1
|
Ahmad D, Ying Y, Bao J. Understanding starch biosynthesis in potatoes for metabolic engineering to improve starch quality: A detailed review. Carbohydr Polym 2024; 346:122592. [PMID: 39245484 DOI: 10.1016/j.carbpol.2024.122592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024]
Abstract
Potato tubers accumulate substantial quantities of starch, which serves as their primary energy reserve. As the predominant component of potato tubers, starch strongly influences tuber yield, processing quality, and nutritional attributes. Potato starch is distinguished from other food starches by its unique granule morphology and compositional attributes. It possesses large, oval granules with amylose content ranging from 20 to 33 % and high phosphorus levels, which collectively determine the unique physicochemical characteristics. These physicochemical properties direct the utility of potato starch across diverse food and industrial applications. This review synthesizes current knowledge on the molecular factors controlling potato starch biosynthesis and structure-function relationships. Key topics covered are starch granule morphology, the roles and regulation of major biosynthetic enzymes, transcriptional and hormonal control, genetic engineering strategies, and opportunities to tailor starch functionality. Elucidating the contributions of different enzymes in starch biosynthesis has enabled targeted modification of potato starch composition and properties. However, realizing the full potential of this knowledge faces challenges in optimizing starch quality without compromising plant vigor and yield. Overall, integrating multi-omics datasets with advanced genetic and metabolic engineering tools can facilitate the development of elite cultivars with enhanced starch yield and tailored functionalities.
Collapse
Affiliation(s)
- Daraz Ahmad
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yining Ying
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China.
| |
Collapse
|
2
|
Kaier A, Beck S, Ingold M, García JMC, Reinert S, Sonnewald U, Sonnewald S. Identification of heat stress-related genomic regions by genome-wide association study in Solanum tuberosum. Genomics 2024; 116:110954. [PMID: 39477032 DOI: 10.1016/j.ygeno.2024.110954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
The climate crisis impairs yield and quality of crucial crops like potatoes. We investigated the effects of heat stress on five morpho-physiological parameters in a diverse panel of 178 potato cultivars under glasshouse conditions. Overall, heat stress increased shoot elongation and green fresh weight, but reduced tuber yield, starch content and harvest index. Genomic information was obtained from 258 tetraploid and three diploid cultivars by a genotyping-by-sequencing approach using methylation-sensitive restriction enzymes. This resulted in an enrichment of sequences in gene-rich regions. Population structure analyses using genetic distances and hierarchical clustering revealed strong kinship but weak overall population structure cultivars. A genome-wide association study (GWAS) was conducted with a subset of 20 K stringently filtered SNPs to identify quantitative trait loci (QTL) linked to heat tolerance. We identified 67 QTL and established haploblock boundaries to narrow down the number of candidate genes. Additionally, GO-enrichment analyses provided insights into gene functions. Heritability and genomic prediction were conducted to assess the usability of the collected data for selecting breeding material. The detected QTL might be exploited in marker-assisted selection to develop heat-resilient potato cultivars.
Collapse
Affiliation(s)
- Alexander Kaier
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biology, Division of Biochemistry, 91058 Erlangen, Germany
| | - Selina Beck
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biology, Division of Biochemistry, 91058 Erlangen, Germany
| | - Markus Ingold
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biology, Division of Biochemistry, 91058 Erlangen, Germany
| | - José María Corral García
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biology, Division of Biochemistry, 91058 Erlangen, Germany
| | - Stephan Reinert
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biology, Division of Biochemistry, 91058 Erlangen, Germany
| | - Uwe Sonnewald
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biology, Division of Biochemistry, 91058 Erlangen, Germany
| | - Sophia Sonnewald
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biology, Division of Biochemistry, 91058 Erlangen, Germany.
| |
Collapse
|
3
|
Roitman M, Eshel D. Similar chilling response of dormant buds in potato tuber and woody perennials. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6076-6092. [PMID: 38758594 DOI: 10.1093/jxb/erae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Bud dormancy is a survival strategy that plants have developed in their native habitats. It helps them endure harsh seasonal changes by temporarily halting growth and activity until conditions become more favorable. Research has primarily focused on bud dormancy in tree species and the ability to halt growth in vegetative tissues, particularly in meristems. Various plant species, such as potato, have developed specialized storage organs, enabling them to become dormant during their yearly growth cycle. Deciduous trees and potato tubers exhibit a similar type of bud endodormancy, where the bud meristem will not initiate growth, even under favorable environmental conditions. Chilling accumulation activates C-repeat/dehydration responsive element binding (DREB) factors (CBFs) transcription factors that modify the expression of dormancy-associated genes. Chilling conditions shorten the duration of endodormancy by influencing plant hormones and sugar metabolism, which affect the timing and rate of bud growth. Sugar metabolism and signaling pathways can interact with abscisic acid, affecting the symplastic connection of dormant buds. This review explores how chilling affects endodormancy duration and explores the similarity of the chilling response of dormant buds in potato tubers and woody perennials.
