1
|
Nie Q, Sun C, Liu S, Gao X. Exploring Bioactive Fungal RiPPs: Advances, Challenges, and Future Prospects. Biochemistry 2024. [PMID: 39499622 DOI: 10.1021/acs.biochem.4c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Fungal ribosomally synthesized and post-translationally modified peptides (RiPPs) are a vital class of natural products known for their biological activities including anticancer, antitubulin, antinematode, and immunosuppressant properties. These bioactive fungal RiPPs play key roles in chemical ecology and have a significant therapeutic potential. Their structural diversity, which arises from intricate post-translational modifications of precursor peptides, is particularly remarkable. Despite their biological and ecological importance, the discovery of fungal RiPPs has been historically challenging and only a limited number have been identified. To date, known fungal RiPPs are primarily grouped into three groups: cycloamanides and borosins from basidiomycetes and dikaritins from ascomycetes. Recent advancements in bioinformatics have revealed the vast untapped potential of fungi to produce RiPPs, offering new opportunities for their discovery. This review highlights recent progress in fungal RiPP biosynthesis and genome-guided discovery strategies. We propose that combining the knowledge of fungal RiPP biosynthetic pathways with advanced gene-editing technologies and bioinformatic tools will significantly accelerate the discovery of novel bioactive fungal RiPPs.
Collapse
Affiliation(s)
- Qiuyue Nie
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chunxiao Sun
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Shuai Liu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Stahr MN, Parada-Rojas C, Childs KL, Alfenas RF, Fernandes FM, Avila K, Quesada-Ocampo LM. Long-Read Sequencing Genome Assembly of Ceratocystis fimbriata Enables Development of Molecular Diagnostics for Sweetpotato Black Rot. PHYTOPATHOLOGY 2024; 114:1411-1420. [PMID: 38264989 DOI: 10.1094/phyto-09-23-0341-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Ceratocystis fimbriata is a destructive fungal pathogen of sweetpotato (Ipomoea batatas) that leads to losses at all stages of sweetpotato production. Accurate detection of C. fimbriata would allow for more efficient deployment of management tactics in sweetpotato production. To develop a diagnostic assay, a hybrid genome assembly of C. fimbriata isolate AS236 was generated. The resulting 31.7-MB assembly was near-chromosome level, with 18 contigs, 6,481 predicted genes, and a BUSCO completion score of 98.4% when compared with the fungus-specific lineage database. Additional Illumina DNA reads from C. manginecans, C. platani, and a second C. fimbriata isolate (C1421) were then mapped to the assembled genome using BOWTIE2 and counted using HTSeq, which identified 148 genes present only within C. fimbriata as molecular diagnostic candidates; 6 single-copy and 35 highly multi-copy (>40 BLAST hits), as determined through a self-BLAST-P alignment. Primers for PCR were designed in the 200-bp flanking region of the first exon for each candidate, and the candidates were validated against a diverse DNA panel containing Ceratocystis species, sweetpotato pathogens, and plants. After validation, two diagnostic candidates amplified only C. fimbriata DNA and were considered to be highly specific to the species. These genetic markers will serve as valuable diagnostic tools with multiple applications including the detection of C. fimbriata in seed, soil, and wash water in sweetpotato production.
Collapse
Affiliation(s)
- M N Stahr
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695-7825, U.S.A
| | - C Parada-Rojas
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695-7825, U.S.A
| | - K L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, U.S.A
| | - R F Alfenas
- Department of Plant Pathology, Universidade Federal de Viçosa, Minas Gerais State, 36570-900, Brazil
| | - F M Fernandes
- Department of Plant Pathology, Universidade Federal de Viçosa, Minas Gerais State, 36570-900, Brazil
| | - K Avila
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695-7825, U.S.A
| | - L M Quesada-Ocampo
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695-7825, U.S.A
| |
Collapse
|
3
|
Tong Z, Xie X, Ge H, Jiao R, Wang T, Wang X, Zhuang W, Hu G, Tan R. Disulfide bridge-targeted metabolome mining unravels an antiparkinsonian peptide. Acta Pharm Sin B 2024; 14:881-892. [PMID: 38322339 PMCID: PMC10840396 DOI: 10.1016/j.apsb.2023.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 02/08/2024] Open
Abstract
Peptides are a particular molecule class with inherent attributes of some small-molecule drugs and macromolecular biologics, thereby inspiring continuous searches for peptides with therapeutic and/or agrochemical potentials. However, the success rate is decreasing, presumably because many interesting but less-abundant peptides are so scarce or labile that they are likely 'overlooked' during the characterization effort. Here, we present the biochemical characterization and druggability improvement of an unprecedented minor fungal RiPP (ribosomally synthesized and post-translationally modified peptide), named acalitide, by taking the relevant advantages of metabolomics approach and disulfide-bridged substructure which is more frequently imprinted in the marketed peptide drug molecules. Acalitide is biosynthetically unique in the macrotricyclization via two disulfide bridges and a protease (AcaB)-catalyzed lactamization of AcaA, an unprecedented precursor peptide. Such a biosynthetic logic was successfully re-edited for its sample supply renewal to facilitate the identification of the in vitro and in vivo antiparkinsonian efficacy of acalitide which was further confirmed safe and rendered brain-targetable by the liposome encapsulation strategy. Taken together, the work updates the mining strategy and biosynthetic complexity of RiPPs to unravel an antiparkinsonian drug candidate valuable for combating Parkinson's disease that is globally prevailing in an alarming manner.
Collapse
Affiliation(s)
- Zhiwu Tong
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiahong Xie
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huiming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ruihua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tingting Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xincun Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenying Zhuang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Hu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Renxiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
4
|
Wang YW, McKeon MC, Elmore H, Hess J, Golan J, Gage H, Mao W, Harrow L, Gonçalves SC, Hull CM, Pringle A. Invasive Californian death caps develop mushrooms unisexually and bisexually. Nat Commun 2023; 14:6560. [PMID: 37875491 PMCID: PMC10598064 DOI: 10.1038/s41467-023-42317-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023] Open
Abstract
Canonical sexual reproduction among basidiomycete fungi involves the fusion of two haploid individuals of different mating types, resulting in a heterokaryotic mycelial body made up of genetically different nuclei. Using population genomics data and experiments, we discover mushrooms of the invasive and deadly Amanita phalloides can also be homokaryotic; evidence of sexual reproduction by single, unmated individuals. In California, genotypes of homokaryotic mushrooms are also found in heterokaryotic mushrooms, implying nuclei of homokaryotic mycelia are also involved in outcrossing. We find death cap mating is controlled by a single mating type locus, but the development of homokaryotic mushrooms appears to bypass mating type gene control. Ultimately, sporulation is enabled by nuclei able to reproduce alone as well as with others, and nuclei competent for both unisexuality and bisexuality have persisted in invaded habitats for at least 17 but potentially as long as 30 years. The diverse reproductive strategies of invasive death caps are likely facilitating its rapid spread, suggesting a profound similarity between plant, animal and fungal invasions.
