1
|
Lee YJ, Cao D, Subhadra B, De Castro C, Speciale I, Inzana TJ. Relationship between capsule production and biofilm formation by Mannheimia haemolytica, and establishment of a poly-species biofilm with other Pasteurellaceae. Biofilm 2024; 8:100223. [PMID: 39492819 PMCID: PMC11530854 DOI: 10.1016/j.bioflm.2024.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 11/05/2024] Open
Abstract
Mannheimia haemolytica is one of the bacterial agents responsible for bovine respiratory disease (BRD). The capability of M. haemolytica to form a biofilm may contribute to the development of chronic BRD infection by making the bacteria more resistant to host innate immunity and antibiotics. To improve therapy and prevent BRD, a greater understanding of the association between M. haemolytica surface components and biofilm formation is needed. M. haemolytica strain 619 (wild-type) made a poorly adherent, low-biomass biofilm. To examine the relationship between capsule and biofilm formation, a capsule-deficient mutant of wild-type M. haemolytica was obtained following mutagenesis with ethyl methanesulfonate to obtain mutant E09. Loss of capsular polysaccharide (CPS) in mutant E09 was supported by transmission electron microscopy and Maneval's staining. Mutant E09 attached to polyvinyl chloride plates more effectively, and produced a significantly denser and more uniform biofilm than the wild-type, as determined by crystal violet staining, scanning electron microscopy, and confocal laser scanning microscopy with COMSTAT analysis. The biofilm matrix of E09 contained predominately protein and significantly more eDNA than the wild-type, but not a distinct exopolysaccharide. Furthermore, treatment with DNase I significantly reduced the biofilm content of both the wild-type and E09 mutant. DNA sequencing of E09 showed that a point mutation occurred in the capsule biosynthesis gene wecB. The complementation of wecB in trans in mutant E09 successfully restored CPS production and reduced bacterial attachment/biofilm to levels similar to that of the wild-type. Fluorescence in-situ hybridization microscopy showed that M. haemolytica formed a poly-microbial biofilm with Histophilus somni and Pasteurella multocida. Overall, CPS production by M. haemolytica was inversely correlated with biofilm formation, the integrity of which required eDNA. A poly-microbial biofilm was readily formed between M. haemolytica, H. somni, and P. multocida, suggesting a mutualistic or synergistic interaction that may benefit bacterial colonization of the bovine respiratory tract.
Collapse
Affiliation(s)
- Yue-Jia Lee
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY, 11548, USA
- Institute of Food Science and Technology, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, 10617, Taiwan, ROC
| | - Dianjun Cao
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY, 11548, USA
| | - Bindu Subhadra
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY, 11548, USA
| | - Cristina De Castro
- Department of Chemical Sciences, Università di Napoli FedericoII, Naples, Italy
| | | | - Thomas J. Inzana
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY, 11548, USA
| |
Collapse
|
2
|
Deschner D, Voordouw MJ, Fernando C, Campbell J, Waldner CL, Hill JE. Identification of genetic markers of resistance to macrolide class antibiotics in Mannheimia haemolytica isolates from a Saskatchewan feedlot. Appl Environ Microbiol 2024; 90:e0050224. [PMID: 38864630 PMCID: PMC11267883 DOI: 10.1128/aem.00502-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Mannheimia haemolytica is a major contributor to bovine respiratory disease (BRD), which causes substantial economic losses to the beef industry, and there is an urgent need for rapid and accurate diagnostic tests to provide evidence for treatment decisions and support antimicrobial stewardship. Diagnostic sequencing can provide information about antimicrobial resistance genes in M. haemolytica more rapidly than conventional diagnostics. Realizing the full potential of diagnostic sequencing requires a comprehensive understanding of the genetic markers of antimicrobial resistance. We identified genetic markers of resistance in M. haemolytica to macrolide class antibiotics commonly used for control of BRD. Genome sequences were determined for 99 M. haemolytica isolates with six different susceptibility phenotypes collected over 2 years from a feedlot in Saskatchewan, Canada. Known macrolide resistance genes estT, msr(E), and mph(E) were identified in most resistant isolates within predicted integrative and conjugative elements (ICEs). ICE sequences lacking antibiotic resistance genes were detected in 10 of 47 susceptible isolates. No resistance-associated polymorphisms were detected in ribosomal RNA genes, although previously unreported mutations in the L22 and L23 ribosomal proteins were identified in 12 and 27 resistant isolates, respectively. Pangenome analysis led to the identification of 79 genes associated with resistance to gamithromycin, of which 95% (75 of 79) had no functional annotation. Most of the observed phenotypic resistance was explained by previously identified antibiotic resistance genes, although resistance to the macrolides gamithromycin and tulathromycin was not explained in 39 of 47 isolates, demonstrating the need for continued surveillance for novel determinants of macrolide resistance.IMPORTANCEBovine respiratory disease is the costliest disease of beef cattle in North America and the most common reason for injectable antibiotic use in beef cattle. Metagenomic sequencing offers the potential to make economically significant reductions in turnaround time for diagnostic information for evidence-based selection of antibiotics for use in the feedlot. The success of diagnostic sequencing depends on a comprehensive catalog of antimicrobial resistance genes and other genome features associated with reduced susceptibility. We analyzed the genome sequences of isolates of Mannheimia haemolytica, a major bovine respiratory disease pathogen, and identified both previously known and novel genes associated with reduced susceptibility to macrolide class antimicrobials. These findings reinforce the need for ongoing surveillance for markers of antimicrobial resistance to support improved diagnostics and antimicrobial stewardship.
Collapse
Affiliation(s)
- Darien Deschner
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| | - Maarten J. Voordouw
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| | - Champika Fernando
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| | - John Campbell
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Cheryl L. Waldner
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Janet E. Hill
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
3
|
Conrad CC, Funk T, Andrés-Lasheras S, Yevtushenko C, Claassen C, Otto SJG, Waldner C, Zaheer R, McAllister TA. Improving the detection of integrative conjugative elements in bovine nasopharyngeal swabs using multiplex recombinase polymerase amplification. J Microbiol Methods 2024; 221:106943. [PMID: 38705209 DOI: 10.1016/j.mimet.2024.106943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Bovine respiratory disease (BRD) is an important health and economic burden to the cattle industry worldwide. Three bacterial pathogens frequently associated with BRD (Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni) can possess integrative and conjugative elements (ICEs), a diverse group of mobile genetic elements that acquire antimicrobial resistance (AMR) genes (ARGs) and decrease the therapeutic efficacy of antimicrobial drugs. We developed a duplex recombinase polymerase amplification (RPA) assay to detect up to two variants of ICEs in these Pasteurellaceae. Whole genome sequence analysis of M. haemolytica, P. multocida, and H. somni isolates harbouring ICEs revealed the presence of tnpA or ebrB next to tet(H), a conserved ARG that is frequently detected in ICEs within BRD-associated bacteria. This real-time multiplex RPA assay targeted both ICE variants simultaneously, denoted as tetH_tnpA and tetH_ebrB, with a limit of detection (LOD) of 29 (95% CI [23, 46]) and 38 genome copies (95% CI [30, 59]), respectively. DNA was extracted from 100 deep nasopharyngeal swabs collected from feedlot cattle on arrival. Samples were tested for ICEs using a real-time multiplex RPA assay, and for M. haemolytica, P. multocida, H. somni, and Mycoplasma bovis using both culture methods and RPA. The assay provided sensitive and accurate identification of ICEs in extracted DNA, providing a useful molecular tool for timely detection of potential risk factors associated with the development of antimicrobial-resistant BRD in feedlot cattle.
Collapse
Affiliation(s)
- Cheyenne C Conrad
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Tara Funk
- University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Sara Andrés-Lasheras
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | | | | | - Simon J G Otto
- HEAT-AMR (Human-Environment-Animal Transdisciplinary AMR) Research Group, School of Public Health, University of Alberta, Edmonton, AB T6G 2G7, Canada
| | - Cheryl Waldner
- University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada.
| |
Collapse
|
4
|
Herman EK, Lacoste SR, Freeman CN, Otto SJG, McCarthy EL, Links MG, Stothard P, Waldner CL. Bacterial enrichment prior to third-generation metagenomic sequencing improves detection of BRD pathogens and genetic determinants of antimicrobial resistance in feedlot cattle. Front Microbiol 2024; 15:1386319. [PMID: 38779502 PMCID: PMC11110911 DOI: 10.3389/fmicb.2024.1386319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Bovine respiratory disease (BRD) is one of the most important animal health problems in the beef industry. While bacterial culture and antimicrobial susceptibility testing have been used for diagnostic testing, the common practice of examining one isolate per species does not fully reflect the bacterial population in the sample. In contrast, a recent study with metagenomic sequencing of nasal swabs from feedlot cattle is promising in terms of bacterial pathogen identification and detection of antimicrobial resistance genes (ARGs). However, the sensitivity of metagenomic sequencing was impeded by the high proportion of host biomass in the nasal swab samples. Methods This pilot study employed a non-selective bacterial enrichment step before nucleic acid extraction to increase the relative proportion of bacterial DNA for sequencing. Results Non-selective bacterial enrichment increased the proportion of bacteria relative to host sequence data, allowing increased detection of BRD pathogens compared with unenriched samples. This process also allowed for enhanced detection of ARGs with species-level resolution, including detection of ARGs for bacterial species of interest that were not targeted for culture and susceptibility testing. The long-read sequencing approach enabled ARG detection on individual bacterial reads without the need for assembly. Metagenomics following non-selective bacterial enrichment resulted in substantial agreement for four of six comparisons with culture for respiratory bacteria and substantial or better correlation with qPCR. Comparison between isolate susceptibility results and detection of ARGs was best for macrolide ARGs in Mannheimia haemolytica reads but was also substantial for sulfonamide ARGs within M. haemolytica and Pasteurella multocida reads and tetracycline ARGs in Histophilus somni reads. Discussion By increasing the proportion of bacterial DNA relative to host DNA through non-selective enrichment, we demonstrated a corresponding increase in the proportion of sequencing data identifying BRD-associated pathogens and ARGs in deep nasopharyngeal swabs from feedlot cattle using long-read metagenomic sequencing. This method shows promise as a detection strategy for BRD pathogens and ARGs and strikes a balance between processing time, input costs, and generation of on-target data. This approach could serve as a valuable tool to inform antimicrobial management for BRD and support antimicrobial stewardship.
Collapse
Affiliation(s)
- Emily K. Herman
- Department of Agricultural, Food, and Nutritional Science, Faculty of Agricultural, Life, and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Stacey R. Lacoste
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Claire N. Freeman
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Simon J. G. Otto
- HEAT-AMR (Human-Environment-Animal Transdisciplinary AMR) Research Group, School of Public Health, University of Alberta, Edmonton, AB, Canada
- Healthy Environments Thematic Area Lead, Centre for Healthy Communities, School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - E. Luke McCarthy
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Matthew G. Links
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Computer Science, College of Arts and Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paul Stothard
- Department of Agricultural, Food, and Nutritional Science, Faculty of Agricultural, Life, and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Cheryl L. Waldner
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Kostova V, Hanke D, Kaspar H, Fiedler S, Schwarz S, Krüger-Haker H. Macrolide resistance in Mannheimia haemolytica isolates associated with bovine respiratory disease from the German national resistance monitoring program GE RM-Vet 2009 to 2020. Front Microbiol 2024; 15:1356208. [PMID: 38495516 PMCID: PMC10940430 DOI: 10.3389/fmicb.2024.1356208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024] Open
Abstract
Data collected from the German national resistance monitoring program GERM-Vet showed slowly increasing prevalence of macrolide resistance among bovine respiratory disease (BRD)-associated Pasteurellacae from cattle over the last decade. The focus of this study was to analyze the genetic basis of antimicrobial resistance (AMR) and the prevalence of multidrug-resistance (MDR)-mediating integrative and conjugative elements (ICEs) in 13 German BRD-associated Mannheimia haemolytica isolates collected between 2009 and 2020 via whole-genome sequencing. Antimicrobial susceptibility testing (AST) was performed via broth microdilution according to the recommendations of the Clinical and Laboratory Standards Institute for the macrolides erythromycin, tilmicosin, tulathromycin, gamithromycin, tildipirosin, and tylosin as well as 25 other antimicrobial agents. All isolates either had elevated MICs or were resistant to at least one of the macrolides tested. Analysis of whole-genome sequences obtained by hybrid assembly of Illumina MiSeq and Oxford Nanopore MinION reads revealed the presence of seven novel Tn7406-like ICEs, designated Tn7694, and Tn7724- Tn7729. These ICEs harbored the antimicrobial resistance genes erm(T), mef (C), mph(G), floR, catA3, aad(3")(9), aph(3')-Ia, aac(3)-IIa, strA, strB, tet(Y), and sul2 in different combinations. In addition, mutational changes conferring resistance to macrolides, nalidixic acid or streptomycin, respectively, were detected among the M. haemolytica isolates. In addition, four isolates carried a 4,613-bp plasmid with the β-lactamase gene blaROB - 1. The detection of the macrolide resistance genes erm(T), mef (C), and mph(G) together with other resistance genes on MDR-mediating ICEs in bovine M. haemolytica may explain the occurrence of therapeutic failure when treating BRD with regularly used antimicrobial agents, such as phenicols, penicillins, tetracyclines, or macrolides. Finally, pathogen identification and subsequent AST is essential to ensure the efficacy of the antimicrobial agents applied to control BRD in cattle.
