Associazione Nazionale Allevatori Pezzata Rossa Italiana (ANAPRI), Udine, Italy
| | - Giustino Gaspa
- Department of Agricultural, Forestry and Alimentary Sciences, University of Torino, Grugliasco, Italy
| | - Alfredo Pauciullo
- Department of Agricultural, Forestry and Alimentary Sciences, University of Torino, Grugliasco, Italy
| | - Lorenzo Degano
- Associazione Nazionale Allevatori Pezzata Rossa Italiana (ANAPRI), Udine, Italy
| | - Daniele Vicario
- Associazione Nazionale Allevatori Pezzata Rossa Italiana (ANAPRI), Udine, Italy
| | | |
Collapse
|
17
|
Sun HZ, Plastow G, Guan LL. Invited review: Advances and challenges in application of feedomics to improve dairy cow production and health. J Dairy Sci 2019; 102:5853-5870. [PMID: 31030919 DOI: 10.3168/jds.2018-16126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/02/2019] [Indexed: 12/22/2022]
Abstract
Dairy cattle science has evolved greatly over the past century, contributing significantly to the improvement in milk production achieved today. However, a new approach is needed to meet the increasing demand for milk production and address the increased concerns about animal health and welfare. It is now easy to collect and access large and complex data sets consisting of molecular, physiological, and metabolic data as well as animal-level data (such as behavior). This provides new opportunities to better understand the mechanisms regulating cow performance. The recently proposed concept of feedomics could help achieve this goal by increasing our understanding of interactions between the different components or levels and their impact on animal production. Feedomics is an emerging field that integrates a range of omics technologies (e.g., genomics, epigenomics, transcriptomics, proteomics, metabolomics, metagenomics, and metatranscriptomics) to provide these insights. In this way, we can identify the best strategies to improve overall animal productivity, product quality, welfare, and health. This approach can help research communities elucidate the complex interactions among nutrition, environment, management, animal genetics, metabolism, physiology, and the symbiotic microbiota. In this review, we summarize the outcomes of the most recent research on omics in dairy cows and highlight how an integrated feedomics approach could be applied in the future to improve dairy cow production and health. Specifically, we focus on 2 topics: (1) improving milk yield and milk quality, and (2) understanding metabolic physiology in transition dairy cows, which are 2 important challenges faced by the dairy industry worldwide.
Collapse
Affiliation(s)
- H Z Sun
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5
| | - G Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5
| | - L L Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5.
| |
Collapse
|
18
|
Pokharel K, Weldenegodguad M, Popov R, Honkatukia M, Huuki H, Lindeberg H, Peippo J, Reilas T, Zarovnyaev S, Kantanen J. Whole blood transcriptome analysis reveals footprints of cattle adaptation to sub-arctic conditions. Anim Genet 2019; 50:217-227. [PMID: 30957254 PMCID: PMC6593690 DOI: 10.1111/age.12783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2019] [Indexed: 12/17/2022]
Abstract
Indigenous cattle breeds in northern Eurasia have adapted to harsh climate conditions. The local breeds are important genetic resources with cultural and historical heritages, and therefore, their preservation and genetic characterization are important. In this study, we profiled the whole‐blood transcriptome of two native breeds (Northern Finncattle and Yakutian cattle) and one commercial breed (Holstein) using high‐throughput RNA sequencing. More than 15 000 genes were identified, of which two, 89 and 162 genes were significantly upregulated exclusively in Northern Finncattle, Yakutian cattle and Holstein cattle respectively. The functional classification of these significantly differentially expressed genes identified several biological processes and pathways related to signalling mechanisms, cell differentiation and host–pathogen interactions that, in general, point towards immunity and disease resistance mechanisms. The gene expression pattern observed in Northern Finncattle was more similar to that of Yakutian cattle, despite sharing similar living conditions with the Holstein cattle included in our study. In conclusion, our study identified unique biological processes in these breeds that may have helped them to adapt and survive in northern and sub‐arctic environments.