Collapse
Affiliation(s)
- Yen-Wen Wang
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA.
| | - Megan C McKeon
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Jacob Golan
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| | - Hunter Gage
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - William Mao
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| | - Lynn Harrow
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Susana C Gonçalves
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Christina M Hull
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Anne Pringle
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
5
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
6
|
Drott MT, Park SC, Wang YW, Harrow L, Keller NP, Pringle A. Pangenomics of the death cap mushroom Amanita phalloides, and of Agaricales, reveals dynamic evolution of toxin genes in an invasive range. THE ISME JOURNAL 2023:10.1038/s41396-023-01432-x. [PMID: 37221394 DOI: 10.1038/s41396-023-01432-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/25/2023]
Abstract
The poisonous European mushroom Amanita phalloides (the "death cap") is invading California. Whether the death caps' toxic secondary metabolites are evolving as it invades is unknown. We developed a bioinformatic pipeline to identify the MSDIN genes underpinning toxicity and probed 88 death cap genomes from an invasive Californian population and from the European range, discovering a previously unsuspected diversity of MSDINs made up of both core and accessory elements. Each death cap individual possesses a unique suite of MSDINs, and toxin genes are significantly differentiated between Californian and European samples. MSDIN genes are maintained by strong natural selection, and chemical profiling confirms MSDIN genes are expressed and result in distinct phenotypes; our chemical profiling also identified a new MSDIN peptide. Toxin genes are physically clustered within genomes. We contextualize our discoveries by probing for MSDINs in genomes from across the order Agaricales, revealing MSDIN diversity originated in independent gene family expansions among genera. We also report the discovery of an MSDIN in an Amanita outside the "lethal Amanitas" clade. Finally, the identification of an MSDIN gene and its associated processing gene (POPB) in Clavaria fumosa suggest the origin of MSDINs is older than previously suspected. The dynamic evolution of MSDINs underscores their potential to mediate ecological interactions, implicating MSDINs in the ongoing invasion. Our data change the understanding of the evolutionary history of poisonous mushrooms, emphasizing striking parallels to convergently evolved animal toxins. Our pipeline provides a roadmap for exploring secondary metabolites in other basidiomycetes and will enable drug prospecting.
Collapse
Affiliation(s)
- Milton T Drott
- Department of Medical Microbiology and Immunology, Department of Bacteriology, University of Wisconsin, Madison, WI, USA.
- USDA-ARS Cereal Disease Laboratory, St. Paul, MN, USA.
| | - Sung Chul Park
- Department of Medical Microbiology and Immunology, Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Yen-Wen Wang
- Departments of Botany and Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Lynn Harrow
- Departments of Botany and Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, Department of Bacteriology, University of Wisconsin, Madison, WI, USA.
| | - Anne Pringle
- Departments of Botany and Bacteriology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
7
|
Zhang YZ, Yan YY, Li HJ, Fan YG, Xu F. Toxin screening of Pseudosperma umbrinellum (Agaricals, Basidiomycota): First report of phalloidin in Inocybaceae mushroom. Toxicon 2022; 217:155-161. [PMID: 35998714 DOI: 10.1016/j.toxicon.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Pseudosperma species are widely distributed worldwide. Many of them cause poisoning incidents every year, and the toxin responsible for poisoning is muscarine, which could stimulate the parasympathetic nervous system. This study established a method using multiwalled carbon nanotube purification and liquid chromatography-tandem mass spectrometry for the targeted screening of mushroom toxins (muscarine, isoxazole derivatives, tryptamine alkaloids, three amatoxins and three phallotoxins) from Pseudosperma umbrinellum, a common poisonous mushroom distributed in north and northwestern China. Surprisingly, in addition to muscarine, phalloidin was also detected in P. umbrinellum, and the contents were 3022.2 ± 604.4 to 4002.3 ± 804.6 mg/kg (k = 2; p = 95%) muscarine and 5.9 ± 1.2 to 9.3 ± 1.8 mg/kg (k = 2; p = 95%) phalloidin.
Collapse
Affiliation(s)
- Yi-Zhe Zhang
- National Institute of Occupational Health and Poison Control, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Ya-Ya Yan
- School of Public Health and Management, Ningxia Key Laboratory of Environmental Factors and Chronic Diseases Control, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hai-Jiao Li
- National Institute of Occupational Health and Poison Control, Chinese Centre for Disease Control and Prevention, Beijing, China.
| | - Yu-Guang Fan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Tropical Environment and Health Laboratory, School of Pharmacy, Hainan Medical University, Haikou, Hainan, China.
| | - Fei Xu
- School of Public Health and Management, Ningxia Key Laboratory of Environmental Factors and Chronic Diseases Control, Ningxia Medical University, Yinchuan, Ningxia, China; Physical and Chemical Department, Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, Ningxia, China.