Collapse
Affiliation(s)
- Valeria Kostova
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Dennis Hanke
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Heike Kaspar
- Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Stefan Fiedler
- Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Henrike Krüger-Haker
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Crosby WB, Karisch BB, Hiott LM, Pinnell LJ, Pittman A, Frye JG, Jackson CR, Loy JD, Epperson WB, Blanton J, Capik SF, Morley PS, Woolums AR. Tulathromycin metaphylaxis increases nasopharyngeal isolation of multidrug resistant Mannheimia haemolytica in stocker heifers. Front Vet Sci 2023; 10:1256997. [PMID: 38053814 PMCID: PMC10694364 DOI: 10.3389/fvets.2023.1256997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/25/2023] [Indexed: 12/07/2023] Open
Abstract
Bovine respiratory disease (BRD) is a leading cause of disease in feedlot and stocker calves with Mannheimia haemolytica (MH) as one of the most common etiologies. One of the most effective means of controlling BRD is through metaphylaxis, which involves administering antimicrobials to all animals at high risk of developing BRD. However, increasing prevalence of multidrug resistant (MDR) MH may reduce efficacy of metaphylaxis due to decreased susceptibility to drugs used for metaphylaxis. Primarily, this study aimed to determine the effect of tulathromycin metaphylaxis and subsequent BRD treatment on antimicrobial resistance (AMR) in MH isolated from stocker calves. Secondary objectives included evaluating the effect of metaphylaxis and treatment for BRD on animal health and comparing the genetic relationship of MH isolated. Crossbred beef heifers (n = 331, mean weight = 232, SD = 17.8 kg) at high risk for BRD were randomly assigned to receive tulathromycin metaphylaxis (META, n = 167) or not (NO META, n = 164). Nasopharyngeal swabs were collected for MH isolation, antimicrobial susceptibility testing and whole genome sequencing at arrival and 3 (WK3) and 10 (WK10) weeks later. Mixed-effects logistic regression was used to identify risk factors for isolation of MH and MDR MH (resistant to ≥3 antimicrobial drug classes) at 3 and 10 weeks, BRD morbidity, and crude mortality. Animals in the META group had higher odds of isolation of MDR MH at 3 weeks [OR (95% CI) = 13.08 (5-30.9), p < 0.0001] and 10 weeks [OR (95% CI) = 5.92 (1.34-26.14), p = 0.019] after arrival. There was no difference in risk of isolation of any MH (resistant or susceptible) between META and NO META groups at all timepoints. Animals in the NO META group had 3 times higher odds of being treated for BRD [WK3: OR (95% CI) = 3.07 (1.70-5.52), p = 0.0002; WK10: OR (95% CI) = 2.76 (1.59-4.80), p = 0.0002]. Antimicrobial resistance genes found within isolates were associated with integrative conjugative element (ICE) genes. Tulathromycin metaphylaxis increased risk of isolation of MDR MH and in this population, the increase in MDR MH appeared to be associated with ICE containing antimicrobial resistance genes for multiple antimicrobial classes. This may have important implications for future efficacy of antimicrobials for control and treatment of BRD.
Collapse
Affiliation(s)
- William B. Crosby
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Brandi B. Karisch
- Department of Animal and Dairy Sciences, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Lari M. Hiott
- Poultry Microbiological Safety and Processing Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture-Agricultural Research Service, Athens, GA, United States
| | - Lee J. Pinnell
- VERO Program, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Canyon, TX, United States
| | - Alexandra Pittman
- Department of Animal and Dairy Sciences, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Jonathan G. Frye
- Poultry Microbiological Safety and Processing Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture-Agricultural Research Service, Athens, GA, United States
| | - Charlene R. Jackson
- Poultry Microbiological Safety and Processing Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture-Agricultural Research Service, Athens, GA, United States
| | - John Dustin Loy
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - William B. Epperson
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - John Blanton
- Department of Animal Sciences, College of Agriculture, Purdue University, West Lafayette, IN, United States
| | - Sarah F. Capik
- Tumbleweed Veterinary Services, PLLC, Amarillo, TX, United States
| | - Paul S. Morley
- VERO Program, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Canyon, TX, United States
| | - Amelia R. Woolums
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
7
|
Fox KA, MacGlover CAW, Blecha KA, Stenglein MD. Assessing shared respiratory pathogens between domestic (Ovis aries) and bighorn (Ovis canadensis) sheep; methods for multiplex PCR, amplicon sequencing, and bioinformatics to characterize respiratory flora. PLoS One 2023; 18:e0293062. [PMID: 37856492 PMCID: PMC10586700 DOI: 10.1371/journal.pone.0293062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
Respiratory disease is responsible for dramatic population declines in bighorn sheep (Ovis canadensis), and respiratory pathogen diagnostics contribute to the management of bighorn populations. To create a comprehensive and consistent approach to bighorn sheep respiratory diagnostics, we created a culture-independent assay to detect and strain type Mannheimia haemolytica, Bibersteinia trehalosi, Pasteurella multocida, and Mycoplasma ovipneumoniae. The assay also detects and characterizes the Pasteurellaceae leukotoxin A gene, and broadly assesses the bacterial composition of each sample based on 16S rRNA sequences. The assay is based on a three-step approach: 1) Multiplex PCR to amplify targets including eight loci for each bacterial species, the Pasteurellaceae lktA gene, and the 16S rRNA gene 2) Library preparation, barcoding, and short-read Illumina sequencing to determine the genetic sequences of each target, and 3) Bioinformatics in the form of automated software to analyze genetic sequences. The assay was designed to assess shared pathogens between domestic and bighorn sheep, but could be useful for many applications in bighorn sheep respiratory disease research and management.
Collapse
Affiliation(s)
- Karen A. Fox
- Wildlife Health Program, Colorado Parks and Wildlife, Fort Collins, Colorado, United States of America
| | | | - Kevin A. Blecha
- Terrestrial Branch, Colorado Parks and Wildlife, Gunnison, Colorado, United States of America
| | - Mark D. Stenglein
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
8
|
Bogomazova A, Krylova E, Soltynskaya I, Prasolova O, Ivanova O. In silico analysis to develop PCR assays for identification of bacterial pathogens in animals: what can we improve? Front Vet Sci 2023; 10:1235837. [PMID: 37645677 PMCID: PMC10461052 DOI: 10.3389/fvets.2023.1235837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Affiliation(s)
- Alexandra Bogomazova
- Department of Molecular Biology, Russian State Center for Quality and Standardization of Veterinary Drugs and Feed (VGNKI), Moscow, Russia
- Laboratory of Cell Biology, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA of Russia (Lopukhin FRCC PCM), Moscow, Russia
| | - Ekaterina Krylova
- Department of Molecular Biology, Russian State Center for Quality and Standardization of Veterinary Drugs and Feed (VGNKI), Moscow, Russia
| | - Irina Soltynskaya
- Department of Molecular Biology, Russian State Center for Quality and Standardization of Veterinary Drugs and Feed (VGNKI), Moscow, Russia
| | - Olga Prasolova
- Department of Molecular Biology, Russian State Center for Quality and Standardization of Veterinary Drugs and Feed (VGNKI), Moscow, Russia
| | - Olga Ivanova
- Department of Molecular Biology, Russian State Center for Quality and Standardization of Veterinary Drugs and Feed (VGNKI), Moscow, Russia
| |
Collapse
|
9
|
Poonsuk K, Kordik C, Hille M, Cheng TY, Crosby WB, Woolums AR, Clawson ML, Chitko-McKown C, Brodersen B, Loy JD. Detection of Mannheimia haemolytica-Specific IgG, IgM and IgA in Sera and Their Relationship to Respiratory Disease in Cattle. Animals (Basel) 2023; 13:ani13091531. [PMID: 37174567 PMCID: PMC10177094 DOI: 10.3390/ani13091531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Mannheimia haemolytica is one of the major causes of bovine respiratory disease in cattle. The organism is the primary bacterium isolated from calves and young cattle affected with enzootic pneumonia. Novel indirect ELISAs were developed and evaluated to enable quantification of antibody responses to whole cell antigens using M. haemolytica A1 strain P1148. In this study, the ELISAs were initially developed using sera from both M. haemolytica-culture-free and clinically infected cattle, then the final prototypes were tested in the validation phase using a larger set of known-status M. haemolytica sera (n = 145) collected from feedlot cattle. The test showed good inter-assay and intra-assay repeatability. Diagnostic sensitivity and specificity were estimated at 91% and 87% for IgG at a cutoff of S/P ≥ 0.8. IgM diagnostic sensitivity and specificity were 91% and 81% at a cutoff of sample to positive (S/P) ratio ≥ 0.8. IgA diagnostic sensitivity was 89% whereas specificity was 78% at a cutoff of S/P ≥ 0.2. ELISA results of all isotypes were related to the diagnosis of respiratory disease and isolation of M. haemolytica (p-value < 0.05). These data suggest that M. haemolytica ELISAs can be adapted to the detection and quantification of antibody in serum specimens and support the use of these tests for the disease surveillance and disease prevention research in feedlot cattle.
Collapse
Affiliation(s)
- Korakrit Poonsuk
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Carita Kordik
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Matthew Hille
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Ting-Yu Cheng
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - William B Crosby
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Amelia R Woolums
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Michael L Clawson
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), United States Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Carol Chitko-McKown
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), United States Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Bruce Brodersen
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - John Dustin Loy
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| |
Collapse
|
10
|
Loy JD, Clawson ML, Adkins PRF, Middleton JR. Current and Emerging Diagnostic Approaches to Bacterial Diseases of Ruminants. Vet Clin North Am Food Anim Pract 2023; 39:93-114. [PMID: 36732002 DOI: 10.1016/j.cvfa.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The diagnostic approaches and methods to detect bacterial pathogens in ruminants are discussed, with a focus on cattle. Conventional diagnostic methods using culture, isolation, and characterization are being replaced or supplemented with new methods. These include molecular diagnostics such as real-time polymerase chain reaction and whole-genome sequencing. In addition, methods such as matrix-assisted laser desorption ionization-time-of-flight mass spectrometry enable rapid identification and enhanced pathogen characterization. These emerging diagnostic tools can greatly enhance the ability to detect and characterize pathogens, but performance and interpretation vary greatly across sample and pathogen types, disease syndromes, assay performance, and other factors.