Collapse
Affiliation(s)
- Marina Roitman
- Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dani Eshel
- Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
4
|
Qu L, Huang X, Su X, Zhu G, Zheng L, Lin J, Wang J, Xue H. Potato: from functional genomics to genetic improvement. MOLECULAR HORTICULTURE 2024; 4:34. [PMID: 39160633 PMCID: PMC11331666 DOI: 10.1186/s43897-024-00105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
Potato is the most widely grown non-grain crop and ranks as the third most significant global food crop following rice and wheat. Despite its long history of cultivation over vast areas, slow breeding progress and environmental stress have led to a scarcity of high-yielding potato varieties. Enhancing the quality and yield of potato tubers remains the ultimate objective of potato breeding. However, conventional breeding has faced challenges due to tetrasomic inheritance, high genomic heterozygosity, and inbreeding depression. Recent advancements in molecular biology and functional genomic studies of potato have provided valuable insights into the regulatory network of physiological processes and facilitated trait improvement. In this review, we present a summary of identified factors and genes governing potato growth and development, along with progress in potato genomics and the adoption of new breeding technologies for improvement. Additionally, we explore the opportunities and challenges in potato improvement, offering insights into future avenues for potato research.
Collapse
Affiliation(s)
- Li Qu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Huang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Su
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoqing Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingli Zheng
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Lin
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawen Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongwei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Duan Y, Jin L. Genome-Wide Identification and Expression Profiling of the α-Amylase ( AMY) Gene Family in Potato. Genes (Basel) 2024; 15:793. [PMID: 38927729 PMCID: PMC11202818 DOI: 10.3390/genes15060793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Starch degradation provides energy and signaling molecules for plant growth, development, defense, and stress response. α-amylase (AMY) is one of the most important enzymes in this process. Potato tubers are rich in starch, and the hydrolysis of starch into sugar negatively impacts the frying quality of potato. Despite its importance, the AMY gene family has not been fully explored in potatoes. Here, we performed a detailed analysis of the StAMY gene family to determine its role in potato. Twenty StAMY genes were identified across the potato genome and were divided into three subgroups. The promoters of StAMY genes contained an array of cis-acting elements involved in growth and development, phytohormone signaling, and stress and defense responses. StAMY8, StAMY9, StAMY12, and StAMY20 were specifically expressed in mature tubers. Different StAMY gene family members tended to be upregulated in response to β-aminobutyric acid (BABA), Phytophthora infestans (P. infestans), benzothiadiazole (BTH), heat, salt, and drought stress. In addition, different StAMY gene family members tended to be responsive to abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellic acid (GA3), and 6-benzylaminopurine (BAP) treatment. These results suggest that StAMY gene family members may be involved in starch and sugar metabolism, defense, stress response, and phytohormone signaling. The results of this study may be applicable to other starchy crops and lay a foundation for further research on the functions and regulatory mechanisms of AMY genes.
Collapse
Affiliation(s)
| | - Liping Jin
- State Key Laboratory of Vegetable Biobreeding/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops of Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| |
Collapse
|
6
|
Sun S, Guan B, Xing Y, Li X, Liu L, Li Y, Jia L, Ye S, Dossa K, Zheng L, Luan Y. Genome-wide association analysis and transgenic characterization for amylose content regulating gene in tuber of Dioscorea zingiberensis. BMC PLANT BIOLOGY 2024; 24:524. [PMID: 38853253 PMCID: PMC11163818 DOI: 10.1186/s12870-024-05122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Amylose, a prebiotic found in yams is known to be beneficial for the gut microflora and is particularly advantageous for diabetic patients' diet. However, the genetic machinery underlying amylose production remains elusive. A comprehensive characterization of the genetic basis of amylose content in yam tubers is a prerequisite for accelerating the genetic engineering of yams with respect to amylose content variation. RESULTS To uncover the genetic variants underlying variation in amylose content, we evaluated amylose content in freshly harvested tubers from 150 accessions of Dioscorea zingibensis. With 30,000 high-quality single nucleotide polymorphisms (SNP), we performed a genome-wide association analysis (GWAS). The population structure analysis classified the D. zingiberensis accessions into three groups. A total of 115 significant loci were detected on four chromosomes. Of these, 112 significant SNPs (log10(p) = 5, q-value < 0.004) were clustered in a narrow window on the chromosome 6 (chr6). The peak SNP at the position 75,609,202 on chr6 could explain 63.15% of amylose variation in the population and fell into the first exon of the ADP-glucose pyrophosphorylase (AGPase) small subunit gene, causing a non-synonymous modification of the resulting protein sequence. Allele segregation analysis showed that accessions with the rare G allele had a higher amylose content than those harboring the common A allele. However, AGPase, a key enzyme precursor of amylose biosynthesis, was not expressed differentially between accessions with A and G alleles. Overexpression of the two variants of AGPase in Arabidopsis thaliana resulted in a significantly higher amylose content in lines transformed with the AGPase-G allele. CONCLUSIONS Overall, this study showed that a major genetic variant in AGPase probably enhances the enzyme activity leading to high amylose content in D. zingiberensis tuber. The results provide valuable insights for the development of amylose-enriched genotypes.