| |
Collapse
|
8
|
He MQ, Wang MQ, Chen ZH, Deng WQ, Li TH, Vizzini A, Jeewon R, Hyde KD, Zhao RL. Potential benefits and harms: a review of poisonous mushrooms in the world. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Genes and evolutionary fates of the amanitin biosynthesis pathway in poisonous mushrooms. Proc Natl Acad Sci U S A 2022; 119:e2201113119. [PMID: 35533275 PMCID: PMC9171917 DOI: 10.1073/pnas.2201113119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Why do unrelated poisonous mushrooms (Amanita, Galerina, and Lepiota) make the same deadly toxin, α-amanitin? One of the most effective and fast strategies for organisms to acquire new abilities is through horizontal gene transfer (HGT). With the help of genome sequencing and the finding of two genes for the amanitin biosynthetic pathway, we demonstrate that the pathway distribution resulted from HGT probably through an unknown ancestral fungal donor. In Amanita mushrooms, the pathway evolved, through a series of gene manipulations, to produce very high levels of toxins, generating “the deadliest mushroom known to mankind.” The deadly toxin α-amanitin is a bicyclic octapeptide biosynthesized on ribosomes. A phylogenetically disjunct group of mushrooms in Agaricales (Amanita, Lepiota, and Galerina) synthesizes α-amanitin. This distribution of the toxin biosynthetic pathway is possibly related to the horizontal transfer of metabolic gene clusters among taxonomically unrelated mushrooms with overlapping habitats. Here, our work confirms that two biosynthetic genes, P450-29 and FMO1, are oxygenases important for amanitin biosynthesis. Phylogenetic and genetic analyses of these genes strongly support their origin through horizontal transfer, as is the case for the previously characterized biosynthetic genes MSDIN and POPB. Our analysis of multiple genomes showed that the evolution of the α-amanitin biosynthetic pathways in the poisonous agarics in the Amanita, Lepiota, and Galerina clades entailed distinct evolutionary pathways including gene family expansion, biosynthetic genes, and genomic rearrangements. Unrelated poisonous fungi produce the same deadly amanitin toxins using variations of the same pathway. Furthermore, the evolution of the amanitin biosynthetic pathway(s) in Amanita species generates a much wider range of toxic cyclic peptides. The results reported here expand our understanding of the genetics, diversity, and evolution of the toxin biosynthetic pathway in fungi.
Collapse
|
10
|
Kessler SC, Chooi YH. Out for a RiPP: challenges and advances in genome mining of ribosomal peptides from fungi. Nat Prod Rep 2022; 39:222-230. [PMID: 34581394 DOI: 10.1039/d1np00048a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Covering up to June 2021Ribosomally synthesized and post-translationally modified peptides (RiPPs) from fungi are an underexplored class of natural products, despite their propensity for diverse bioactivities and unique structural features. Surveys of fungal genomes for biosynthetic gene clusters encoding RiPPs have been limited in their scope due to our incomplete understanding of fungal RiPP biosynthesis. Through recent discoveries, along with earlier research, a clearer picture has been emerging of the biosynthetic principles that underpin fungal RiPP pathways. In this Highlight, we trace the approaches that have been used for discovering currently known fungal RiPPs and show that all of them can be assigned to one of three distinct families based on hallmarks of their biosynthesis, which are in turn imprinted on their corresponding gene clusters. We hope that our systematic exposition of fungal RiPP structural and gene cluster features will facilitate more comprehensive approaches to genome mining efforts in the future.
Collapse
Affiliation(s)
- Simon C Kessler
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
11
|
Wang YW, Hess J, Slot JC, Pringle A. De Novo Gene Birth, Horizontal Gene Transfer, and Gene Duplication as Sources of New Gene Families Associated with the Origin of Symbiosis in Amanita. Genome Biol Evol 2021; 12:2168-2182. [PMID: 32926145 PMCID: PMC7674699 DOI: 10.1093/gbe/evaa193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 12/24/2022] Open
Abstract
By introducing novel capacities and functions, new genes and gene families may play a crucial role in ecological transitions. Mechanisms generating new gene families include de novo gene birth, horizontal gene transfer, and neofunctionalization following a duplication event. The ectomycorrhizal (ECM) symbiosis is a ubiquitous mutualism and the association has evolved repeatedly and independently many times among the fungi, but the evolutionary dynamics enabling its emergence remain elusive. We developed a phylogenetic workflow to first understand if gene families unique to ECM Amanita fungi and absent from closely related asymbiotic species are functionally relevant to the symbiosis, and then to systematically infer their origins. We identified 109 gene families unique to ECM Amanita species. Genes belonging to unique gene families are under strong purifying selection and are upregulated during symbiosis, compared with genes of conserved or orphan gene families. The origins of seven of the unique gene families are strongly supported as either de novo gene birth (two gene families), horizontal gene transfer (four), or gene duplication (one). An additional 34 families appear new because of their selective retention within symbiotic species. Among the 109 unique gene families, the most upregulated gene in symbiotic cultures encodes a 1-aminocyclopropane-1-carboxylate deaminase, an enzyme capable of downregulating the synthesis of the plant hormone ethylene, a common negative regulator of plant-microbial mutualisms.
Collapse
Affiliation(s)
- Yen-Wen Wang
- Departments of Botany and Bacteriology, University of Wisconsin-Madison
| | - Jaqueline Hess
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jason C Slot
- Department of Plant Pathology, The Ohio State University
| | - Anne Pringle
- Departments of Botany and Bacteriology, University of Wisconsin-Madison
| |
Collapse
|
12
|
Lüli Y, Zhou S, Li X, Chen Z, Yang Z, Luo H. Differential Expression of Amanitin Biosynthetic Genes and Novel Cyclic Peptides in Amanita molliuscula. J Fungi (Basel) 2021; 7:384. [PMID: 34069263 PMCID: PMC8156247 DOI: 10.3390/jof7050384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
Amanita molliuscula is a basal species of lethal Amanita and intrigues the field because it does not produce discernable α-amanitin when inspected by High Performance Liquid Chromatography (HPLC), which sets it apart from all known amanitin-producing (lethal) Amanita species. In order to study the underlining genetic basis of the phenotype, we sequenced this species through PacBio and Illumina RNA-Seq platforms. In total, 17 genes of the "MSDIN" family (named after the first five amino acid residues of the precursor peptides) were found in the genome and 11 of them were expressed at the transcription level. The expression pattern was not even but in a differential fashion: two of the MSDINs were highly expressed (FPKM value > 100), while the majority were expressed at low levels (FPKM value < 1). Prolyl oligopeptidease B (POPB) is the key enzyme in the amanitin biosynthetic pathway, and high expression of this enzyme was also discovered (FPKM value > 100). The two MSDINs with highest transcription further translated into two novel cyclic peptides, the structure of which is distinctive from all known cyclic peptides. The result illustrates the correlation between the expression and the final peptide products. In contrast to previous HPLC result, the genome of A. molliuscula harbors α-amanitin genes (three copies), but the product was in trace amount indicated by MS. Overall, transcription of MSDINs encoding major toxins (α-amanitin, β-amanitin, phallacidin and phalloidin) were low, showing that these toxins were not actively synthesized at the stage. Collectively, our results indicate that the amanitin biosynthetic pathway is highly active at the mature fruiting body stage in A. molliuscula, and due to the differential expression of MSDIN genes, the pathway produces only a few cyclic peptides at the time.