Collapse
Affiliation(s)
- John Dustin Loy
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Michael L Clawson
- USDA, Agriculture Research Service US Meat Animal Research Center, Clay Center, NE, USA
| | - Pamela R F Adkins
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - John R Middleton
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
11
|
Dassanayake RP, Clawson ML, Tatum FM, Briggs RE, Kaplan BS, Casas E. Differential identification of Mannheimia haemolytica genotypes 1 and 2 using colorimetric loop-mediated isothermal amplification. BMC Res Notes 2023; 16:4. [PMID: 36658613 PMCID: PMC9850709 DOI: 10.1186/s13104-023-06272-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE Mannheimia haemolytica is the primary bacterial pathogen associated with bovine respiratory disease complex (BRDC). While M. haemolytica has been subdivided into 12 capsular serotypes (ST), ST1, ST2 and ST6 are commonly isolated from cattle. More recently, M. haemolytica strains isolated from North American cattle have been classified into genotypes 1 (ST2) and 2 (ST1 and ST6). Of the two genotypes, genotype 1 strains are frequently isolated from healthy animals whereas, genotype 2 strains are predominantly isolated from BRDC animals. However, isolation of both genotypes from pneumonic lung samples can complicate diagnosis. Therefore, the aim of this study was to develop a colorimetric loop-mediated isothermal amplification (LAMP) assay to differentiate M. haemolytica genotypes. RESULTS The genotype specificity of the LAMP was tested using purified genomic DNA from 22 M. haemolytica strains (10 genotype 1, 12 genotype 2) and strains from four related Pasteurellaceae species; Bibersteinia trehalosi, Mannheimia glucosida, Pasteurella multocida, and Histophilus somni. Genotype 1 (adhesin pseudogene B1) specific-LAMP reactions amplified DNA only from genotype 1 strains while genotype 2 (adhesin G) reactions amplified DNA only from genotype 2 strains. The overall detection sensitivity and specificity of the newly developed colorimetric LAMP assay for each genotype were 100%. The limits of detection of two LAMP assays were 1-100 target gene copies per reaction. LAMP primers designed in this study may help the differential identification of M. haemolytica genotypes 1 and 2.
Collapse
Affiliation(s)
- Rohana P. Dassanayake
- grid.508983.fUnited States Department of Agriculture, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Agricultural Research
Service, Ames, IA 50010 USA
| | - Michael L. Clawson
- grid.512847.dUnited States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Animal Health Genomic Research Unit, Clay Center, NE 68933 USA
| | - Fred M. Tatum
- grid.508983.fUnited States Department of Agriculture, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Agricultural Research
Service, Ames, IA 50010 USA
| | - Robert E. Briggs
- grid.508983.fUnited States Department of Agriculture, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Agricultural Research
Service, Ames, IA 50010 USA
| | - Bryan S. Kaplan
- grid.508983.fUnited States Department of Agriculture, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Agricultural Research
Service, Ames, IA 50010 USA
| | - Eduardo Casas
- grid.508983.fUnited States Department of Agriculture, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Agricultural Research
Service, Ames, IA 50010 USA
| |
Collapse
|
12
|
Jobman E, Hagenmaier J, Meyer N, Harper LB, Taylor L, Lukasiewicz K, Thomson D, Lowe J, Terrell S. Cross-Section Observational Study to Assess Antimicrobial Resistance Prevalence among Bovine Respiratory Disease Bacterial Isolates from Commercial US Feedlots. Antibiotics (Basel) 2023; 12:antibiotics12020215. [PMID: 36830126 PMCID: PMC9952279 DOI: 10.3390/antibiotics12020215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global public health threat that jeopardizes efficacy of antibiotics in veterinary and human medicine. Antibiotics are commonly administered to target the bacterial component of bovine respiratory disease (BRD). The objectives of this study were to obtain a better understanding of antibiotic resistance in BRD-associated bacteria (Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni), investigate the clinical significance of AMR by monitoring clinical outcomes, and determine if regional differences exist in AMR trends. Deep pharyngeal swabs were used to sample beef cattle at initial BRD diagnosis (n = 453) from US feedlots representing three geographic regions. Organisms were identified by bacterial culture and subjected to broth microdilution antimicrobial susceptibility testing. Bacterium prevalence include P. multocida (36.0%), M. haemolytica (32.7%), and H. somni (28.5%). Of the Histophilus isolates, 39.5% were resistant to at least one antimicrobial, compared to 11.7% and 8.8% Pasteurella and Mannheimia, respectively. Non-susceptibility across all organisms was 5.7 X more likely in animals that received metaphylaxis, than those that did not (p < 0.0001; OR 5.7; CI 2.6-12.5). During days on feed 21-40, non-susceptibility of Histophilus was 8.7 X more likely than Mannheimia (p = 0.0002; OR 8.7; CI 2.8 to 27.4) and 6 X more likely than Pasteurella (p = 0.0016; OR 6.0; CI 2.0-18.0).
Collapse
Affiliation(s)
- Erin Jobman
- Production Animal Consultation, P.O. Box 41, Scott City, KS 67748, USA
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, 2001 Lincoln Ave., Urbana, IL 61802, USA
| | - Jacob Hagenmaier
- Veterinary and Biomedical Research Center, 9027 Green Valley Dr., Manhattan, KS 66502, USA
| | - Nathan Meyer
- Boehringer Ingelheim Animal Health USA, 3239 Satellite Blvd NW, Duluth, GA 30096, USA
| | | | - Lisa Taylor
- Production Animal Consultation, P.O. Box 41, Scott City, KS 67748, USA
| | - Kip Lukasiewicz
- Production Animal Consultation, P.O. Box 41, Scott City, KS 67748, USA
| | - Dan Thomson
- Production Animal Consultation, P.O. Box 41, Scott City, KS 67748, USA
| | - James Lowe
- Production Animal Consultation, P.O. Box 41, Scott City, KS 67748, USA
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, 2001 Lincoln Ave., Urbana, IL 61802, USA
| | - Shane Terrell
- Production Animal Consultation, P.O. Box 41, Scott City, KS 67748, USA
- Correspondence:
| |
Collapse
|
13
|
Younes JA, Ramsay DE, Lacoste S, Deschner D, Hill JE, Campbell J, Waldner CL. Changes in the phenotypic susceptibility of Mannheimia haemolytica isolates to macrolide antimicrobials during the early feeding period following metaphylactic tulathromycin use in western Canadian feedlot calves. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2022; 63:920-928. [PMID: 36060481 PMCID: PMC9377195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cattle at high-risk for bovine respiratory disease on entry to western Canadian feedlots are often treated metaphylactically with antimicrobials from the macrolide class. High levels of resistance to macrolides have been reported in Mannheimia haemolytica isolates from clinical samples, but it is less clear whether this trend extends to the broader feedlot population. The objective was to describe near-term [< 40 days on feed (DOF)] changes in the recovery and susceptibility of M. haemolytica isolates from healthy feedlot calves after metaphylactic exposure to tulathromycin. Eight cohorts of 100 calves (n = 800) were sampled via deep nasopharyngeal swab at entry processing (i.e., before metaphylaxis, at 1 DOF) and again at 13 DOF. Ten calves from each cohort (n = 80) were randomly sampled a third time at 36 DOF. Recovery of M. haemolytica isolates across all cohorts increased over the study period, from 33% (95% CI: 26.5 to 40.2%) at 1 DOF to 75% (95% CI: 71.4 to 78.3%) at 36 DOF. A significant shift in the minimum inhibitory concentration (MIC) distribution of tulathromycin from 1 DOF (MIC90 ≤ 8 μg/mL) to 13 DOF (MIC90 > 64 μg/mL) was observed. A subset of 36 isolates from 13 DOF screened for macrolide resistance genes via multiplex polymerase chain reaction all harbored the msrE and mphE genes. Recovery of M. haemolytica at 13 and 36 DOF did not decline in response to metaphylactic use of tulathromycin; conversely, we inferred the potential for rapid inter-pen spread of a macrolide-resistant clone by 13 DOF in 6 of 8 pens under selective pressure from antimicrobial use.
Collapse
Affiliation(s)
- Jennifer Abi Younes
- Department of Large Animal Clinical Sciences (Younes, Ramsay, Lacoste, Campbell, Waldner), Department of Veterinary Microbiology (Deschner, Hill), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4
| | - Dana E Ramsay
- Department of Large Animal Clinical Sciences (Younes, Ramsay, Lacoste, Campbell, Waldner), Department of Veterinary Microbiology (Deschner, Hill), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4
| | - Stacey Lacoste
- Department of Large Animal Clinical Sciences (Younes, Ramsay, Lacoste, Campbell, Waldner), Department of Veterinary Microbiology (Deschner, Hill), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4
| | - Darien Deschner
- Department of Large Animal Clinical Sciences (Younes, Ramsay, Lacoste, Campbell, Waldner), Department of Veterinary Microbiology (Deschner, Hill), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4
| | - Janet E Hill
- Department of Large Animal Clinical Sciences (Younes, Ramsay, Lacoste, Campbell, Waldner), Department of Veterinary Microbiology (Deschner, Hill), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4
| | - John Campbell
- Department of Large Animal Clinical Sciences (Younes, Ramsay, Lacoste, Campbell, Waldner), Department of Veterinary Microbiology (Deschner, Hill), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4
| | - Cheryl L Waldner
- Department of Large Animal Clinical Sciences (Younes, Ramsay, Lacoste, Campbell, Waldner), Department of Veterinary Microbiology (Deschner, Hill), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4
| |
Collapse
|
14
|
Crosby WB, Pinnell LJ, Richeson JT, Wolfe C, Castle J, Loy JD, Gow SP, Seo KS, Capik SF, Woolums AR, Morley PS. Does swab type matter? Comparing methods for Mannheimia haemolytica recovery and upper respiratory microbiome characterization in feedlot cattle. Anim Microbiome 2022; 4:49. [PMID: 35964128 PMCID: PMC9375289 DOI: 10.1186/s42523-022-00197-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background Bovine respiratory disease (BRD) is caused by interactions among host, environment, and pathogens. One standard method for antemortem pathogen identification in cattle with BRD is deep-guarded nasopharyngeal swabbing, which is challenging, costly, and waste generating. The objective was to compare the ability to recover Mannheimia haemolytica and compare microbial community structure using 29.5 inch (74.9 cm) deep-guarded nasopharyngeal swabs, 16 inch (40.6 cm) unguarded proctology swabs, or 6 inch (15.2 cm) unguarded nasal swabs when characterized using culture, real time-qPCR, and 16S rRNA gene sequencing. Samples for aerobic culture, qPCR, and 16S rRNA gene sequencing were collected from the upper respiratory tract of cattle 2 weeks after feedlot arrival.
Results There was high concordance of culture and qPCR results for all swab types (results for 77% and 81% of sampled animals completely across all 3 swab types for culture and qPCR respectively). Microbial communities were highly similar among samples collected with different swab types, and differences identified relative to treatment for BRD were also similar. Positive qPCR results for M. haemolytica were highly concordant (81% agreed completely), but samples collected by deep-guarded swabbing had lower amounts of Mh DNA identified (Kruskal–Wallis analysis of variance on ranks, P < 0.05; Dunn-test for pairwise comparison with Benjamini–Hochberg correction, P < 0.05) and lower frequency of positive compared to nasal and proctology swabs (McNemar’s Chi-square test, P < 0.05). Conclusions Though differences existed among different types of swabs collected from individual cattle, nasal swabs and proctology swabs offer comparable results to deep-guarded nasopharyngeal swabs when identifying and characterizing M. haemolytica by culture, 16S rRNA gene sequencing, and qPCR. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00197-6.