Collapse
Affiliation(s)
- K Pokharel
- Production Systems, Natural Resources Institute Finland (Luke), Myllytie 1, Jokioinen, FI-31600, Finland
| | - M Weldenegodguad
- Production Systems, Natural Resources Institute Finland (Luke), Myllytie 1, Jokioinen, FI-31600, Finland.,Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio, FI-70311, Finland
| | - R Popov
- Yakutian Research Institute of Agriculture (FGBNU Yakutskij NIISH), ul. Bestyzhevo-Marlinskogo 23/1, Yakutsk, 67001, The Sakha Republic (Yakutia), Russia
| | - M Honkatukia
- Production Systems, Natural Resources Institute Finland (Luke), Myllytie 1, Jokioinen, FI-31600, Finland.,The Nordic Genetic Resources Center (Nordgen), P.O. Box 115, Ås, NO-1431, Norway
| | - H Huuki
- Production Systems, Natural Resources Institute Finland (Luke), Myllytie 1, Jokioinen, FI-31600, Finland
| | - H Lindeberg
- Production Systems, Natural Resources Institute Finland (Luke), Halolantie 31A, Maaninka, FI-71750, Finland
| | - J Peippo
- Production Systems, Natural Resources Institute Finland (Luke), Myllytie 1, Jokioinen, FI-31600, Finland
| | - T Reilas
- Production Systems, Natural Resources Institute Finland (Luke), Myllytie 1, Jokioinen, FI-31600, Finland
| | - S Zarovnyaev
- GBU Saha Agroplem, ul. Ordzhonkidze 20/204, Yakutsk, 67700, The Sakha Republic (Yakutia), Russia
| | - J Kantanen
- Production Systems, Natural Resources Institute Finland (Luke), Myllytie 1, Jokioinen, FI-31600, Finland
| |
Collapse
|
19
|
Zheng X, Ning C, Zhao P, Feng W, Jin Y, Zhou L, Yu Y, Liu J. Integrated analysis of long noncoding RNA and mRNA expression profiles reveals the potential role of long noncoding RNA in different bovine lactation stages. J Dairy Sci 2018; 101:11061-11073. [PMID: 30268606 DOI: 10.3168/jds.2018-14900] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Long noncoding RNA (lncRNA) play a critical role in mammary development and breast cancer biology. Despite their important role in the mammary gland, little is known of the roles of lncRNA in bovine lactation, particularly regarding the molecular processes underlying it. To characterize the role of lncRNA in bovine lactation, 4 samples of Holstein cow mammary gland tissue at peak and late lactation stages were examined after biopsy. We then profiled the transcriptome of the mammary gland using RNA sequencing technology. Further, functional lncRNA-mRNA coexpression pairs were constructed to infer the function of lncRNA using a generalized linear model, followed by gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. More than 1,000 putative lncRNA were identified, 117 of which were differentially expressed between peak and late lactation stages. Bovine lncRNA were shorter, with fewer exon numbers, and expressed at significantly lower levels than protein-coding genes. Seventy-two differentially expressed (DE) lncRNA were coexpressed with 340 different protein-coding genes. The KEGG pathway analysis showed that target mRNA for DE lncRNA were mainly related to lipid and glucose metabolism, including the peroxisome proliferator-activated receptors and 5' adenosine monophosphate-activated protein kinase signaling pathways. Further bioinformatics and integrative analyses revealed that 12 DE lncRNA potentially played important roles in bovine lactation. Our findings provide a valuable resource for future bovine transcriptome studies, facilitate the understanding of bovine lactation biology, and offer functional information for cattle lactation.