Collapse
Affiliation(s)
- Yunjiao Lüli
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Y.L.); (S.Z.); (Z.Y.)
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengwen Zhou
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Y.L.); (S.Z.); (Z.Y.)
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Xuan Li
- Department of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650091, China;
| | - Zuohong Chen
- College of Life Science, Hunan Normal University, Changsha 410081, China;
| | - Zhuliang Yang
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Y.L.); (S.Z.); (Z.Y.)
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hong Luo
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Y.L.); (S.Z.); (Z.Y.)
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
13
|
Zhou S, Li X, Lüli Y, Li X, Chen ZH, Yuan P, Yang ZL, Li G, Luo H. Novel Cyclic Peptides from Lethal Amanita Mushrooms through a Genome-Guided Approach. J Fungi (Basel) 2021; 7:204. [PMID: 33799506 PMCID: PMC7998459 DOI: 10.3390/jof7030204] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022] Open
Abstract
Most species in the genus Amanita are ectomycorrhizal fungi comprising both edible and poisonous mushrooms. Some species produce potent cyclic peptide toxins, such as α-amanitin, which places them among the deadliest organisms known to mankind. These toxins and related cyclic peptides are encoded by genes of the "MSDIN" family (named after the first five amino acid residues of the precursor peptides), and it is largely unknown to what extent these genes are expressed in the basidiocarps. In the present study, Amanita rimosa and Amanita exitialis were sequenced through the PacBio and Illumina techniques. Together with our two previously sequenced genomes, Amanita subjunquillea and Amanita pallidorosea, in total, 46 previously unknown MSDIN genes were discovered. The expression of over 80% of the MSDIN genes was demonstrated in A. subjunquillea. Through a combination of genomics and mass spectrometry, 12 MSDIN genes were shown to produce novel cyclic peptides. To further confirm the results, three of the cyclic peptides were chemically synthesized. The tandem mass spectrometry (MS/MS) spectra of the natural and the synthetic peptides shared a majority of the fragment ions, demonstrating an identical structure between each peptide pair. Collectively, the results suggested that the genome-guided approach is reliable for identifying novel cyclic peptides in Amanita species and that there is a large peptide reservoir in these mushrooms.
Collapse
Affiliation(s)
- Shengwen Zhou
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; (S.Z.); (X.L.); (Y.L.); (P.Y.); (Z.L.Y.)
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xincan Li
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; (S.Z.); (X.L.); (Y.L.); (P.Y.); (Z.L.Y.)
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunjiao Lüli
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; (S.Z.); (X.L.); (Y.L.); (P.Y.); (Z.L.Y.)
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Li
- Department of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650091, Yunnan, China;
| | - Zuo H. Chen
- College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China;
| | - Pengcheng Yuan
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; (S.Z.); (X.L.); (Y.L.); (P.Y.); (Z.L.Y.)
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhu L. Yang
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; (S.Z.); (X.L.); (Y.L.); (P.Y.); (Z.L.Y.)
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Guohong Li
- School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China;
| | - Hong Luo
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; (S.Z.); (X.L.); (Y.L.); (P.Y.); (Z.L.Y.)
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| |
Collapse
|
14
|
Landry B, Whitton J, Bazzicalupo AL, Ceska O, Berbee ML. Phylogenetic analysis of the distribution of deadly amatoxins among the little brown mushrooms of the genus Galerina. PLoS One 2021; 16:e0246575. [PMID: 33566818 PMCID: PMC7875387 DOI: 10.1371/journal.pone.0246575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/22/2021] [Indexed: 12/04/2022] Open
Abstract
Some but not all of the species of ’little brown mushrooms’ in the genus Galerina contain deadly amatoxins at concentrations equaling those in the death cap, Amanita phalloides. However, Galerina’s ~300 species are notoriously difficult to identify by morphology, and the identity of toxin-containing specimens has not been verified with DNA barcode sequencing. This left open the question of which Galerina species contain toxins and which do not. We selected specimens for toxin analysis using a preliminary phylogeny of the fungal DNA barcode region, the ribosomal internal transcribed spacer (ITS) region. Using liquid chromatography/mass spectrometry, we analyzed amatoxins from 70 samples of Galerina and close relatives, collected in western British Columbia, Canada. To put the presence of toxins into a phylogenetic context, we included the 70 samples in maximum likelihood analyses of 438 taxa, using ITS, RNA polymerase II second largest subunit gene (RPB2), and nuclear large subunit ribosomal RNA (LSU) gene sequences. We sequenced barcode DNA from types where possible to aid with applications of names. We detected amatoxins only in the 24 samples of the G. marginata s.l. complex in the Naucoriopsis clade. We delimited 56 putative Galerina species using Automatic Barcode Gap Detection software. Phylogenetic analysis showed moderate to strong support for Galerina infrageneric clades Naucoriopsis, Galerina, Tubariopsis, and Sideroides. Mycenopsis appeared paraphyletic and included Gymnopilus. Amatoxins were not detected in 46 samples from Galerina clades outside of Naucoriopsis or from outgroups. Our data show significant quantities of toxin in all mushrooms tested from the G. marginata s.l. complex. DNA barcoding revealed consistent accuracy in morphology-based identification of specimens to G. marginata s.l. complex. Prompt and careful morphological identification of ingested G. marginata s.l. has the potential to improve patient outcomes by leading to fast and appropriate treatment.