Collapse
|
15
|
Carter HF, Wills RW, Scott MA, Thompson AC, Singer RS, Loy JD, Karisch BB, Epperson WB, Woolums AR. Assessment of Diversity of Antimicrobial Resistance Phenotypes and Genotypes of Mannheimia haemolytica Isolates From Bovine Nasopharyngeal Swabs. Front Vet Sci 2022; 9:883389. [PMID: 35647109 PMCID: PMC9132175 DOI: 10.3389/fvets.2022.883389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022] Open
Abstract
The threat of bovine respiratory disease (BRD) for cattle operations is exacerbated by increasing prevalence of antimicrobial resistance (AMR) in Mannheimia haemolytica, a leading cause of BRD. Characterization of AMR in M. haemolytica by culture and susceptibility testing is complicated by uncertainty regarding the number of colonies that must be selected to accurately characterize AMR phenotypes (antibiograms) and genotypes in a culture. The study objective was to assess phenotypic and genotypic diversity of M. haemolytica isolates on nasopharyngeal swabs (NPS) from 28 cattle at risk for BRD or with BRD. NPS were swabbed onto five consecutive blood agar plates; after incubation up to 20 M. haemolytica colonies were selected per plate (up to 100 colonies per NPS). Phenotype was determined by measuring minimum inhibitory concentrations (MIC) for 11 antimicrobials and classifying isolates as resistant or not. Genotype was indirectly determined by matrix-assisted laser desorption/ionization time of flight mass spectroscopy (MALDI-TOF MS). NPS from 11 of 28 cattle yielded at least one M. haemolytica isolate; median (range) of isolates per NPS was 48 (1-94). NPS from seven cattle yielded one phenotype, 3 NPS yielded two, and 1 NPS yielded three; however, within a sample all phenotypic differences were due to only one MIC dilution. On each NPS all M. haemolytica isolated were the same genotype; genotype 1 was isolated from three NPS and genotype two was isolated from eight. Diversity of M. haemolytica on bovine NPS was limited, suggesting that selection of few colonies might adequately identify relevant phenotypes and genotypes.
Collapse
Affiliation(s)
- Hannah F. Carter
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Robert W. Wills
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Matthew A. Scott
- Veterinary Education, Research, and Outreach Center, Texas A&M University and West Texas A&M University, Canyon, TX, United States
| | - Alexis C. Thompson
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Randall S. Singer
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - John Dustin Loy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Brandi B. Karisch
- Department of Animal and Dairy Science, College of Agriculture and Life Sciences, Mississippi State University, Starkville, MS, United States
| | - William B. Epperson
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Amelia R. Woolums
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
16
|
Andrés-Lasheras S, Jelinski M, Zaheer R, McAllister TA. Bovine Respiratory Disease: Conventional to Culture-Independent Approaches to Studying Antimicrobial Resistance in North America. Antibiotics (Basel) 2022; 11:antibiotics11040487. [PMID: 35453238 PMCID: PMC9025279 DOI: 10.3390/antibiotics11040487] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
Numerous antimicrobial resistance (AMR) surveillance studies have been conducted in North American feedlot cattle to investigate the major bacterial pathogens of the bovine respiratory disease (BRD) complex, specifically: Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis. While most bacterial isolates recovered from healthy cattle are susceptible to a repertoire of antimicrobials, multidrug resistance is common in isolates recovered from cattle suffering from BRD. Integrative and conjugative elements (ICE) have gained increasing notoriety in BRD-Pasteurellaceae as they appear to play a key role in the concentration and dissemination of antimicrobial resistant genes. Likewise, low macrolide susceptibility has been described in feedlot isolates of M. bovis. Horizontal gene transfer has also been implicated in the spread of AMR within mycoplasmas, and in-vitro experiments have shown that exposure to antimicrobials can generate high levels of resistance in mycoplasmas via a single conjugative event. Consequently, antimicrobial use (AMU) could be accelerating AMR horizontal transfer within all members of the bacterial BRD complex. While metagenomics has been applied to the study of AMR in the microbiota of the respiratory tract, the potential role of the respiratory tract microbiome as an AMR reservoir remains uncertain. Current and prospective molecular tools to survey and characterize AMR need to be adapted as point-of-care technologies to enhance prudent AMU in the beef industry.
Collapse
Affiliation(s)
- Sara Andrés-Lasheras
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (S.A.-L.); (R.Z.)
| | - Murray Jelinski
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (S.A.-L.); (R.Z.)
| | - Tim A. McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (S.A.-L.); (R.Z.)
- Correspondence: ; Tel.: +1-403-317-2240
| |
Collapse
|
17
|
Wynn EL, Clawson M. Differences between Predicted Outer Membrane Proteins of Pasteurella multocida, Histophilus somni, and Genotype 1 and 2 Mannheimia haemolytica Strains Isolated from Cattle. Genome 2021; 65:115-121. [PMID: 34348051 DOI: 10.1139/gen-2021-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Common bacterial causes of bovine respiratory disease (BRD) include Histophilus somni, Mannheimia haemolytica, and Pasteurella multocida. Within M. haemolytica, two major genotypes are commonly found in cattle (1 and 2), however, genotype 2 strains are isolated from diseased lungs much more frequently than genotype 1 strains. Outer membrane proteins (OMPs) of H. somni, P. multocida, and genotype 2 M. haemolytica may be important factors for acquired host immunity. Predicted OMP differences between genotype 1 and 2 M. haemolytica have been previously identified. In this study, we expanded that focus to include bovine-isolated strain genomes representing all three species and the two M. haemolytica genotypes. Reported here are the core genomes unique to each of them, core genomes shared between some or all combinations of the three species and two M. haemolytica genotypes, and predicted OMPs within these core genomes. The OMPs identified in this study are potential candidates for further study and the development of interventions against BRD.
Collapse
Affiliation(s)
- Emily L Wynn
- USDA-ARS Roman L Hruska US Meat Animal Research Center, 57652, Clay Center, Nebraska, United States;
| | - Michael Clawson
- USDA-ARS Roman L Hruska US Meat Animal Research Center, 57652, Clay Center, Nebraska, United States;
| |
Collapse
|
18
|
Andrés-Lasheras S, Ha R, Zaheer R, Lee C, Booker CW, Dorin C, Van Donkersgoed J, Deardon R, Gow S, Hannon SJ, Hendrick S, Anholt M, McAllister TA. Prevalence and Risk Factors Associated With Antimicrobial Resistance in Bacteria Related to Bovine Respiratory Disease-A Broad Cross-Sectional Study of Beef Cattle at Entry Into Canadian Feedlots. Front Vet Sci 2021; 8:692646. [PMID: 34277758 PMCID: PMC8280473 DOI: 10.3389/fvets.2021.692646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
A broad, cross-sectional study of beef cattle at entry into Canadian feedlots investigated the prevalence and epidemiology of antimicrobial resistance (AMR) in Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis, bacterial members of the bovine respiratory disease (BRD) complex. Upon feedlot arrival and before antimicrobials were administered at the feedlot, deep nasopharyngeal swabs were collected from 2,824 feedlot cattle in southern and central Alberta, Canada. Data on the date of feedlot arrival, cattle type (beef, dairy), sex (heifer, bull, steer), weight (kg), age class (calf, yearling), source (ranch direct, auction barn, backgrounding operations), risk of developing BRD (high, low), and weather conditions at arrival (temperature, precipitation, and estimated wind speed) were obtained. Mannheimia haemolytica, P. multocida, and H. somni isolates with multidrug-resistant (MDR) profiles associated with the presence of integrative and conjugative elements were isolated more often from dairy-type than from beef-type cattle. Our results showed that beef-type cattle from backgrounding operations presented higher odds of AMR bacteria as compared to auction-derived calves. Oxytetracycline resistance was the most frequently observed resistance across all Pasteurellaceae species and cattle types. Mycoplasma bovis exhibited high macrolide minimum inhibitory concentrations in both cattle types. Whether these MDR isolates establish and persist within the feedlot environment, requires further evaluation.
Collapse
Affiliation(s)
- Sara Andrés-Lasheras
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Reuben Ha
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Catrione Lee
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | | | - Craig Dorin
- Veterinary Agri-Health Systems, Airdrie, AB, Canada
| | | | - Rob Deardon
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Department of Mathematics and Statistics, University of Calgary, Calgary, AB, Canada
| | - Sheryl Gow
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Public Health Agency of Canada, Saskatoon, SK, Canada
| | | | | | - Michele Anholt
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,POV Inc., Airdrie, AB, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
19
|
Loy JD, Hille M, Maier G, Clawson ML. Component Causes of Infectious Bovine Keratoconjunctivitis - The Role of Moraxella Species in the Epidemiology of Infectious Bovine Keratoconjunctivitis. Vet Clin North Am Food Anim Pract 2021; 37:279-293. [PMID: 34049659 DOI: 10.1016/j.cvfa.2021.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Infectious bovine keratoconjunctivitis (IBK) involves multiple factors and opportunistic pathogens, including members of the genus Moraxella, specifically M bovis. The causal role of M bovis is clear, where the presence of virulence factors that facilitate colonization (pili) and host cytotoxicity (RTX toxins) are well characterized, and IBK has been reproduced in many models. Experimental infection with M bovoculi has failed to reproduce IBK-typical lesions in cattle thus far. However, recent work using genomics and mass spectrometry have found genomic diversity and recombination within these species, making species differentiation complex and challenging the ability to assign IBK causality to these organisms.
Collapse
Affiliation(s)
- John Dustin Loy
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, 4040 East Campus Loop North 115Q NVDC, Lincoln, NE 68583-0907, USA.
| | - Matthew Hille
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, 4040 East Campus Loop North 115Q NVDC, Lincoln, NE 68583-0907, USA
| | - Gabriele Maier
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California Davis, 1 Shields Avenue, VM3B, Davis, CA 95616, USA
| | - Michael L Clawson
- US Meat Animal Research Center, USDA Agriculture Research Service, Clay Center, 844 Road 313, Clay Center, NE 68933, USA
| |
Collapse
|
20
|
Kudirkiene E, Aagaard AK, Schmidt LMB, Pansri P, Krogh KM, Olsen JE. Occurrence of major and minor pathogens in calves diagnosed with bovine respiratory disease. Vet Microbiol 2021; 259:109135. [PMID: 34090248 DOI: 10.1016/j.vetmic.2021.109135] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/25/2021] [Indexed: 11/26/2022]
Abstract
Bovine respiratory disease (BRD) is caused by a mixture of viruses and opportunistic bacteria belonging to Pasteurellaceae and Mycoplasma bovis. However, these organisms are also commonly isolated from healthy calves. This study aimed to determine whether the organisms are present in higher numbers in calves sick with acute BRD than in clinically healthy calves, and further to genetically characterize bacteria of the family Pasteurellaceae to understand whether particular types are associated with disease. Forty-six clinically healthy and 46 calves with BRD were sampled by broncheoalveolar lavage (BAL) method in 11 herds geographically spread over Denmark to determine presence and quantity of microorganisms by culture and quantitative real time qPCR. Isolates of Pasteurellaceae were tested for antibiotic resistance and were whole genome sequenced to determine genotypes. Histophilus somni was in particular positively associated with BRD, suggesting particular importance of this organism as likely aetiology of BRD. In addition, quantification of bacteria revealed that higher counts of H. somni as well as of M. haemolytica was also a good indicator of the disease. Pasteurellaceae isolates were susceptible to the commonly used antibiotics in treatment of BRD, and genotypes were shared between isolates from clinically healthy and sick calves.
Collapse
Affiliation(s)
- Egle Kudirkiene
- Department of Veterinary and Animal Science University of Copenhagen, Copenhagen, Denmark
| | - Anne Katrine Aagaard
- Department of Veterinary and Animal Science University of Copenhagen, Copenhagen, Denmark
| | - Louise M B Schmidt
- Department of Veterinary and Animal Science University of Copenhagen, Copenhagen, Denmark
| | | | | | - John E Olsen
- Department of Veterinary and Animal Science University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
21
|
Dutta E, Loy JD, Deal CA, Wynn EL, Clawson ML, Clarke J, Wang B. Development of a Multiplex Real-Time PCR Assay for Predicting Macrolide and Tetracycline Resistance Associated with Bacterial Pathogens of Bovine Respiratory Disease. Pathogens 2021; 10:pathogens10010064. [PMID: 33450871 PMCID: PMC7828349 DOI: 10.3390/pathogens10010064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance (AMR) in bovine respiratory disease (BRD) is an emerging concern that may threaten both animal and public health. Rapid and accurate detection of AMR is essential for prudent drug therapy selection during BRD outbreaks. This study aimed to develop a multiplex quantitative real-time polymerase chain reaction assay (qPCR) to provide culture-independent information regarding the phenotypic AMR status of BRD cases and an alternative to the gold-standard, culture-dependent test. Bovine clinical samples (297 lung and 111 nasal) collected in Nebraska were subjected to qPCR quantification of macrolide (MAC) and tetracycline (TET) resistance genes and gold-standard determinations of AMR of BRD pathogens. Receiver operating characteristic curve analysis was used to classify AMR based on the qPCR results. For lung tissues, the qPCR method showed good agreement with the gold-standard test for both MACs and TETs, with a sensitivity of 67–81% and a specificity higher than 80%. For nasal swabs, qPCR results passed validation criteria only for TET resistance detection, with a sensitivity of 88%, a specificity of 80% and moderate agreement. The culture-independent assay developed here provides the potential for more rapid AMR characterization of BRD cases directly from clinical samples at equivalent accuracy and higher time efficiency compared with the gold-standard, culture-based test.