Collapse
Affiliation(s)
- Shixian Sun
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, 650224, China
| | - Binbin Guan
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Yue Xing
- Department of Life Science, Southwest Forestry University, Kunming, 650224, China
| | - Xiang Li
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Lanlan Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Yanmei Li
- Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, Kunming, 650224, China
| | - Lu Jia
- Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, Kunming, 650224, China
| | - Shili Ye
- Faculty of Mathematics and Physics, Southwest Forestry University, Kunming, 650224, China
| | - Komivi Dossa
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, 34398, France
| | - Li Zheng
- Eco-development Academy, Southwest Forestry University, Kunming, 650224, China.
| | - Yunpeng Luan
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China.
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China.
- Engineering Research Center for inheritance and innovation of Traditional Chinese Medicine, Kunming, 650034, China.
| |
Collapse
|
7
|
van den Herik B, Bergonzi S, Li Y, Bachem CW, ten Tusscher KH. A coordinated switch in sucrose and callose metabolism enables enhanced symplastic unloading in potato tubers. QUANTITATIVE PLANT BIOLOGY 2024; 5:e4. [PMID: 38689753 PMCID: PMC11058582 DOI: 10.1017/qpb.2024.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 05/02/2024]
Abstract
One of the early changes upon tuber induction is the switch from apoplastic to symplastic unloading. Whether and how this change in unloading mode contributes to sink strength has remained unclear. In addition, developing tubers also change from energy to storage-based sucrose metabolism. Here, we investigated the coordination between changes in unloading mode and sucrose metabolism and their relative role in tuber sink strength by looking into callose and sucrose metabolism gene expression combined with a model of apoplastic and symplastic unloading. Gene expression analysis suggests that callose deposition in tubers is decreased by lower callose synthase expression. Furthermore, changes in callose and sucrose metabolism are strongly correlated, indicating a well-coordinated developmental switch. Modelling indicates that symplastic unloading is not the most efficient unloading mode per se. Instead, it is the concurrent metabolic switch that provides the physiological conditions necessary to potentiate symplastic transport and thereby enhance tuber sink strength .
Collapse
Affiliation(s)
- Bas van den Herik
- Computational Developmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Sara Bergonzi
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Yingji Li
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Christian W. Bachem
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | | |
Collapse
|
8
|
Shirani-Bidabadi M, Nazarian-Firouzabadi F, Sorkheh K, Ismaili A. Transcriptomic analysis of potato (Solanum tuberosum L.) tuber development reveals new insights into starch biosynthesis. PLoS One 2024; 19:e0297334. [PMID: 38574179 PMCID: PMC10994339 DOI: 10.1371/journal.pone.0297334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/03/2024] [Indexed: 04/06/2024] Open
Abstract
Potato tubers are rich sources of various nutrients and unique sources of starch. Many genes play major roles in different pathways, including carbohydrate metabolism during the potato tuber's life cycle. Despite substantial scientific evidence about the physiological and morphological development of potato tubers, the molecular genetic aspects of mechanisms underlying tuber formation have not yet been fully understood. In this study, for the first time, RNA-seq analysis was performed to shed light on the expression of genes involved in starch biosynthesis during potato tuber development. To this end, samples were collected at the hook-like stolon (Stage I), swollen tips stolon (Stage II), and tuber initiation (Stage III) stages of tuber formation. Overall, 23 GB of raw data were generated and assembled. There were more than 20000 differentially expressed genes (DEGs); the expression of 73 genes involved in starch metabolism was further studied. Moreover, qRT-PCR analysis revealed that the expression profile of the starch biosynthesis DEGs was consistent with that of the RNA-seq data, which further supported the role of the DEGs in starch biosynthesis. This study provides substantial resources on potato tuber development and several starch synthesis isoforms associated with starch biosynthesis.