Collapse
Affiliation(s)
- Brandon Landry
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeannette Whitton
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna L. Bazzicalupo
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Mary L. Berbee
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
15
|
He Z, Long P, Fang F, Li S, Zhang P, Chen Z. Diversity of MSDIN family members in amanitin-producing mushrooms and the phylogeny of the MSDIN and prolyl oligopeptidase genes. BMC Genomics 2020; 21:440. [PMID: 32590929 PMCID: PMC7318481 DOI: 10.1186/s12864-020-06857-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/22/2020] [Indexed: 11/14/2022] Open
Abstract
Background Amanitin-producing mushrooms, mainly distributed in the genera Amanita, Galerina and Lepiota, possess MSDIN gene family for the biosynthesis of many cyclopeptides catalysed by prolyl oligopeptidase (POP). Recently, transcriptome sequencing has proven to be an efficient way to mine MSDIN and POP genes in these lethal mushrooms. Thus far, only A. palloides and A. bisporigera from North America and A. exitialis and A. rimosa from Asia have been studied based on transcriptome analysis. However, the MSDIN and POP genes of many amanitin-producing mushrooms in China remain unstudied; hence, the transcriptomes of these speices deserve to be analysed. Results In this study, the MSDIN and POP genes from ten Amanita species, two Galerina species and Lepiota venenata were studied and the phylogenetic relationships of their MSDIN and POP genes were analysed. Through transcriptome sequencing and PCR cloning, 19 POP genes and 151 MSDIN genes predicted to encode 98 non-duplicated cyclopeptides, including α-amanitin, β-amanitin, phallacidin, phalloidin and 94 unknown peptides, were found in these species. Phylogenetic analysis showed that (1) MSDIN genes generally clustered depending on the taxonomy of the genus, while Amanita MSDIN genes clustered depending on the chemical substance; and (2) the POPA genes of Amanita, Galerina and Lepiota clustered and were separated into three different groups, but the POPB genes of the three distinct genera were clustered in a highly supported monophyletic group. Conclusions These results indicate that lethal Amanita species have the genetic capacity to produce numerous cyclopeptides, most of which are unknown, while lethal Galerina and Lepiota species seem to only have the genetic capacity to produce α-amanitin. Additionally, the POPB phylogeny of Amanita, Galerina and Lepiota conflicts with the taxonomic status of the three genera, suggesting that underlying horizontal gene transfer has occurred among these three genera.
Collapse
Affiliation(s)
- Zhengmi He
- College of Life Science, Hunan Normal University, Lushan Road, Changsha, 410081, China
| | - Pan Long
- College of Life Science, Hunan Normal University, Lushan Road, Changsha, 410081, China
| | - Fang Fang
- College of Life Science, Hunan Normal University, Lushan Road, Changsha, 410081, China
| | - Sainan Li
- College of Life Science, Hunan Normal University, Lushan Road, Changsha, 410081, China
| | - Ping Zhang
- College of Life Science, Hunan Normal University, Lushan Road, Changsha, 410081, China
| | - Zuohong Chen
- College of Life Science, Hunan Normal University, Lushan Road, Changsha, 410081, China.
| |
Collapse
|
16
|
Li Q, He X, Ren Y, Xiong C, Jin X, Peng L, Huang W. Comparative Mitogenome Analysis Reveals Mitochondrial Genome Differentiation in Ectomycorrhizal and Asymbiotic Amanita Species. Front Microbiol 2020; 11:1382. [PMID: 32636830 PMCID: PMC7318869 DOI: 10.3389/fmicb.2020.01382] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/28/2020] [Indexed: 11/19/2022] Open
Abstract
In this present study, we assembled and analyzed the mitogenomes of two asymbiotic and six ectomycorrhizal Amanita species based on next-generation sequencing data. The size of the eight Amanita mitogenomes ranged from 37,341 to 137,428 bp, and we considered introns to be one of the main factors contributing to the size variation of Amanita. The introns of the cox1 gene experienced frequent gain/loss events in Amanita; and the intron position class cox1P386 was lost in the six ectomycorrhizal Amanita species. In addition, ectomycorrhizal Amanita species had more repetitive sequences and fewer intergenic sequences than asymbiotic Amanita species in their mitogenomes. Large-scale gene rearrangements were detected in the Amanita species we tested, including gene displacements and inversions. On the basis of the combined mitochondrial gene set, we reconstructed the phylogenetic relationships of 66 Basidiomycetes. The six ectomycorrhizal Amanita species were of single origin, and the two saprophytic Amanita species formed two distinct clades. This study is the first to elucidate the functions of the mitogenome in the evolution and ecological adaptation of Amanita species.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaohui He
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xin Jin
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
17
|
He Y, Zhang CH, Deng WQ, Zhou XY, Li TH, Li CH. Transcriptome sequencing analysis of the MSDIN gene family encoding cyclic peptides in lethal Amanita fuligineoides. Toxicon 2020; 183:61-68. [PMID: 32473253 DOI: 10.1016/j.toxicon.2020.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
Amanita fuligineoides, a lethal mushroom discovered in China, contains abundant cyclic peptide toxins that can cause fatal poisoning. However, the MSDIN gene family encoding for these cyclic peptides in A. fuligineoides has not been systematically studied. In this research, the transcriptome sequencing of A. fuligineoides was performed and its MSDIN family members were analyzed. A total of 4.41 Gb data containing 30833 unigenes was obtained; sequence alignments throughout several databases were done to obtain their functional annotations. Based on these annotations, MSDIN genes were found and verified by RT-PCR. A total of 29 different core peptides were obtained: 3 toxin genes, encoding β-amanitin (β-AMA), phalloidin (PHD), and phallacidin (PCD), and 26 genes encoding unknown cyclic peptides, 20 of which are reported for the first time and may encode for novel cyclic peptides. Analysis of the predicted precursor peptides indicated that octocyclic peptides were the main MSDIN peptides synthesized by A. fuligineoides, accounting for the 45%. A phylogenetic analysis suggested that studied precursor peptides could be clustered into 7 clades, which might represent different functionalities. Results suggested that A. fuligineoides might have a strong capacity to synthesize cyclopeptides, laying the foundation for their excavation and utilization.
Collapse
Affiliation(s)
- Yong He
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Cheng-Hua Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Wang-Qiu Deng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Xiao-Yun Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Tai-Hui Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Chuan-Hua Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
18
|
Lateral flow immunoassay (LFIA) for the detection of lethal amatoxins from mushrooms. PLoS One 2020; 15:e0231781. [PMID: 32302363 PMCID: PMC7164595 DOI: 10.1371/journal.pone.0231781] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/31/2020] [Indexed: 11/28/2022] Open
Abstract
The mushroom poison that causes the most deaths is the class of toxins known as amatoxins. Current methods to sensitively and selectively detect these toxins are limited by the need for expensive equipment, or they lack accuracy due to cross-reactivity with other chemicals found in mushrooms. In this work, we report the development of a competition-based lateral flow immunoassay (LFIA) for the rapid, portable, selective, and sensitive detection of amatoxins. Our assay clearly indicates the presence of 10 ng/mL of α-AMA or γ-AMA and the method including extraction and detection can be completed in approximately 10 minutes. The test can be easily read by eye and has a presumed shelf-life of at least 1 year. From testing 110 wild mushrooms, the LFIA identified 6 out of 6 species that were known to contain amatoxins. Other poisonous mushrooms known not to contain amatoxins tested negative by LFIA. This LFIA can be used to quickly identify amatoxin-containing mushrooms.