Collapse
Affiliation(s)
- Enakshy Dutta
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (E.D.); (J.C.)
| | - John Dustin Loy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (J.D.L.); (C.A.D.)
| | - Caitlyn A. Deal
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (J.D.L.); (C.A.D.)
| | - Emily L. Wynn
- U.S. Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE 68933, USA; (E.L.W.); (M.L.C.)
| | - Michael L. Clawson
- U.S. Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE 68933, USA; (E.L.W.); (M.L.C.)
| | - Jennifer Clarke
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (E.D.); (J.C.)
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Bing Wang
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Correspondence: ; Tel.: +1-(402)-472-2517
| |
Collapse
|
22
|
Development and application of molecular diagnostics and proteomics to bovine respiratory disease (BRD). Anim Health Res Rev 2020; 21:164-167. [PMID: 33261712 DOI: 10.1017/s1466252320000092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Advances in molecular and proteomic technologies and methods have enabled new diagnostic tools for bovine respiratory pathogens that are high-throughput, rapid, and extremely sensitive. Classically, diagnostic testing for these pathogens required culture-based approaches that required days to weeks and highly trained technical staff to conduct. However, new advances such as multiplex hydrolysis probe-based real-time PCR technology have enabled enhanced and rapid detection of bovine respiratory disease (BRD) pathogens in a variety of clinical specimens. These tools provide many advantages and have shown superiority over culture for co-infections/co-detections where multiple pathogens are present. Additionally, the integration of matrix-assisted laser desorption ionization time of flight mass spectrometry (MS) into veterinary diagnostic labs has revolutionized the ability to rapidly identify bacterial pathogens associated with BRD. Recent applications of this technology include the ability to type these opportunistic pathogens to the sub-species level (specifically Mannheimia haemolytica) using MS-based biomarkers, to allow for the identification of bacterial genotypes associated with BRD versus genotypes that are more likely to be commensal in nature.
Collapse
|
23
|
Abstract
Bovine respiratory disease (BRD) is the most common cause of morbidity and mortality in North American beef cattle. In recent years, isolation of strains of Mannheimia haemolytica that are resistant to multiple different classes of antimicrobials has become commonplace. New research would suggest that the routine use of antimicrobials by some cattle operations might be driving emerging resistance patterns, with the majority of the spread observed due to propagation of strains of M. haemolytica that have acquired integrative conjugative elements. To date, there is little information evaluating the impact of antimicrobial resistance on clinical outcome in cattle with BRD.
Collapse
|
24
|
Klima CL, Holman DB, Cook SR, Conrad CC, Ralston BJ, Allan N, Anholt RM, Niu YD, Stanford K, Hannon SJ, Booker CW, McAllister TA. Multidrug Resistance in Pasteurellaceae Associated With Bovine Respiratory Disease Mortalities in North America From 2011 to 2016. Front Microbiol 2020; 11:606438. [PMID: 33240256 PMCID: PMC7682020 DOI: 10.3389/fmicb.2020.606438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/19/2020] [Indexed: 01/20/2023] Open
Abstract
Multidrug-resistant (MDR; resistance to ≥3 antimicrobial classes) members of the Pasteurellaceae family may compromise the efficacy of therapies used to prevent and treat bovine respiratory disease (BRD) in feedlot cattle. This study examined the prevalence of multidrug resistance in strains of Mannheimia haemolytica and Pasteurella multocida collected from BRD cattle mortalities in North America. Isolates of M. haemolytica (n = 147) and P. multocida (n = 70) spanning 69 Alberta feedlots from 2011 to 2016 and two United States feedlots from 2011 to 2012 were examined for antimicrobial resistance (AMR) in association with integrative and conjugative elements (ICEs). Overall, resistance was high in both bacterial species with an increase in the prevalence of MDR isolates between 2011 and 2016. Resistance to >7 antimicrobial drugs occurred in 31% of M. haemolytica and 83% of P. multocida isolates. Resistance to sulfadimethoxine, trimethoprim/sulfamethoxazole, neomycin, clindamycin oxytetracycline, spectinomycin, tylosin, tilmicosin, and tulathromycin was most common. Although >80% of strains harbored three or more ICE-associated genes, only 12% of M. haemolytica and 77% of P. multocida contained all six, reflecting the diversity of ICEs. There was evidence of clonal spread as P. multocida and M. haemolytica isolates with the same pulsed-field gel electrophoresis profile from the United States in 2011 were isolated in Alberta in 2015–2016. This work highlights that MDR strains of Pasteurellaceae containing ICEs are widespread and may be contributing to BRD therapy failure in feedlot cattle. Given the antimicrobial resistance gene profiles identified, these MDR isolates may be selected for by the use of macrolides, tetracyclines, and/or in-feed supplements containing heavy metals.
Collapse
Affiliation(s)
- Cassidy L Klima
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Devin B Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Shaun R Cook
- Alberta Agriculture and Forestry, Lethbridge, AB, Canada
| | - Cheyenne C Conrad
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | | | - Nick Allan
- Chinook Contract Research Inc., Airdrie, AB, Canada
| | | | - Yan D Niu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Kim Stanford
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | | | | | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
25
|
Clawson ML, Schuller G, Dickey AM, Bono JL, Murray RW, Sweeney MT, Apley MD, DeDonder KD, Capik SF, Larson RL, Lubbers BV, White BJ, Blom J, Chitko-McKown CG, Brichta-Harhay DM, Smith TPL. Differences between predicted outer membrane proteins of genotype 1 and 2 Mannheimia haemolytica. BMC Microbiol 2020; 20:250. [PMID: 32787780 PMCID: PMC7424683 DOI: 10.1186/s12866-020-01932-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mannheimia haemolytica strains isolated from North American cattle have been classified into two genotypes (1 and 2). Although members of both genotypes have been isolated from the upper and lower respiratory tracts of cattle with or without bovine respiratory disease (BRD), genotype 2 strains are much more frequently isolated from diseased lungs than genotype 1 strains. The mechanisms behind the increased association of genotype 2 M. haemolytica with BRD are not fully understood. To address that, and to search for interventions against genotype 2 M. haemolytica, complete, closed chromosome assemblies for 35 genotype 1 and 34 genotype 2 strains were generated and compared. Searches were conducted for the pan genome, core genes shared between the genotypes, and for genes specific to either genotype. Additionally, genes encoding outer membrane proteins (OMPs) specific to genotype 2 M. haemolytica were identified, and the diversity of their protein isoforms was characterized with predominantly unassembled, short-read genomic sequences for up to 1075 additional strains. RESULTS The pan genome of the 69 sequenced M. haemolytica strains consisted of 3111 genes, of which 1880 comprised a shared core between the genotypes. A core of 112 and 179 genes or gene variants were specific to genotype 1 and 2, respectively. Seven genes encoding predicted OMPs; a peptidase S6, a ligand-gated channel, an autotransporter outer membrane beta-barrel domain-containing protein (AOMB-BD-CP), a porin, and three different trimeric autotransporter adhesins were specific to genotype 2 as their genotype 1 homologs were either pseudogenes, or not detected. The AOMB-BD-CP gene, however, appeared to be truncated across all examined genotype 2 strains and to likely encode dysfunctional protein. Homologous gene sequences from additional M. haemolytica strains confirmed the specificity of the remaining six genotype 2 OMP genes and revealed they encoded low isoform diversity at the population level. CONCLUSION Genotype 2 M. haemolytica possess genes encoding conserved OMPs not found intact in more commensally prone genotype 1 strains. Some of the genotype 2 specific genes identified in this study are likely to have important biological roles in the pathogenicity of genotype 2 M. haemolytica, which is the primary bacterial cause of BRD.
Collapse
Affiliation(s)
- Michael L Clawson
- United States Department of Agriculture, Genetics, Breeding, and Animal Health Research Unit, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA.
| | - Gennie Schuller
- United States Department of Agriculture, Genetics, Breeding, and Animal Health Research Unit, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Aaron M Dickey
- United States Department of Agriculture, Genetics, Breeding, and Animal Health Research Unit, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - James L Bono
- United States Department of Agriculture, Genetics, Breeding, and Animal Health Research Unit, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | | | | | | | - Keith D DeDonder
- Veterinary and Biomedical Research Center, Inc, Manhattan, KS, USA
| | - Sarah F Capik
- Texas A&M AgriLife Research, Texas A&M University System, Amarillo, TX, USA
- Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | | | | | | | - Jochen Blom
- Justus-Liebig-University Giessen, Giessen, Hesse, Germany
| | - Carol G Chitko-McKown
- United States Department of Agriculture, Genetics, Breeding, and Animal Health Research Unit, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Dayna M Brichta-Harhay
- United States Department of Agriculture, Genetics, Breeding, and Animal Health Research Unit, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Timothy P L Smith
- United States Department of Agriculture, Genetics, Breeding, and Animal Health Research Unit, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA
| |
Collapse
|
26
|
Conrad CC, Daher RK, Stanford K, Amoako KK, Boissinot M, Bergeron MG, Alexander T, Cook S, Ralston B, Zaheer R, Niu YD, McAllister T. A Sensitive and Accurate Recombinase Polymerase Amplification Assay for Detection of the Primary Bacterial Pathogens Causing Bovine Respiratory Disease. Front Vet Sci 2020; 7:208. [PMID: 32426381 PMCID: PMC7212441 DOI: 10.3389/fvets.2020.00208] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/30/2020] [Indexed: 12/25/2022] Open
Abstract
Rapid and accurate diagnosis of bovine respiratory disease (BRD) presents a substantial challenge to the North American cattle industry. Here we utilize recombinase polymerase amplification (RPA), a fast and sensitive isothermal DNA-based technology for the detection of four BRD pathogens (Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, Mycoplasma bovis), genes coding antimicrobial resistance (AMR) and integrative conjugative elements (ICE) which can harbor AMR genes. Eleven RPA assays were designed and validated including: a) one conventional species-specific multiplex assay targeting the 4 BRD pathogens, b) two species-specific real-time multiplex RPA assays targeting M. haemolytica/M. bovis and P. multocida/H. somni, respectively with a novel competitive internal amplification control, c) seven conventional assays targeting AMR genes (tetH, tetR, msrE, mphE, sul2, floR, erm42), and d) one real-time assay targeting ICE. Each real-time RPA assay was tested on 100 deep nasopharyngeal swabs (DNPS) collected from feedlot cattle previously assessed for targets using either culture methods and/or polymerase chain reaction (PCR) verification (TC-PCR). The developed RPA assays enabled sensitive and accurate identification of BRD agents and AMR/ICE genes directly from DNPS, in a shorter period than TC-PCR, showing considerable promise as a tool for point-of-care identification of BRD pathogens and antimicrobial resistance genes.