Collapse
Affiliation(s)
- Maryam Shirani-Bidabadi
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Farhad Nazarian-Firouzabadi
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Karim Sorkheh
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ahmad Ismaili
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| |
Collapse
|
9
|
Kaur J, Manchanda P, Kaur H, Kumar P, Kalia A, Sharma SP, Taggar MS. In-Silico Identification, Characterization and Expression Analysis of Genes Involved in Resistant Starch Biosynthesis in Potato (Solanum tuberosum L.) Varieties. Mol Biotechnol 2024:10.1007/s12033-024-01121-w. [PMID: 38509332 DOI: 10.1007/s12033-024-01121-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
Potato (Solanum tuberosum L.), an important horticultural crop is a member of the family Solanaceae and is mainly grown for consumption at global level. Starch, the principal component of tubers, is one of the significant elements for food and non-food-based applications. The genes associated with biosynthesis of starch have been investigated extensively over the last few decades. However, a complete regulation pathway of constituent of amylose and amylopectin are still not deeply explored. The current in-silico study of genes related to amylose and amylopectin synthesis and their genomic organization in potato is still lacking. In the current study, the nucleotide and amino acid arrangement in genome and twenty-two genes linked to starch biosynthesis pathway in potato were analysed. The genomic structure analysis was also performed to find out the structural pattern and phylogenetic relationship of genes. The genome mining and structure analysis identified ten specific motifs and phylogenetic analysis of starch biosynthesis genes divided them into three different clades on the basis of their functioning and phylogeny. Quantitative real-time PCR (qRT-PCR) of amylose biosynthesis pathway genes in three contrast genotypes revealed the down-gene expression that leads to identify potential cultivar for functional genomic approaches. These potential lines may help to achieve higher content of resistant starch.
Collapse
Affiliation(s)
- Jaspreet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Pooja Manchanda
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Harleen Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Pankaj Kumar
- Department of Microbiology, Adesh Medical College & Hospital, Mohri, Kurukshetra, Haryana, 136135, India
| | - Anu Kalia
- Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Sat Pal Sharma
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - Monica Sachdeva Taggar
- Department of Renewable Energy Engineering, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
10
|
Li H, Brouwer M, Pup ED, van Lieshout N, Finkers R, Bachem CWB, Visser RGF. Allelic variation in the autotetraploid potato: genes involved in starch and steroidal glycoalkaloid metabolism as a case study. BMC Genomics 2024; 25:274. [PMID: 38475714 DOI: 10.1186/s12864-024-10186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Tuber starch and steroidal glycoalkaloid (SGA)-related traits have been consistently prioritized in potato breeding, while allelic variation pattern of genes that underlie these traits is less explored. RESULTS Here, we focused on the genes involved in two important metabolic pathways in the potato: starch metabolism and SGA biosynthesis. We identified 119 genes consisting of 81 involved in starch metabolism and 38 in the biosynthesis of steroidal glycoalkaloids, and discovered 96,166 allelic variants among 2,169 gene haplotypes in six autotetraploid potato genomes. Comparative analyses revealed an uneven distribution of allelic variants among gene haplotypes and that the vast majority of deleterious mutations in these genes are retained in heterozygous state in the autotetraploid potato genomes. Leveraging full-length cDNA sequencing data, we find that approximately 70% of haplotypes of the 119 genes are transcribable. Population genetic analyses identify starch and SGA biosynthetic genes that are potentially conserved or diverged between potato varieties with varying starch or SGA content. CONCLUSIONS These results deepen the understanding of haplotypic diversity within functionally important genes in autotetraploid genomes and may facilitate functional characterization of genes or haplotypes contributing to traits related to starch and SGA in potato.
Collapse
Affiliation(s)
- Hongbo Li
- Plant Breeding, Wageningen University & Research, P. O. Box 386, Wageningen, 6700 AJ, the Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University and Research, Wageningen, the Netherlands
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Matthijs Brouwer
- Plant Breeding, Wageningen University & Research, P. O. Box 386, Wageningen, 6700 AJ, the Netherlands
| | - Elena Del Pup
- Plant Breeding, Wageningen University & Research, P. O. Box 386, Wageningen, 6700 AJ, the Netherlands
| | - Natascha van Lieshout
- Plant Breeding, Wageningen University & Research, P. O. Box 386, Wageningen, 6700 AJ, the Netherlands
- , SURFsara, Science Park 140, Amsterdam, 1098 XG, the Netherlands
| | - Richard Finkers
- Plant Breeding, Wageningen University & Research, P. O. Box 386, Wageningen, 6700 AJ, the Netherlands
- Gennovation B.V, Agro Business Park 10, Wageningen, 6708 PW, the Netherlands
| | - Christian W B Bachem
- Plant Breeding, Wageningen University & Research, P. O. Box 386, Wageningen, 6700 AJ, the Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, P. O. Box 386, Wageningen, 6700 AJ, the Netherlands.