Collapse
|
19
|
He Z, Luo T, Fan F, Zhang P, Chen Z. Universal identification of lethal amanitas by using Hyperbranched rolling circle amplification based on α-amanitin gene sequences. Food Chem 2019; 298:125031. [PMID: 31260975 DOI: 10.1016/j.foodchem.2019.125031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/08/2019] [Accepted: 06/16/2019] [Indexed: 01/02/2023]
Abstract
Hyperbranched rolling circle amplification (HRCA) with a padlock probe (PLP) targeting the α-amanitin (α-AMA) gene, as a screening tool for the universal identification of lethal amanitas, was established in this study. With the isothermal HRCA assay, all of the lethal Amanita species tested from Phalloideae (10) were positive, while the non-Phalloideae Amanita species (15) and three amanitin-containing Lepiota and Galerina species were negative. Furthermore, the PLP based on α-AMA sequences from lethal Amanita species was effective for Amanita α-AMA, but not Amanita β-AMA or non-Amanita α-AMA. HRCA sensitivity was 100-fold higher than conventional PCR with a detection limit of 100 copies (recombinant plasmid containing α-AMA), and 0.2% lethal amanitas could be detected in dry mushroom blends. The HRCA method presented provided a rapid, specific, sensitive and low-cost identification tool for lethal amanitas.
Collapse
Affiliation(s)
- Zhengmi He
- College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Tao Luo
- College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Fengxia Fan
- College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Ping Zhang
- College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Zuohong Chen
- College of Life Science, Hunan Normal University, Changsha 410081, China; Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
20
|
Vogt E, Künzler M. Discovery of novel fungal RiPP biosynthetic pathways and their application for the development of peptide therapeutics. Appl Microbiol Biotechnol 2019; 103:5567-5581. [PMID: 31147756 DOI: 10.1007/s00253-019-09893-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022]
Abstract
Bioactive peptide natural products are an important source of therapeutics. Prominent examples are the antibiotic penicillin and the immunosuppressant cyclosporine which are both produced by fungi and have revolutionized modern medicine. Peptide biosynthesis can occur either non-ribosomally via large enzymes referred to as non-ribosomal peptide synthetases (NRPS) or ribosomally. Ribosomal peptides are synthesized as part of a larger precursor peptide where they are posttranslationally modified and subsequently proteolytically released. Such peptide natural products are referred to as ribosomally synthesized and posttranslationally modified peptides (RiPPs). Their biosynthetic pathways have recently received a lot of attention, both from a basic and applied research point of view, due to the discoveries of several novel posttranslational modifications of the peptide backbone. Some of these modifications were so far only known from NRPSs and significantly increase the chemical space covered by this class of peptide natural products. Latter feature, in combination with the promiscuity of the modifying enzymes and the genetic encoding of the peptide sequence, makes RiPP biosynthetic pathways attractive for synthetic biology approaches to identify novel peptide therapeutics via screening of de novo generated peptide libraries and, thus, exploit bioactive peptide natural products beyond their direct use as therapeutics. This review focuses on the recent discovery and characterization of novel RiPP biosynthetic pathways in fungi and their possible application for the development of novel peptide therapeutics.
Collapse
Affiliation(s)
- Eva Vogt
- ETH Zürich, Department of Biology, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Markus Künzler
- ETH Zürich, Department of Biology, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland.
| |
Collapse
|
21
|
Yin X, Yang AA, Gao JM. Mushroom Toxins: Chemistry and Toxicology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5053-5071. [PMID: 30986058 DOI: 10.1021/acs.jafc.9b00414] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mushroom consumption is a global tradition that is still gaining popularity. However, foraging for wild mushrooms and accidental ingestion of toxic mushrooms can result in serious illness and even death. The early diagnosis and treatment of mushroom poisoning are quite difficult, as the symptoms are similar to those caused by common diseases. Chemically, mushroom poisoning is related to very powerful toxins, suggesting that the isolation and identification of toxins have great research value, especially in determining the lethal components of toxic mushrooms. In contrast, most of these toxins have remarkable physiological properties that could promote advances in chemistry, biochemistry, physiology, and pharmacology. Although more than 100 toxins have been elucidated, there are a number of lethal mushrooms that have not been fully investigated. This review provides information on the chemistry (including chemical structures, total synthesis, and biosynthesis) and the toxicology of these toxins, hoping to inspire further research in this area.
Collapse
Affiliation(s)
- Xia Yin
- Shaanxi Key Laboratory of Natural Products & Chemistry Biology, College of Chemistry & Pharmacy , Northwest A & F University , Yangling 712100 , People's Republic of China
| | - An-An Yang
- Department of Pathology , The 969th Hospital of PLA , Hohhot , Inner Mongolia 010000 , People's Republic of China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemistry Biology, College of Chemistry & Pharmacy , Northwest A & F University , Yangling 712100 , People's Republic of China
| |
Collapse
|
22
|
Luo S, Dong SH. Recent Advances in the Discovery and Biosynthetic Study of Eukaryotic RiPP Natural Products. Molecules 2019; 24:molecules24081541. [PMID: 31003555 PMCID: PMC6514808 DOI: 10.3390/molecules24081541] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/22/2022] Open
Abstract
Natural products have played indispensable roles in drug development and biomedical research. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a group of fast-expanding natural products attribute to genome mining efforts in recent years. Most RiPP natural products were discovered from bacteria, yet many eukaryotic cyclic peptides turned out to be of RiPP origin. This review article presents recent advances in the discovery of eukaryotic RiPP natural products, the elucidation of their biosynthetic pathways, and the molecular basis for their biosynthetic enzyme catalysis.