Collapse
Affiliation(s)
- Cheyenne C Conrad
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Rana K Daher
- Centre de Recherche en Infectiologie de l'Université Laval, Québec City, QC, Canada
| | - Kim Stanford
- Alberta Agriculture and Forestry, Lethbridge, AB, Canada
| | - Kingsley K Amoako
- National Centre for Animal Disease, Canadian Food Inspection Agency, Lethbridge, AB, Canada
| | - Maurice Boissinot
- Centre de Recherche en Infectiologie de l'Université Laval, Québec City, QC, Canada
| | - Michel G Bergeron
- Centre de Recherche en Infectiologie de l'Université Laval, Québec City, QC, Canada
| | - Trevor Alexander
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Shaun Cook
- Alberta Agriculture and Forestry, Lethbridge, AB, Canada
| | | | - Rahat Zaheer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Yan D Niu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Tim McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| |
Collapse
|
27
|
Wynn EL, Schuller G, Loy JD, Workman AM, McDaneld TG, Clawson ML. Differentiation of Mannheimia haemolytica genotype 1 and 2 strains by visible phenotypic characteristics on solid media. J Microbiol Methods 2020; 171:105877. [PMID: 32088258 DOI: 10.1016/j.mimet.2020.105877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 10/25/2022]
Abstract
Genotype 2 Mannheimia haemolytica associate with the lungs of cattle with bovine respiratory disease more frequently than genotype 1 strains. Different colony colors and morphologies were identified between genotype 1 and 2 solid media cultures. Genotype of strains, and frequency differences between them in mixed cultures are discernable by visual inspection.
Collapse
Affiliation(s)
- Emily L Wynn
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Gennie Schuller
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - John D Loy
- University of Nebraska-Lincoln, Institute of Agriculture and Natural Resources, School of Veterinary Medicine and Biomedical Sciences, Lincoln, NE, USA
| | - Aspen M Workman
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Tara G McDaneld
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Michael L Clawson
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA.
| |
Collapse
|
28
|
Antimicrobial Resistance in Members of the Bacterial Bovine Respiratory Disease Complex Isolated from Lung Tissue of Cattle Mortalities Managed with or without the Use of Antimicrobials. Microorganisms 2020; 8:microorganisms8020288. [PMID: 32093326 PMCID: PMC7074851 DOI: 10.3390/microorganisms8020288] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Over a two-year period, Mannheimia haemolytica (MH; n = 113), Pasteurella multocida (PM; n = 47), Histophilus somni (HS; n = 41) and Mycoplasma bovis (MB; n = 227) were isolated from bovine lung tissue at necropsy from cattle raised conventionally (CON, n = 29 feedlots) or without antimicrobials [natural (NAT), n = 2 feedlots]. Excluding MB, isolates were assayed by PCR to detect the presence of 13 antimicrobial resistance (AMR) genes and five core genes associated with integrative and conjugative elements (ICEs). Antimicrobial susceptibility phenotypes and minimum inhibitory concentrations (MICs, µg/mL) were determined for a subset of isolates (MH, n = 104; PM, n = 45; HS, n = 23; and MB, n = 61) using Sensititre analyses. A subset of isolates (n = 21) was also evaluated by whole-genome sequencing (WGS) based on variation in AMR phenotype. All five ICE core genes were detected in PM and HS by PCR, but only 3/5 were present in MH. Presence of mco and tnpA ICE core genes in MH was associated with higher MICs (p < 0.05) for all tetracyclines, and 2/3 of all macrolides, aminoglycosides and fluoroquinolones evaluated. In contrast, association of ICE core genes with MICs was largely restricted to macrolides for PM and to individual tetracyclines and macrolides for HS. For MH, the average number of AMR genes markedly increased (p < 0.05) in year 2 of the study due to the emergence of a strain that was PCR positive for all 13 PCR-tested AMR genes as well as two additional AMR genes (aadA31 and blaROB-1) detected by WGS. Conventional management of cattle increased (p < 0.05) MICs of tilmicosin and tulathromycin for MH; neomycin and spectinomycin for PM; and gamithromycin and tulathromycin for MB. The average number of PCR-detected AMR genes in PM was also increased (p < 0.05) in CON mortalities. This study demonstrates increased AMR especially to macrolides by bovine respiratory disease organisms in CON as compared to NAT feedlots and a rapid increase in AMR following dissemination of strain(s) carrying ICE-associated multidrug resistance.
Collapse
|
29
|
Guo Y, McMullen C, Timsit E, Hallewell J, Orsel K, van der Meer F, Yan S, Alexander TW. Genetic relatedness and antimicrobial resistance in respiratory bacteria from beef calves sampled from spring processing to 40 days after feedlot entry. Vet Microbiol 2019; 240:108478. [PMID: 31902491 DOI: 10.1016/j.vetmic.2019.108478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 01/05/2023]
Abstract
Recent studies have shown an increase in antimicrobial-resistant bovine respiratory disease (BRD) pathogens. To investigate the origin of antimicrobial resistance in the respiratory microbiota of beef cattle, three groups (A, B, or C) of 40 calves sourced from different calf-ranches were sampled by deep nasopharyngeal swab (DNS) at the time of first on-ranch vaccination (Time point 1, T1), feedlot entry (Time point 2, T2), and 40 days after feedlot entry (Time point 3, T3; feedlots differed by group). Pasteurella multocida, Mannheimia haemolytica, and Histophilus somni were isolated from DNS samples, tested for antimicrobial susceptibility, and subtyped by pulsed-field gel electrophoresis (PFGE). Antimicrobial resistance genes [tet(H), tet(W), and sul2] were also quantified in DNS metagenomic DNA using PCR. Prevalence of calves positive for BRD pathogens differed among groups and time-points but P. multocida was the most prevalent (61% of calves positive, at least, at one timepoint), followed by M. haemolytica (48%) and H. somni (26%). Most M. haemolytica were susceptible to all antimicrobials (88.6%; n = 70). For P. multocida, the dominant resistance phenotype was against oxytetracycline and neomycin (35.8%). Resistant P. multocida isolates were mainly detected in group C at T3 and had the same PFGE profile. For H. somni, the dominant resistance phenotype was against neomycin (63.3%) and was only observed at T3. The abundance of tet(W) did not change significantly over time (P > 0.05). Abundances of tet(H) and sul2 only increased for group C at T3 (P < 0.05). Overall, this study showed that resistance in the respiratory microbiota of beef calves can increase from calf-ranch to feedlot however, the results can vary by calf-ranch and feedlot.
Collapse
Affiliation(s)
- Yongmei Guo
- Agriculture and Agri-Food Canada, Lethbridge, AB, Canada; Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Christopher McMullen
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Edouard Timsit
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada; Simpson Ranch Chair in Beef Cattle Health and Wellness, University of Calgary, Calgary, AB, Canada
| | | | - Karin Orsel
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Frank van der Meer
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Sumei Yan
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | | |
Collapse
|
30
|
Klima CL, Holman DB, Ralston BJ, Stanford K, Zaheer R, Alexander TW, McAllister TA. Lower Respiratory Tract Microbiome and Resistome of Bovine Respiratory Disease Mortalities. MICROBIAL ECOLOGY 2019; 78:446-456. [PMID: 30918994 DOI: 10.1007/s00248-019-01361-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Bovine respiratory disease (BRD) continues to be a serious health problem in beef cattle production. A multifactorial condition, BRD encompasses several types of pneumonia that are associated with multiple viral and bacterial agents. Comprehensive identification of microbes associated with BRD fatalities could enhance our understanding of the range of pathogens that contribute to the disease and identify new therapeutic targets. This study used metagenomic analysis to describe the lower respiratory tract microbiome and resistome of 15 feedlot cattle BRD and 3 non-BRD mortalities along with any affiliated integrative and conjugative elements (ICEs). Known bacterial pathogens associated with BRD, including Histophilus somni, Mannheimia haemolytica, and Mycoplasma bovis, were relatively abundant (> 5%) in most, but not all samples. Other relatively abundant genera (> 1%) included Acinetobacter, Bacillus, Bacteroides, Clostridium, Enterococcus, and Pseudomonas. Antimicrobial resistance genes (ARGs) comprised up to 0.5% of sequences and many of these genes were associated with ICEs previously described within the Pasteurellaceae family. A total of 20 putative ICEs were detected among 16 samples. These results document the wide diversity of microorganisms in the lower respiratory tract of cattle that have succumbed to BRD. The data also strongly suggest that antimicrobial-resistant Pasteurellaceae strains are prevalent in BRD cases in Alberta and that the resistance observed is associated with ICEs. The presence of ICEs harboring a wide array of ARGs holds significant consequence for the effectiveness of drug therapies for the control of BRD in beef cattle.
Collapse
Affiliation(s)
- Cassidy L Klima
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Devin B Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | | | - Kim Stanford
- Lethbridge Research Centre, Alberta Agriculture and Forestry, Lethbridge, Alberta, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Trevor W Alexander
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada.
| |
Collapse
|
31
|
Komatsu T, Inaba N, Watando E, Sugie K, Kimura K, Katsuda K, Shibahara T. Pyelonephritis caused by Mannheimia varigena in a Holstein calf. J Vet Med Sci 2019; 81:1113-1116. [PMID: 31257235 PMCID: PMC6715917 DOI: 10.1292/jvms.19-0211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A 7-day-old calf died following development of mild respiratory symptoms. Postmortem
examination revealed the kidneys were inflamed, and Gram-negative bacteria was detected in
the kidneys, supporting the diagnosis of suppurative pyelonephritis. Mannheimia
varigena antigen was found in the lesions and the cytoplasm of macrophages and
neutrophils in the renal cortex. The Gram-negative bacilli from the kidney were identified
as M. varigena by sequencing the 16S rDNA. Although M.
varigena is known to cause bovine respiratory disease syndrome, shipping fever,
and meningitis, it was unknown that it could also cause suppurative pyelonephritis. Our
study provides the first evidence of suppurative pyelonephritis caused by M.
varigena in cattle and information that would improve our understanding,
diagnosis, and treatment for M. varigena infections.
Collapse
Affiliation(s)
- Tetsuya Komatsu
- Aichi Prefectural Chuo Livestock Hygiene Service Center, 1-306 Jizono, Miaicho, Okazaki, Aichi 444-0805, Japan
| | - Nanami Inaba
- Aichi Prefectural Chuo Livestock Hygiene Service Center, 1-306 Jizono, Miaicho, Okazaki, Aichi 444-0805, Japan
| | - Eri Watando
- Aichi Prefectural Chuo Livestock Hygiene Service Center, 1-306 Jizono, Miaicho, Okazaki, Aichi 444-0805, Japan
| | - Kennosuke Sugie
- Aichi Prefectural Chuo Livestock Hygiene Service Center, 1-306 Jizono, Miaicho, Okazaki, Aichi 444-0805, Japan
| | - Kumiko Kimura
- Division of Pathology and Pathophysiology, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Ken Katsuda
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Tomoyuki Shibahara
- Division of Pathology and Pathophysiology, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.,Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
32
|
Lim A, Naidenov B, Bates H, Willyerd K, Snider T, Couger MB, Chen C, Ramachandran A. Nanopore ultra-long read sequencing technology for antimicrobial resistance detection in Mannheimia haemolytica. J Microbiol Methods 2019; 159:138-147. [PMID: 30849421 DOI: 10.1016/j.mimet.2019.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 02/02/2023]
Abstract
Disruptive innovations in long-range, cost-effective direct template nucleic acid sequencing are transforming clinical and diagnostic medicine. A multidrug resistant strain and a pan-susceptible strain of Mannheimia haemolytica, isolated from pneumonic bovine lung samples, were sequenced at 146× and 111× coverage, respectively with Oxford Nanopore Technologies MinION. De novo assembly produced a complete genome for the non-resistant strain and a nearly complete assembly for the drug resistant strain. Functional annotation using RAST (Rapid Annotations using Subsystems Technology), CARD (Comprehensive Antibiotic Resistance Database) and ResFinder databases identified genes conferring resistance to different classes of antibiotics including β-lactams, tetracyclines, lincosamides, phenicols, aminoglycosides, sulfonamides and macrolides. Resistance phenotypes of the M. haemolytica strains were determined by minimum inhibitory concentration (MIC) of the antibiotics. Sequencing with a highly portable MinION device corresponded to MIC assays with most of the antimicrobial resistant determinants being identified with as few as 5437 reads, except for the genes responsible for resistance to Fluoroquinolones. The resulting quality assemblies and AMR gene annotation highlight the efficiency of ultra-long read, whole-genome sequencing (WGS) as a valuable tool in diagnostic veterinary medicine.