| |
Collapse
|
11
|
Aalborg T, Sverrisdóttir E, Kristensen HT, Nielsen KL. The effect of marker types and density on genomic prediction and GWAS of key performance traits in tetraploid potato. FRONTIERS IN PLANT SCIENCE 2024; 15:1340189. [PMID: 38525152 PMCID: PMC10957621 DOI: 10.3389/fpls.2024.1340189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
Genomic prediction and genome-wide association studies are becoming widely employed in potato key performance trait QTL identifications and to support potato breeding using genomic selection. Elite cultivars are tetraploid and highly heterozygous but also share many common ancestors and generation-spanning inbreeding events, resulting from the clonal propagation of potatoes through seed potatoes. Consequentially, many SNP markers are not in a 1:1 relationship with a single allele variant but shared over several alleles that might exert varying effects on a given trait. The impact of such redundant "diluted" predictors on the statistical models underpinning genome-wide association studies (GWAS) and genomic prediction has scarcely been evaluated despite the potential impact on model accuracy and performance. We evaluated the impact of marker location, marker type, and marker density on the genomic prediction and GWAS of five key performance traits in tetraploid potato (chipping quality, dry matter content, length/width ratio, senescence, and yield). A 762-offspring panel of a diallel cross of 18 elite cultivars was genotyped by sequencing, and markers were annotated according to a reference genome. Genomic prediction models (GBLUP) were trained on four marker subsets [non-synonymous (29,553 SNPs), synonymous (31,229), non-coding (32,388), and a combination], and robustness to marker reduction was investigated. Single-marker regression GWAS was performed for each trait and marker subset. The best cross-validated prediction correlation coefficients of 0.54, 0.75, 0.49, 0.35, and 0.28 were obtained for chipping quality, dry matter content, length/width ratio, senescence, and yield, respectively. The trait prediction abilities were similar across all marker types, with only non-synonymous variants improving yield predictive ability by 16%. Marker reduction response did not depend on marker type but rather on trait. Traits with high predictive abilities, e.g., dry matter content, reached a plateau using fewer markers than traits with intermediate-low correlations, such as yield. The predictions were unbiased across all traits, marker types, and all marker densities >100 SNPs. Our results suggest that using non-synonymous variants does not enhance the performance of genomic prediction of most traits. The major known QTLs were identified by GWAS and were reproducible across exonic and whole-genome variant sets for dry matter content, length/width ratio, and senescence. In contrast, minor QTL detection was marker type dependent.
Collapse
Affiliation(s)
- Trine Aalborg
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | | | | |
Collapse
|
12
|
Kusano H, Takeuchi A, Shimada H. Efficiency of potato genome editing: Targeted mutation on the genes involved in starch biosynthesis using the CRISPR/dMac3-Cas9 system. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:201-209. [PMID: 38420566 PMCID: PMC10901159 DOI: 10.5511/plantbiotechnology.23.0611a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/11/2023] [Indexed: 03/02/2024]
Abstract
Potato (Solanum tuberosum L.) has a tetraploid genome. To make a mutant lacking a specific gene function, it is necessary to introduce mutations into all four gene alleles. To achieve this goal, we developed a powerful genome editing tool, CRISPR/dMac3-Cas9, which installed the translation enhancer dMac3 that greatly increased the translation of the downstream open reading frame. The CRISPR/dMac3-Cas9 system employing three guide RNAs (gRNAs) greatly elevated the frequency of the generation rate of mutation. This system enabled to create the 4-allele mutants of granule-bound starch synthase (GBSS) and starch branching enzyme (SBE). These mutants indicated functionally defective features, suggesting that we succeeded in efficient genome editing of the potato tetraploid genome. Here, we show the effect of the number of gRNAs for efficient mutagenesis of the target gene using the mutants of the GBSS1 gene. CRISPR/dMac3-Cas9 employing three gRNA genes achieved a higher mutation efficiency than the CRISPR/dMac3-Cas9 with two gRNAs, suggesting being influenced by the dose effect of the number of gRNAs at the target region. The alleles of the SBE3 gene contained SNPs that caused sequence differences in the gRNAs but these gRNAs functioned efficiently. However, many rearrangement events and large deletions were induced. These results support the importance of accurate binding of gRNA to the target sequence, which may lead to a hint to avoid the unexpected mutation on the off-target sites.
Collapse
Affiliation(s)
- Hiroaki Kusano
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Ami Takeuchi
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science,Tokyo 125-8585, Japan
| |
Collapse
|
13
|
Sharma S, Friberg M, Vogel P, Turesson H, Olsson N, Andersson M, Hofvander P. Pho1a (plastid starch phosphorylase) is duplicated and essential for normal starch granule phenotype in tubers of Solanum tuberosum L. FRONTIERS IN PLANT SCIENCE 2023; 14:1220973. [PMID: 37636090 PMCID: PMC10450146 DOI: 10.3389/fpls.2023.1220973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023]
Abstract
Reserve starch from seeds and tubers is a crucial plant product for human survival. Much research has been devoted to quantitative and qualitative aspects of starch synthesis and its relation to abiotic factors of importance in agriculture. Certain aspects of genetic factors and enzymes influencing carbon assimilation into starch granules remain elusive after many decades of research. Starch phosphorylase (Pho) can operate, depending on metabolic conditions, in a synthetic and degradative pathway. The plastidial form of the enzyme is one of the most highly expressed genes in potato tubers, and the encoded product is imported into starch-synthesizing amyloplasts. We identified that the genomic locus of a Pho1a-type starch phosphorylase is duplicated in potato. Our study further shows that the enzyme is of importance for a normal starch granule phenotype in tubers. Null mutants created by genome editing display rounded starch granules in an increased number that contained a reduced ratio of apparent amylose in the starch.