Collapse
Affiliation(s)
- Shangwen Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Shi-Hui Dong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
23
|
Lüli Y, Cai Q, Chen ZH, Sun H, Zhu XT, Li X, Yang ZL, Luo H. Genome of lethal Lepiota venenata and insights into the evolution of toxin-biosynthetic genes. BMC Genomics 2019; 20:198. [PMID: 30849934 PMCID: PMC6408872 DOI: 10.1186/s12864-019-5575-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/28/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Genomes of lethal Amanita and Galerina mushrooms have gradually become available in the past ten years; in contrast the other known amanitin-producing genus, Lepiota, is still vacant in this aspect. A fatal mushroom poisoning case in China has led to acquisition of fresh L. venenata fruiting bodies, based on which a draft genome was obtained through PacBio and Illumina sequencing platforms. Toxin-biosynthetic MSDIN family and Porlyl oligopeptidase B (POPB) genes were mined from the genome and used for phylogenetic and statistical studies to gain insights into the evolution of the biosynthetic pathway. RESULTS The analysis of the genome data illustrated that only one MSDIN, named LvAMA1, exits in the genome, along with a POPB gene. No POPA homolog was identified by direct homology searching, however, one additional POP gene, named LvPOPC, was cloned and the gene structure determined. Similar to ApAMA1 in A. phalloides and GmAMA1 in G. marginata, LvAMA1 directly encodes α-amanitin. The two toxin genes were mapped to the draft genome, and the structures analyzed. Furthermore, phylogenetic and statistical analyses were conducted to study the evolution history of the POPB genes. Compared to our previous report, the phylogenetic trees unambiguously showed that a monophyletic POPB lineage clearly conflicted with the species phylogeny. In contrast, phylogeny of POPA genes resembled the species phylogeny. Topology and divergence tests showed that the POPB lineage was robust and these genes exhibited significantly shorter genetic distances than those of the house-keeping rbp2, a characteristic feature of genes with horizontal gene transfer (HGT) background. Consistently, same scenario applied to the only MSDIN, LvAMA1, in the genome. CONCLUSIONS To the best of our knowledge, this is the first reported genome of Lepiota. The analyses of the toxin genes indicate that the cyclic peptides are synthesized through a ribosomal mechanism. The toxin genes, LvAMA1 and LvPOPB, are not in the vicinity of each other. Phylogenetic and evolutionary studies suggest that HGT is the underlining cause for the occurrence of POPB and MSDIN in Amanita, Galerina and Lepiota, which are allocated in three distantly-related families.
Collapse
Affiliation(s)
- Yunjiao Lüli
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qing Cai
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Zuo H. Chen
- College of Life Science, Hunan Normal University, Changsha, 410081 China
| | - Hu Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Xue-Tai Zhu
- College of Life Sciences, Northwest Normal University, Lanzhou, 730030 China
| | - Xuan Li
- Department of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650091 Yunnan China
| | - Zhu L. Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Hong Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| |
Collapse
|
24
|
Luo H, Cai Q, Lüli Y, Li X, Sinha R, Hallen-Adams HE, Yang ZL. The MSDIN family in amanitin-producing mushrooms and evolution of the prolyl oligopeptidase genes. IMA Fungus 2018; 9:225-242. [PMID: 30622880 PMCID: PMC6317590 DOI: 10.5598/imafungus.2018.09.02.01] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 07/24/2018] [Indexed: 12/18/2022] Open
Abstract
The biosynthetic pathway for amanitins and related cyclic peptides in deadly Amanita (Amanitaceae) mushrooms represents the first known ribosomal cyclic peptide pathway in the Fungi. Amanitins are found outside of the genus in distantly related agarics Galerina (Strophariaceae) and Lepiota (Agaricaceae). A long-standing question in the field persists: why is this pathway present in these phylogenetically disjunct agarics? Two deadly mushrooms, A. pallidorosea and A. subjunquillea, were deep sequenced, and sequences of biosynthetic genes encoding MSDINs (cyclic peptide precursor) and prolyl oligopeptidases (POPA and POPB) were obtained. The two Amanita species yielded 29 and 18 MSDINs, respectively. In addition, two MSDIN sequences were cloned from L. brunneoincarnata basidiomes. The toxin MSDIN genes encoding amatoxins or phallotoxins from the three genera were compared, and a phylogenetic tree constructed. Prolyl oligopeptidase B (POPB), a key enzyme in the biosynthetic pathway, was used in phylogenetic reconstruction to infer the evolutionary history of the genes. Phylogenies of POPB and POPA based on both coding and amino acid sequences showed very different results: while POPA genes clearly reflected the phylogeny of the host species, POPB did not; strikingly, it formed a well-supported monophyletic clade, despite that the species belong to different genera in disjunct families. POPA, a known house-keeping gene, was shown to be restricted in a branch containing only Amanita species and the phylogeny resembled that of those Amanita species. Phylogenetic analyses of MSDIN and POPB genes showed tight coordination and disjunct distribution. A POPB gene tree was compared with a corresponding species tree, and distances and substitution rates were compared. The result suggested POPB genes have significant smaller distances and rates than the house-keeping rpb2, discounting massive gene loss. Under this assumption, the incongruency between the gene tree and species tree was shown with strong support. Additionally, k-mer analyses consistently cluster Galerina and Amanita POPB genes, while Lepiota POPB is distinct. Our result suggests that horizontal gene transfer (HGT), at least between Amanita and Galerina, was involved in the acquisition of POPB genes, which may shed light on the evolution of the α-amanitin biosynthetic pathway.
Collapse
Affiliation(s)
- Hong Luo
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Qing Cai
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Yunjiao Lüli
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Li
- Department of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650091, Yunnan, China
| | | | - Heather E Hallen-Adams
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Zhu L Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| |
Collapse
|
25
|
Molecular cloning and the expression pattern of AePOPB involved in the α-amanitin biosynthesis in Amanita exitialis fruiting bodies. Gene 2018; 662:123-130. [PMID: 29627524 DOI: 10.1016/j.gene.2018.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022]
Abstract
Amanita exitialis Zhu L. Yang & T. H. Li is the species responsible for the largest number of mushroom-associated human poisonings and fatalities in South China due to its lethal cyclic peptide toxins. Prolyl oligopeptidase B (POPB) is considered a key enzyme in the production of the highly toxic cyclic peptide α-amanitin. However, the POPB gene of A. exitialis has not been studied. In the present study we cloned and sequenced the full-length A. exitialis POPB (AePOPB) gene. The aim was to verify the gene structure and functions of AePOPB. The full-length sequence of AePOPB is 3144 bp, including 18 exons encoding 730 aa, and the advanced structure is very similar to that of the previously reported POPB in Galerina marginata (GmPOPB). The amino acid sequence of AePOPB is highly homologous with those from other amanitin-producing lethal mushrooms, implying that AePOPB may have a similar role in the biosynthesis of cyclic peptide toxins. Expression levels of AePOPB were detectable in all parts and developmental stages of the fruiting bodies, and AePOPB was expressed more strongly at early development stages (early and late elongation stages). At early and late elongation stages, the expression peaks occurred in the stipe, whereas at early and late mature stages, the expression peaks occurred in the pileus. The expression patterns of AePOPB in different stages and different parts of the fruiting bodies were highly consistent with those of Aeα-AMA, which is required for α-amanitin accumulation. These results indicate that AePOPB should be involved in the α-amanitin biosynthesis in A. exitialis.