Collapse
Affiliation(s)
- X Zheng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - C Ning
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - P Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - W Feng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Y Jin
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - L Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Y Yu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - J Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
20
|
Mucha S, Mrode R, Coffey M, Kizilaslan M, Desire S, Conington J. Genome-wide association study of conformation and milk yield in mixed-breed dairy goats. J Dairy Sci 2017; 101:2213-2225. [PMID: 29290434 DOI: 10.3168/jds.2017-12919] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 11/08/2017] [Indexed: 11/19/2022]
Abstract
Identification of genetic markers that affect economically important traits is of high value from a biological point of view, enabling the targeting of candidate genes and providing practical benefits for the industry such as wide-scale genomic selection. This study is one of the first to investigate the genetic background of economically important traits in dairy goats using the caprine 50K single nucleotide polymorphism (SNP) chip. The aim of the project was to perform a genome-wide association study for milk yield and conformation of udder, teat, and feet and legs. A total of 137,235 milk yield records on 4,563 goats each scored for 10 conformation traits were available. Out of these, 2,381 goats were genotyped with the Illumina Caprine 50K BeadChip (Illumina Inc., San Diego, CA). A range of pseudo-phenotypes were used including deregressed breeding values and pseudo-estimated breeding values. Genome-wide association studies were performed using the multi-locus mixed model (MLMM) algorithm implemented in SNP & Variation Suite v7.7.8 (Golden Helix Inc., Bozeman, MT). A genome-wise significant [-log10(P-value) > 5.95] SNP for milk yield was identified on chromosome 19, with additional chromosome-wise significant (-log10(P-value) > 4.46] SNP on chromosomes 4, 8, 14, and 29. Three genome-wise significant SNP for conformation of udder attachment, udder depth, and front legs were identified on chromosome 19, and chromosome-wise SNP were found on chromosomes 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 23, and 27. The proportion of variance explained by the significant SNP was between 0.4 and 7.0% for milk yield and between 0.1 and 13.8% for conformation traits. This study is the first attempt to identify SNP associated with milk yield and conformation in dairy goats. Two genome-wise significant SNP for milk yield and 3 SNP for conformation of udder attachment, udder depth, and front legs were found. Our results suggest that conformation traits have a polygenic background because, for most of them, we did not identify any quantitative trait loci with major effect.
Collapse
Affiliation(s)
- Sebastian Mucha
- Poznan University of Life Sciences, 33 Wolynska, 60-637 Poznan, Poland; Animal and Veterinary Sciences, Scotland's Rural College, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Raphael Mrode
- Animal and Veterinary Sciences, Scotland's Rural College, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Mike Coffey
- Animal and Veterinary Sciences, Scotland's Rural College, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Mehmet Kizilaslan
- Animal and Veterinary Sciences, Scotland's Rural College, Easter Bush, Midlothian EH25 9RG, United Kingdom; International Center for Livestock Research and Training, Breeding and Genetics Department, 06852, Ankara, Turkey
| | - Suzanne Desire
- Animal and Veterinary Sciences, Scotland's Rural College, Easter Bush, Midlothian EH25 9RG, United Kingdom.
| | - Joanne Conington
- Animal and Veterinary Sciences, Scotland's Rural College, Easter Bush, Midlothian EH25 9RG, United Kingdom
| |
Collapse
|
21
|
Huang K, Liu Y, Huang Y, Li L, Cooper L, Ruan J, Zhao Z. Intelligent biology and medicine in 2015: advancing interdisciplinary education, collaboration, and data science. BMC Genomics 2016; 17 Suppl 7:524. [PMID: 27556295 PMCID: PMC5001210 DOI: 10.1186/s12864-016-2893-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We summarize the 2015 International Conference on Intelligent Biology and Medicine (ICIBM 2015) and the editorial report of the supplement to BMC Genomics. The supplement includes 20 research articles selected from the manuscripts submitted to ICIBM 2015. The conference was held on November 13-15, 2015 at Indianapolis, Indiana, USA. It included eight scientific sessions, three tutorials, four keynote presentations, three highlight talks, and a poster session that covered current research in bioinformatics, systems biology, computational biology, biotechnologies, and computational medicine.
Collapse
Affiliation(s)
- Kun Huang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210 USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Yufei Huang
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, TX 78249 USA
| | - Lang Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Lee Cooper
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322 USA
- Department of Biomedical Engineering, Emory University / Georgia Institute of Technology, Atlanta, GA 30322 USA
| | - Jianhua Ruan
- Department of Computer Science, The University of Texas at San Antonio, San Antonio, TX 78249 USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| |
Collapse
|