Collapse
Affiliation(s)
- Shrikant Sharma
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | | | | | | | | | - Per Hofvander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
14
|
Apriyanto A, Compart J, Fettke J. Transcriptomic analysis of mesocarp tissue during fruit development of the oil palm revealed specific isozymes related to starch metabolism that control oil yield. FRONTIERS IN PLANT SCIENCE 2023; 14:1220237. [PMID: 37554560 PMCID: PMC10405827 DOI: 10.3389/fpls.2023.1220237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/05/2023] [Indexed: 08/10/2023]
Abstract
The oil palm (Elaeis guineensis Jacq.) produces a large amount of oil from the fruit. However, increasing the oil production in this fruit is still challenging. A recent study has shown that starch metabolism is essential for oil synthesis in fruit-producing species. Therefore, the transcriptomic analysis by RNA-seq was performed to observe gene expression alteration related to starch metabolism genes throughout the maturity stages of oil palm fruit with different oil yields. Gene expression profiles were examined with three different oil yields group (low, medium, and high) at six fruit development phases (4, 8, 12, 16, 20, and 22 weeks after pollination). We successfully identified and analyzed differentially expressed genes in oil palm mesocarps during development. The results showed that the transcriptome profile for each developmental phase was unique. Sucrose flux to the mesocarp tissue, rapid starch turnover, and high glycolytic activity have been identified as critical factors for oil production in oil palms. For starch metabolism and the glycolytic pathway, we identified specific gene expressions of enzyme isoforms (isozymes) that correlated with oil production, which may determine the oil content. This study provides valuable information for creating new high-oil-yielding palm varieties via breeding programs or genome editing approaches.
Collapse
Affiliation(s)
- Ardha Apriyanto
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
- Research and Development, PT. Astra Agro Lestari Tbk, Jakarta Timur, Indonesia
| | - Julia Compart
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| |
Collapse
|
15
|
Wasserman LA, Kolachevskaya OO, Krivandin AV, Filatova AG, Gradov OV, Plashchina IG, Romanov GA. Changes in Structural and Thermodynamic Properties of Starch during Potato Tuber Dormancy. Int J Mol Sci 2023; 24:ijms24098397. [PMID: 37176101 PMCID: PMC10179465 DOI: 10.3390/ijms24098397] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The main reserve polysaccharide of plants-starch-is undoubtedly important for humans. One of the main sources of starch is the potato tuber, which is able to preserve starch for a long time during the so-called dormancy period. However, accumulated data show that this dormancy is only relative, which raises the question of the possibility of some kind of starch restructuring during dormancy periods. Here, the effect of long-term periods of tuber rest (at 2-4 °C) on main parameters of starches of potato tubers grown in vivo or in vitro were studied. Along with non-transgenic potatoes, Arabidopsis phytochrome B (AtPHYB) transformants were investigated. Distinct changes in starch micro and macro structures-an increase in proportion of amorphous lamellae and of large-sized and irregular-shaped granules, as well as shifts in thickness of the crystalline lamellae-were detected. The degree of such alterations, more pronounced in AtPHYB-transgenic tubers, increased with the longevity of tuber dormancy. By contrast, the polymorphic crystalline structure (B-type) of starch remained unchanged regardless of dormancy duration. Collectively, our data support the hypothesis that potato starch remains metabolically and structurally labile during the entire tuber life including the dormancy period. The revealed starch remodeling may be considered a process of tuber preadaptation to the upcoming sprouting stage.