Collapse
|
26
|
Sgambelluri RM, Smith MO, Walton JD. Versatility of Prolyl Oligopeptidase B in Peptide Macrocyclization. ACS Synth Biol 2018; 7:145-152. [PMID: 28866879 DOI: 10.1021/acssynbio.7b00264] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cyclic peptides are promising compounds for new chemical biological tools and therapeutics due to their structural diversity, resistance to proteases, and membrane permeability. Amatoxins, the toxic principles of poisonous mushrooms, are biosynthesized on ribosomes as 35mer precursor peptides, which are ultimately converted to hydroxylated bicyclic octapeptides. The initial cyclization steps, catalyzed by a dedicated prolyl oligopeptidase (POPB), involves removal of the 10-amino acid leader sequence from the precursor peptide and transpeptidation to produce a monocyclic octapeptide intermediate. The utility of POPB as a general catalyst for peptide cyclization was systematically characterized using a range of precursor peptide substrates produced either in E. coli or chemically. Substrates produced in E. coli were expressed either individually or in mixtures produced by codon mutagenesis. A total of 127 novel peptide substrates were tested, of which POPB could cyclize 100. Peptides of 7-16 residues were cyclized at least partially. Synthetic 25mer precursor peptide substrates containing modified amino acids including d-Ala, β-Ala, N-methyl-Ala, and 4-hydroxy-Pro were also successfully cyclized. Although a phalloidin heptapeptide with all L amino acids was not cyclized, partial cyclization was seen when l-Thr at position #5 was replaced with the naturally occurring D amino acid. POPB should have broad applicability as a general catalyst for macrocyclization of peptides containing 7 to at least 16 amino acids, with an optimum of 8-9 residues.
Collapse
Affiliation(s)
- R. Michael Sgambelluri
- Department
of Biochemistry and Molecular Biology, ‡Department of Energy-Plant Research
Laboratory, and §Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Miranda O. Smith
- Department
of Biochemistry and Molecular Biology, ‡Department of Energy-Plant Research
Laboratory, and §Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jonathan D. Walton
- Department
of Biochemistry and Molecular Biology, ‡Department of Energy-Plant Research
Laboratory, and §Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
27
|
Characterization of a dual function macrocyclase enables design and use of efficient macrocyclization substrates. Nat Commun 2017; 8:1045. [PMID: 29051530 PMCID: PMC5648786 DOI: 10.1038/s41467-017-00862-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/02/2017] [Indexed: 01/30/2023] Open
Abstract
Peptide macrocycles are promising therapeutic molecules because they are protease resistant, structurally rigid, membrane permeable, and capable of modulating protein-protein interactions. Here, we report the characterization of the dual function macrocyclase-peptidase enzyme involved in the biosynthesis of the highly toxic amanitin toxin family of macrocycles. The enzyme first removes 10 residues from the N-terminus of a 35-residue substrate. Conformational trapping of the 25 amino-acid peptide forces the enzyme to release this intermediate rather than proceed to macrocyclization. The enzyme rebinds the 25 amino-acid peptide in a different conformation and catalyzes macrocyclization of the N-terminal eight residues. Structures of the enzyme bound to both substrates and biophysical analysis characterize the different binding modes rationalizing the mechanism. Using these insights simpler substrates with only five C-terminal residues were designed, allowing the enzyme to be more effectively exploited in biotechnology.
Collapse
|
28
|
Wei J, Wu J, Chen J, Wu B, He Z, Zhang P, Li H, Sun C, Liu C, Chen Z, Xie J. Determination of cyclopeptide toxins in Amanita subpallidorosea and Amanita virosa by high-performance liquid chromatography coupled with high-resolution mass spectrometry. Toxicon 2017; 133:26-32. [PMID: 28433521 DOI: 10.1016/j.toxicon.2017.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/19/2022]
Abstract
Amanita subpallidorosea is a recently discovered lethal Amanita sect. Phalloideae species found in China that is clustered with A. virosa in the same clade based on molecular phylogenetic analysis. However, the cyclopeptide toxin contents of these lethal mushrooms remain poorly studied. In this study, the cyclopeptide toxins in A. subpallidorosea were reported for the first time and the cyclopeptide compositions of A. subpallidorosea and A. virosa species were systematically analyzed. Thirteen cyclopeptides and two unknown compounds were identified or observed from these two lethal mushrooms by high-performance liquid chromatography coupled with high-resolution mass spectrometry. Of the known cyclopeptides, the virotoxins alaviroidin, viroisin, and viroidin, which were previously thought to be restricted to A. virosa, were identified in A. subpallidorosea. The cyclopeptide compositions showed that there are diversities in the kinds and levels of amatoxins, phallotoxins, and virotoxins between A. subpallidorosea and A. virosa species, and that the amount of total toxins in the tested A. subpallidorosea is significantly higher than that in the tested A. virosa. Furthermore, consistency of the cyclopeptide toxins with the molecular phylogenetic relationships was demonstrated.
Collapse
Affiliation(s)
- Jiahui Wei
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China; Pharmacy College, Jinzhou Medical University, Jinzhou 121000, China
| | - Jianfeng Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Jia Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Bidong Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Zhengmi He
- College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Ping Zhang
- College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Haijiao Li
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Chengye Sun
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Chang Liu
- Pharmacy College, Jinzhou Medical University, Jinzhou 121000, China
| | - Zuohong Chen
- College of Life Science, Hunan Normal University, Changsha 410081, China.
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
29
|
Making Use of Genomic Information to Explore the Biotechnological Potential of Medicinal Mushrooms. MEDICINAL AND AROMATIC PLANTS OF THE WORLD 2017. [DOI: 10.1007/978-981-10-5978-0_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|