Collapse
Affiliation(s)
- Alexander Lim
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, United States
| | - Bryan Naidenov
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, United States
| | - Haley Bates
- Oklahoma Animal Disease Diagnostic Laboratory, Center for Veterinary Health Sciences, 1950 W. Farm Road, Stillwater, OK 74078, United States
| | - Karyn Willyerd
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, United States
| | - Timothy Snider
- Oklahoma Animal Disease Diagnostic Laboratory, Center for Veterinary Health Sciences, 1950 W. Farm Road, Stillwater, OK 74078, United States
| | - Matthew Brian Couger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK 74078, United States
| | - Charles Chen
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, United States.
| | - Akhilesh Ramachandran
- Oklahoma Animal Disease Diagnostic Laboratory, Center for Veterinary Health Sciences, 1950 W. Farm Road, Stillwater, OK 74078, United States.
| |
Collapse
|
33
|
Whole-Genome Sequence of Multidrug-Resistant Bibersteinia trehalosi Strain OADDL-BT1. Microbiol Resour Announc 2019; 8:MRA01690-18. [PMID: 30746527 PMCID: PMC6368662 DOI: 10.1128/mra.01690-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/14/2019] [Indexed: 11/24/2022] Open
Abstract
The genome of a multidrug-resistant strain of Bibersteinia trehalosi isolated from a calf with chronic pneumonia is presented. The draft genome sequences have been deposited at DDBJ/ENA/GenBank. The genome of a multidrug-resistant strain of Bibersteinia trehalosi isolated from a calf with chronic pneumonia is presented. The draft genome sequences have been deposited at DDBJ/ENA/GenBank.
Collapse
|
34
|
Abstract
Members of the highly heterogeneous family Pasteurellaceae cause a wide variety of diseases in humans and animals. Antimicrobial agents are the most powerful tools to control such infections. However, the acquisition of resistance genes, as well as the development of resistance-mediating mutations, significantly reduces the efficacy of the antimicrobial agents. This article gives a brief description of the role of selected members of the family Pasteurellaceae in animal infections and of the most recent data on the susceptibility status of such members. Moreover, a review of the current knowledge of the genetic basis of resistance to antimicrobial agents is included, with particular reference to resistance to tetracyclines, β-lactam antibiotics, aminoglycosides/aminocyclitols, folate pathway inhibitors, macrolides, lincosamides, phenicols, and quinolones. This article focusses on the genera of veterinary importance for which sufficient data on antimicrobial susceptibility and the detection of resistance genes are currently available (Pasteurella, Mannheimia, Actinobacillus, Haemophilus, and Histophilus). Additionally, the role of plasmids, transposons, and integrative and conjugative elements in the spread of the resistance genes within and beyond the aforementioned genera is highlighted to provide insight into horizontal dissemination, coselection, and persistence of antimicrobial resistance genes. The article discusses the acquisition of diverse resistance genes by the selected Pasteurellaceae members from other Gram-negative or maybe even Gram-positive bacteria. Although the susceptibility status of these members still looks rather favorable, monitoring of their antimicrobial susceptibility is required for early detection of changes in the susceptibility status and the newly acquired/developed resistance mechanisms.
Collapse
|
35
|
Loy JD, Leger L, Workman AM, Clawson ML, Bulut E, Wang B. Development of a multiplex real-time PCR assay using two thermocycling platforms for detection of major bacterial pathogens associated with bovine respiratory disease complex from clinical samples. J Vet Diagn Invest 2018; 30:837-847. [PMID: 30239324 DOI: 10.1177/1040638718800170] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bovine respiratory disease complex (BRDC) is one of the most significant diseases of cattle. Bacterial pathogens involved in BRDC include Mannheimia haemolytica, Mycoplasma bovis, Histophilus somni, and Pasteurella multocida. We developed and evaluated a multiplexed real-time hydrolysis probe (rtPCR) assay using block-based Peltier and rotary-based thermocycling on lung tissue, nasal swabs, and deep nasopharyngeal swabs. The rtPCR results were compared to culture or a gel-based M. bovis PCR using statistical analysis to determine optimum quantification cycle (Cq) cutoffs to maximize agreement. The limits of detection were 1.2-12 CFU/reaction for each pathogen. M. haemolytica was the most prevalent organism detected by rtPCR, and was most frequently found with P. multocida. The rtPCR assay enabled enhanced levels of detection over culture for all pathogens on both thermocycling platforms. The rotary-based thermocycler had significantly lower Cq cutoffs (35.2 vs. 39.7), which maximized agreement with gold standard culture or gel-based PCR results following receiver operating characteristic analysis to maximize sensitivity (Se) and specificity (Sp). However, overall assay Se and Sp were similar on both platforms (80.5% Se, 88.8% Sp vs. 80.1% Se, 88.3% Sp). Implementation of these tests could enhance the detection of these pathogens, and with high-throughput workflows could reduce assay time and provide more rapid results. The assays may be especially valuable in identifying coinfections, given that many more antemortem samples tested in our study were positive for 2 or more pathogens by rtPCR ( n = 125) than were detected using culture alone ( n = 25).
Collapse
Affiliation(s)
- John D Loy
- School of Veterinary Medicine and Biomedical Sciences (Loy, Leger), University of Nebraska-Lincoln, Lincoln, NE.,Department of Food Science and Technology (Bulut, Wang), University of Nebraska-Lincoln, Lincoln, NE.,U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE (Workman, Clawson)
| | - Laura Leger
- School of Veterinary Medicine and Biomedical Sciences (Loy, Leger), University of Nebraska-Lincoln, Lincoln, NE.,Department of Food Science and Technology (Bulut, Wang), University of Nebraska-Lincoln, Lincoln, NE.,U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE (Workman, Clawson)
| | - Aspen M Workman
- School of Veterinary Medicine and Biomedical Sciences (Loy, Leger), University of Nebraska-Lincoln, Lincoln, NE.,Department of Food Science and Technology (Bulut, Wang), University of Nebraska-Lincoln, Lincoln, NE.,U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE (Workman, Clawson)
| | - Michael L Clawson
- School of Veterinary Medicine and Biomedical Sciences (Loy, Leger), University of Nebraska-Lincoln, Lincoln, NE.,Department of Food Science and Technology (Bulut, Wang), University of Nebraska-Lincoln, Lincoln, NE.,U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE (Workman, Clawson)
| | - Ece Bulut
- School of Veterinary Medicine and Biomedical Sciences (Loy, Leger), University of Nebraska-Lincoln, Lincoln, NE.,Department of Food Science and Technology (Bulut, Wang), University of Nebraska-Lincoln, Lincoln, NE.,U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE (Workman, Clawson)
| | - Bing Wang
- School of Veterinary Medicine and Biomedical Sciences (Loy, Leger), University of Nebraska-Lincoln, Lincoln, NE.,Department of Food Science and Technology (Bulut, Wang), University of Nebraska-Lincoln, Lincoln, NE.,U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE (Workman, Clawson)
| |
Collapse
|
36
|
Closed Genome Sequences and Antibiograms of 16 Pasteurella multocida Isolates from Bovine Respiratory Disease Complex Cases and Apparently Healthy Controls. Microbiol Resour Announc 2018; 7:MRA00976-18. [PMID: 30533636 PMCID: PMC6256659 DOI: 10.1128/mra.00976-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/22/2018] [Indexed: 11/20/2022] Open
Abstract
Pasteurella multocida is an animal-associated Gram-negative member of the Pasteurellaceae family. It is an opportunistic pathogen and is one of the principal bacterial species contributing to bovine respiratory disease complex (BRDC) in feedlot cattle. Pasteurella multocida is an animal-associated Gram-negative member of the Pasteurellaceae family. It is an opportunistic pathogen and is one of the principal bacterial species contributing to bovine respiratory disease complex (BRDC) in feedlot cattle. We present 16 closed genome sequences and antibiograms of isolates cultured from calves exhibiting clinical signs of BRDC and from control calves not showing signs of BRDC.
Collapse
|
37
|
Obi CC, Vayla S, de Gannes V, Berres ME, Walker J, Pavelec D, Hyman J, Hickey WJ. The Integrative Conjugative Element clc (ICEclc) of Pseudomonas aeruginosa JB2. Front Microbiol 2018; 9:1532. [PMID: 30050515 PMCID: PMC6050381 DOI: 10.3389/fmicb.2018.01532] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022] Open
Abstract
Integrative conjugative elements (ICE) are a diverse group of chromosomally integrated, self-transmissible mobile genetic elements (MGE) that are active in shaping the functions of bacteria and bacterial communities. Each type of ICE carries a characteristic set of core genes encoding functions essential for maintenance and self-transmission, and cargo genes that endow on hosts phenotypes beneficial for niche adaptation. An important area to which ICE can contribute beneficial functions is the biodegradation of xenobiotic compounds. In the biodegradation realm, the best-characterized ICE is ICEclc, which carries cargo genes encoding for ortho-cleavage of chlorocatechols (clc genes) and aminophenol metabolism (amn genes). The element was originally identified in the 3-chlorobenzoate-degrader Pseudomonas knackmussii B13, and the closest relative is a nearly identical element in Burkholderia xenovorans LB400 (designated ICEclc-B13 and ICEclc-LB400, respectively). In the present report, genome sequencing of the o-chlorobenzoate degrader Pseudomonas aeruginosa JB2 was used to identify a new member of the ICEclc family, ICEclc-JB2. The cargo of ICEclc-JB2 differs from that of ICEclc-B13 and ICEclc-LB400 in consisting of a unique combination of genes that encode for the utilization of o-halobenzoates and o-hydroxybenzoate as growth substrates (ohb genes and hyb genes, respectively) and which are duplicated in a tandem repeat. Also, ICEclc-JB2 lacks an operon of regulatory genes (tciR-marR-mfsR) that is present in the other two ICEclc, and which controls excision from the host. Thus, the mechanisms regulating intracellular behavior of ICEclc-JB2 may differ from that of its close relatives. The entire tandem repeat in ICEclc-JB2 can excise independently from the element in a process apparently involving transposases/insertion sequence associated with the repeats. Excision of the repeats removes important niche adaptation genes from ICEclc-JB2, rendering it less beneficial to the host. However, the reduced version of ICEclc-JB2 could now acquire new genes that might be beneficial to a future host and, consequently, to the survival of ICEclc-JB2. Collectively, the present identification and characterization of ICEclc-JB2 provides insights into roles of MGE in bacterial niche adaptation and the evolution of catabolic pathways for biodegradation of xenobiotic compounds.
Collapse
Affiliation(s)
- Chioma C Obi
- Department of Biological Sciences, Bells University of Technology, Ota, Nigeria
| | - Shivangi Vayla
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Vidya de Gannes
- Department of Food Production, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Mark E Berres
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Jason Walker
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Derek Pavelec
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Joshua Hyman
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, United States
| | - William J Hickey
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
38
|
Beker M, Rose S, Lykkebo CA, Douthwaite S. Integrative and Conjugative Elements (ICEs) in Pasteurellaceae Species and Their Detection by Multiplex PCR. Front Microbiol 2018; 9:1329. [PMID: 29997583 PMCID: PMC6028734 DOI: 10.3389/fmicb.2018.01329] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/30/2018] [Indexed: 11/13/2022] Open
Abstract
Strains of the Pasteurellaceae bacteria Pasteurella multocida and Mannheimia haemolytica are major etiological agents of bovine respiratory disease (BRD). Treatment of BRD with antimicrobials is becoming more challenging due to the increasing occurrence of resistance in infecting strains. In Pasteurellaceae strains exhibiting resistance to multiple antimicrobials including aminoglycosides, beta-lactams, macrolides and sulfonamides, the resistance determinants are often chromosomally encoded within integrative and conjugative elements (ICEs). To gain a more comprehensive picture of ICE structures, we sequenced the genomes of six strains of P. multocida and four strains of M. haemolytica; all strains were independent isolates and eight of them were multiple-resistant. ICE sequences varied in size from 49 to 79 kb, and were comprised of an array of conserved genes within a core region and varieties of resistance genes within accessory regions. These latter regions mainly account for the variation in the overall ICE sizes. From the sequence data, we developed a multiplex PCR assay targeting four conserved core genes required for integration and maintenance of ICE structures. Application of this assay on 75 isolates of P. multocida and M. haemolytica reveals how the presence and structures of ICEs are related to their antibiotic resistance phenotypes. The assay is also applicable to other members of the Pasteurellaceae family including Histophilus somni and indicates how clustering and dissemination of the resistance genes came about.