Collapse
Affiliation(s)
- Lyubov A Wasserman
- Emanuel Institute of Biochemical Physics RAS (IBCP RAS), Kosygina Str. 4, 119334 Moscow, Russia
| | - Oksana O Kolachevskaya
- Timiryazev Institute of Plant Physiology RAS (IPP RAS), Botanicheskaya Str. 35, 127276 Moscow, Russia
| | - Alexey V Krivandin
- Emanuel Institute of Biochemical Physics RAS (IBCP RAS), Kosygina Str. 4, 119334 Moscow, Russia
| | - Anna G Filatova
- Semenov Federal Research Center for Chemical Physics RAS (ICP RAS), Kosygina Str. 4, 119991 Moscow, Russia
| | - Oleg V Gradov
- Emanuel Institute of Biochemical Physics RAS (IBCP RAS), Kosygina Str. 4, 119334 Moscow, Russia
| | - Irina G Plashchina
- Emanuel Institute of Biochemical Physics RAS (IBCP RAS), Kosygina Str. 4, 119334 Moscow, Russia
| | - Georgy A Romanov
- Timiryazev Institute of Plant Physiology RAS (IPP RAS), Botanicheskaya Str. 35, 127276 Moscow, Russia
| |
Collapse
|
16
|
Guo H, Zhou M, Zhang G, He L, Yan C, Wan M, Hu J, He W, Zeng D, Zhu B, Zeng Z. Development of homozygous tetraploid potato and whole genome doubling-induced the enrichment of H3K27ac and potentially enhanced resistance to cold-induced sweetening in tubers. HORTICULTURE RESEARCH 2023; 10:uhad017. [PMID: 36968186 PMCID: PMC10031744 DOI: 10.1093/hr/uhad017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Polyploid plants typically display advantages on some agronomically important traits over their diploid counterparts. Extensive studies have shown genetic, transcriptomic, and epigenetic dynamics upon polyploidization in multiple plant species. However, few studies have unveiled those alternations imposed only by ploidy level, without any interference from heterozygosity. Cultivated potato is highly heterozygous. Thus, in this study, we developed two homozygous autotetraploid lines and one homozygous diploid line in parallel from a homozygous diploid potato. We confirmed their ploidy levels using chloroplast counting and karyotyping. Oligo-FISH and genome re-sequencing validated that these potato lines are nearly homozygous. We investigated variations in phenotypes, transcription, and histone modifications between two ploidies. Both autotetraploid lines produced larger but fewer tubers than the diploid line. Interestingly, each autotetraploid line displayed ploidy-related differential expression for various genes. We also discovered a genome-wide enrichment of H3K27ac in genic regions upon whole-genome doubling (WGD). However, such enrichment was not associated with the differential gene expression between two ploidies. The tetraploid lines may exhibit better resistance to cold-induced sweetening (CIS) than the diploid line in tubers, potentially regulated through the expression of CIS-related key genes, which seems to be associated with the levels of H3K4me3 in cold-stored tubers. These findings will help to understand the impacts of autotetraploidization on dynamics of phenotypes, transcription, and histone modifications, as well as on CIS-related genes in response to cold storage.
Collapse
Affiliation(s)
| | | | | | | | - Caihong Yan
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu 610101, Sichuan, China
| | - Min Wan
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu 610101, Sichuan, China
| | - Jianjun Hu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Wei He
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Deying Zeng
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu 610101, Sichuan, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu 610101, Sichuan, China
| | - Bo Zhu
- Corresponding authors. E-mails: ;
| | | |
Collapse
|
17
|
Liu T, Kawochar MA, Liu S, Cheng Y, Begum S, Wang E, Zhou T, Liu T, Cai X, Song B. Suppression of the tonoplast sugar transporter, StTST3.1, affects transitory starch turnover and plant growth in potato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:342-356. [PMID: 36444716 DOI: 10.1111/tpj.16050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/25/2022] [Accepted: 11/27/2022] [Indexed: 06/16/2023]
Abstract
Transitory starch and vacuolar sugars function as highly dynamic pools of instantly accessible metabolites in plant leaf cells. Their metabolic regulation is critical for plant survival. The tonoplast sugar transporters (TSTs), responsible for sugar uptake into vacuoles, regulate cellular sugar partitioning and vacuolar sugar accumulation. However, whether TSTs are involved in leaf transient starch turnover and plant growth is unclear. Here, we found that suppressing StTST3.1 resulted in growth retardation and pale green leaves in potato plants. StTST3.1-silenced plants displayed abnormal chloroplasts and impaired photosynthetic performance. The subcellular localization assay and the oscillation expression patterns revealed that StTST3.1 encoded a tonoplast-localized protein and responded to photoperiod. Moreover, RNA-seq analyses identified that starch synthase (SS2 and SS6) and glucan water, dikinase (GWD), were downregulated in StTST3.1-silenced lines. Correspondingly, the capacity for starch synthesis and degradation was decreased in StTST3.1-silenced lines. Surprisingly, StTST3.1-silenced leaves accumulated exceptionally high levels of maltose but low levels of sucrose and hexose. Additionally, chlorophyll content was reduced in StTST3.1-silenced leaves. Analysis of chlorophyll metabolic pathways found that Non-Yellow Coloring 1 (NYC1)-like (NOL), encoding a chloroplast-localized key enzyme that catalyzes the initial step of chlorophyll b degradation, was upregulated in StTST3.1-silenced leaves. Transient overexpression of StNOL accelerated chlorophyll b degradation in tobacco leaves. Our results indicated that StTST3.1 is involved in transitory starch turnover and chlorophyll metabolism, thereby playing a critical role in normal potato plant growth.