Collapse
Affiliation(s)
- Michal Beker
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Simon Rose
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Claus A Lykkebo
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Stephen Douthwaite
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
39
|
Woolums AR, Karisch BB, Frye JG, Epperson W, Smith DR, Blanton J, Austin F, Kaplan R, Hiott L, Woodley T, Gupta SK, Jackson CR, McClelland M. Multidrug resistant Mannheimia haemolytica isolated from high-risk beef stocker cattle after antimicrobial metaphylaxis and treatment for bovine respiratory disease. Vet Microbiol 2018; 221:143-152. [PMID: 29981701 DOI: 10.1016/j.vetmic.2018.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 05/16/2018] [Accepted: 06/07/2018] [Indexed: 10/14/2022]
Abstract
Antimicrobial resistance (AMR) in bacterial respiratory pathogens in high-risk stocker cattle has been poorly characterized. The objective of this study was to describe the prevalence of multidrug resistant (MDR; resistance to > 3 antimicrobial classes) respiratory pathogens in 50 conventionally managed stocker cattle over 21 days after arrival. Cattle received tildipirosin metaphylaxis on day 0 and were eligible to receive up to 3 additional antimicrobials for bovine respiratory disease (BRD): florfenicol, ceftiofur and enrofloxacin. Nasopharyngeal swabs were collected on days 0, 7, 14, and 21 for bacterial culture and antimicrobial susceptibility testing using disc diffusion and broth microdilution. Mannheimia haemolytica was isolated from 5 of 48, 27 of 50, 44 of 50, and 40 of 50 cattle on days 0, 7, 14, and 21, respectively. One of 5, 27 of 27, 43 of 44, and 40 of 40 M. haemolytica were MDR on days 0, 7, 14, and 21, respectively. Pasteurella multocida was isolated from 6 of 48 cattle on day 0 and none were MDR; no other pathogens were isolated. Twenty-four cattle required at least one BRD treatment; M. haemolytica was isolated before treatment from 13 of 24 cattle; all were MDR. One hundred-eighteen M. haemolytica isolates were subjected to pulsed-field gel electrophoresis (PFGE); multiple genotypes were identified. Whole genome sequencing of 33 isolates revealed 14 known AMR genes. Multidrug resistant M. haemolytica can be highly prevalent and genetically diverse in stocker cattle; additional research is necessary to determine factors that influence prevalence and the impact on cattle health.
Collapse
Affiliation(s)
- Amelia R Woolums
- Department of Veterinary Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA.
| | - Brandi B Karisch
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Jonathan G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, USA
| | - William Epperson
- Department of Veterinary Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA
| | - David R Smith
- Department of Veterinary Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA
| | - John Blanton
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Frank Austin
- Department of Veterinary Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Ray Kaplan
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Lari Hiott
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, USA
| | - Tiffanie Woodley
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, USA
| | - Sushim K Gupta
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, USA
| | - Charlene R Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, and Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
40
|
Injectable antimicrobials in commercial feedlot cattle and their effect on the nasopharyngeal microbiota and antimicrobial resistance. Vet Microbiol 2017; 214:140-147. [PMID: 29408026 DOI: 10.1016/j.vetmic.2017.12.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 01/08/2023]
Abstract
Beef cattle in North America that are deemed to be at high risk of developing bovine respiratory disease (BRD) are frequently administered a metaphylactic antibiotic injection to control the disease. Cattle may also receive in-feed antimicrobials to prevent specific diseases and ionophores to improve growth and feed efficiency. Presently, attempts to evaluate the effects that these medications have on antibiotic resistance in the bovine nasopharyngeal microbiota have been focused on culturable bacteria that are associated with BRD. Therefore, we assessed the effects of injectable antibiotics on the nasopharyngeal microbiota of commercial feedlot cattle in Alberta, Canada, through the first 60 d on feed. Although all cattle in the study were also receiving in-feed chlortetracycline and monensin, the administration of a single injection of either oxytetracycline or tulathromycin at feedlot placement altered the nasopharyngeal microbiota in comparison with the cattle receiving only in-feed antibiotics. Oxytetracycline significantly (P < 0.05) reduced the relative abundance of Mannheimia spp. from feedlot entry to exit (≥60 d) and both oxytetracycline and tulathromycin treated cattle had a significantly lower relative abundance of Mycoplasma spp. at feedlot exit compared with the in-feed antibiotic only group. The proportion of the tetracycline resistance gene tet(H) was significantly increased following oxytetracycline injection (P < 0.05). Oxytetracycline also reduced both the number of OTUs and the Shannon diversity index in the nasopharyngeal microbiota (P < 0.05). These results demonstrate that in feedlot cattle receiving subtherapeutic in-feed antimicrobials, the administration of a single injection of either oxytetracycline or tulathromycin resulted in measurable changes to the nasopharyngeal microbiota during the first 60 d following feedlot placement.
Collapse
|
41
|
Closed Genome Sequences of Seven Histophilus somni Isolates from Beef Calves with Bovine Respiratory Disease Complex. GENOME ANNOUNCEMENTS 2017; 5:5/40/e01099-17. [PMID: 28983006 PMCID: PMC5629063 DOI: 10.1128/genomea.01099-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Histophilus somni is a fastidious Gram-negative opportunistic pathogenic Pasteurellaceae that affects multiple organ systems and is one of the principal bacterial species contributing to bovine respiratory disease complex (BRDC) in feed yard cattle. Here, we present seven closed genome sequences isolated from three beef calves showing sign of BRDC.
Collapse
|
42
|
Whole-Genome Sequencing and Concordance Between Antimicrobial Susceptibility Genotypes and Phenotypes of Bacterial Isolates Associated with Bovine Respiratory Disease. G3-GENES GENOMES GENETICS 2017; 7:3059-3071. [PMID: 28739600 PMCID: PMC5592931 DOI: 10.1534/g3.117.1137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extended laboratory culture and antimicrobial susceptibility testing timelines hinder rapid species identification and susceptibility profiling of bacterial pathogens associated with bovine respiratory disease, the most prevalent cause of cattle mortality in the United States. Whole-genome sequencing offers a culture-independent alternative to current bacterial identification methods, but requires a library of bacterial reference genomes for comparison. To contribute new bacterial genome assemblies and evaluate genetic diversity and variation in antimicrobial resistance genotypes, whole-genome sequencing was performed on bovine respiratory disease–associated bacterial isolates (Histophilus somni, Mycoplasma bovis, Mannheimia haemolytica, and Pasteurella multocida) from dairy and beef cattle. One hundred genomically distinct assemblies were added to the NCBI database, doubling the available genomic sequences for these four species. Computer-based methods identified 11 predicted antimicrobial resistance genes in three species, with none being detected in M. bovis. While computer-based analysis can identify antibiotic resistance genes within whole-genome sequences (genotype), it may not predict the actual antimicrobial resistance observed in a living organism (phenotype). Antimicrobial susceptibility testing on 64 H. somni, M. haemolytica, and P. multocida isolates had an overall concordance rate between genotype and phenotypic resistance to the associated class of antimicrobials of 72.7% (P < 0.001), showing substantial discordance. Concordance rates varied greatly among different antimicrobial, antibiotic resistance gene, and bacterial species combinations. This suggests that antimicrobial susceptibility phenotypes are needed to complement genomically predicted antibiotic resistance gene genotypes to better understand how the presence of antibiotic resistance genes within a given bacterial species could potentially impact optimal bovine respiratory disease treatment and morbidity/mortality outcomes.
Collapse
|
43
|
Klima CL, Zaheer R, Briggs RE, McAllister TA. A multiplex PCR assay for molecular capsular serotyping of Mannheimia haemolytica serotypes 1, 2, and 6. J Microbiol Methods 2017; 139:155-160. [DOI: 10.1016/j.mimet.2017.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
|
44
|
Amat S, Subramanian S, Timsit E, Alexander TW. Probiotic bacteria inhibit the bovine respiratory pathogen Mannheimia haemolytica serotype 1 in vitro. Lett Appl Microbiol 2017; 64:343-349. [PMID: 28178767 DOI: 10.1111/lam.12723] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/19/2017] [Accepted: 02/03/2017] [Indexed: 01/03/2023]
Abstract
This study evaluated the potential of probiotic bacteria to inhibit growth and cell adhesion of the bovine respiratory pathogen Mannheimia haemoltyica serotype 1. The inhibitory effects of nine probiotic strains (Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus helveticus, Lactobacillus plantarum, Lactobacillus rhamnosus, Lactococcus lactis, Streptococcus thermophilus and two Paenibacillus polymyxa strains) against M. haemolytica were evaluated using a spot-on-lawn method. Probiotic strains were then tested for their adherence to bovine bronchial epithelial (BBE) cells and the ability to displace and compete against M. haemolytica on BBE. Except for S. thermophilus, all probiotic strains inhibited the growth of M. haemolytica, with zones of inhibition ranging between 12 and 19 mm. Lactobacillus strains and Lactococcus lactis displayed greater (P < 0·05) BBE adhesion compared with M. heamolytica (8·3%) and other probiotics (<2·2%). Strains of P. polymyxa and L. acidophilus caused the greatest reduction in M. haemolytica adherence, through both displacement and competition, compared with other probiotics. The results of this study suggest that probiotics may have the potential to colonize the bovine respiratory tract, and exert antagonistic effects against M. haemolytica serotype 1. SIGNIFICANCE AND IMPACT OF THE STUDY A common method to control bovine respiratory disease (BRD) in feedlots is through mass medication with antibiotics upon cattle entry (i.e. metaphylaxis). Increasingly, antimicrobial resistance in BRD bacterial pathogens has been observed in feedlots, which may have important implications for cattle health. In this study, probiotic strains were shown to adhere to bovine respiratory cells and inhibit the BRD pathogen M. haemolytica serotype 1 through competition and displacement. Probiotics may therefore offer a mitigation strategy to reduce BRD bacterial pathogens, in place of metaphylactic antimicrobials.
Collapse
Affiliation(s)
- S Amat
- Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - S Subramanian
- Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - E Timsit
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - T W Alexander
- Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
45
|
Loy JD, Clawson ML. Rapid typing of Mannheimia haemolytica major genotypes 1 and 2 using MALDI-TOF mass spectrometry. J Microbiol Methods 2017; 136:30-33. [PMID: 28267571 DOI: 10.1016/j.mimet.2017.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
Abstract
Genotype 2M. haemolytica predominantly associate over genotype 1 with the lungs of cattle with respiratory disease and ICEs containing antimicrobial resistance genes. Distinct protein masses were detected by MALDI-TOF MS between genotype 1 and 2 strains. MALDI-TOF MS could rapidly differentiate genotype 2 strains in veterinary diagnostic laboratories.
Collapse
Affiliation(s)
- John Dustin Loy
- University of Nebraska-Lincoln, Institute of Agriculture and Natural Resources, School of Veterinary Medicine and Biomedical Sciences, Lincoln, NE, USA.
| | - Michael L Clawson
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA.
| |
Collapse
|
46
|
Capik SF, White BJ, Lubbers BV, Apley MD, DeDonder KD, Larson RL, Harhay GP, Chitko-McKown CG, Harhay DM, Kalbfleisch TS, Schuller G, Clawson ML. Comparison of the diagnostic performance of bacterial culture of nasopharyngeal swab and bronchoalveolar lavage fluid samples obtained from calves with bovine respiratory disease. Am J Vet Res 2017; 78:350-358. [DOI: 10.2460/ajvr.78.3.350] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|