Collapse
Affiliation(s)
- Tengfei Liu
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Md Abu Kawochar
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Bangladesh Agricultural Research Institute, Joydebpur, Gazipur, 1701, Bangladesh
| | - Shengxuan Liu
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yunxia Cheng
- College of Plant Science, Tarim University, Alar, Xinjiang, 843300, People's Republic of China
| | - Shahnewaz Begum
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Bangladesh Agricultural Research Institute, Joydebpur, Gazipur, 1701, Bangladesh
| | - Enshuang Wang
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Tingting Zhou
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Tiantian Liu
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xingkui Cai
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Botao Song
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
18
|
Simon I, Persky Z, Avital A, Harat H, Schroeder A, Shoseyov O. Foliar Application of dsRNA Targeting Endogenous Potato ( Solanum tuberosum) Isoamylase Genes ISA1, ISA2, and ISA3 Confers Transgenic Phenotype. Int J Mol Sci 2022; 24:ijms24010190. [PMID: 36613634 PMCID: PMC9820567 DOI: 10.3390/ijms24010190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Isoamylase (ISA) is a debranching enzyme found in many plants, which hydrolyzes (1-6)-α-D glucosidic linkages in starch, amylopectin, and β-dextrins, and is thought to be responsible for starch granule formation (ISA1 and ISA2) and degradation (ISA3). Lipid-modified PEI (lmPEI) was synthesized as a carrier for long double-stranded RNA (dsRNA, 250-bp), which targets the three isoamylase isoforms. The particles were applied to the plant via the foliar spray and were differentially effective in suppressing the expressions of ISA1 and ISA2 in the potato leaves, and ISA3 in the tubers. Plant growth was not significantly impaired, and starch levels in the tubers were not affected as well. Interestingly, the treated plants had significantly smaller starch granule sizes as well as increased sucrose content, which led to an early sprouting phenotype. We confirm the proposal of previous research that an increased number of small starch granules could be responsible for an accelerated turnover of glucan chains and, thus, the rapid synthesis of sucrose, and we propose a new relationship between ISA3 and the starch granule size. The implications of this study are in achieving a transgenic phenotype for endogenous plant genes using a systemic, novel delivery system, and foliar applications of dsRNA for agriculture.
Collapse
Affiliation(s)
- Ido Simon
- Robert H. Smith Faculty of Agriculture Food and Environment, Hebrew University, Rehovot 76100, Israel
| | - Zohar Persky
- Robert H. Smith Faculty of Agriculture Food and Environment, Hebrew University, Rehovot 76100, Israel
| | - Aviram Avital
- Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Hila Harat
- Robert H. Smith Faculty of Agriculture Food and Environment, Hebrew University, Rehovot 76100, Israel
| | - Avi Schroeder
- Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Oded Shoseyov
- Robert H. Smith Faculty of Agriculture Food and Environment, Hebrew University, Rehovot 76100, Israel
- Correspondence:
| |
Collapse
|
19
|
Tanvir R, Wang L, Zhang A, Li L. Orphan Genes in Crop Improvement: Enhancing Potato Tuber Protein without Impacting Yield. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223076. [PMID: 36432805 PMCID: PMC9696052 DOI: 10.3390/plants11223076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 05/03/2023]
Abstract
Qua-Quine Starch (QQS), an Arabidopsis thaliana orphan gene, and its interactor, Arabidopsis Nuclear Factor Y subunit C4 (AtNF-YC4), can increase the total leaf and seed protein in different plants. Despite their potential in developing protein-rich crop varieties, their influence on the protein content of the stem, modified stem, and tuber was never investigated. Potato (Solanum tuberosum) is one of the most valuable food crops worldwide. This staple food is rich in starch, vitamins (B6, C), phenolics, flavonoids, polyamines, carotenoids, and various minerals but lacks adequate proteins necessary for a healthy human diet. Here we expressed A. thaliana QQS (AtQQS) and overexpressed S. tuberosum NF-YC4 (StNF-YC4) in potatoes to determine their influence on the composition and morphological characteristics of potato tubers. Our data demonstrated higher protein and reduced starch content in potato tubers without significantly compromising the tuber yield, shape, and numbers, when QQS was expressed or StNF-YC4 was overexpressed. Publicly available expression data, promoter region, and protein−protein interaction analyses of StNF-YC4 suggest its potential functionality in potato storage protein, metabolism, stress resistance, and defense against pests and pathogens. The overall outcomes of this study support QQS and NF-YC4’s potential utilization as tools to enhance tuber protein content in plants.
Collapse
Affiliation(s)
- Rezwan Tanvir
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Lei Wang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Amy Zhang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA
- Mississippi School for Mathematics and Science, Columbus, MS 39701, USA
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA
- Correspondence: ; Tel.: +1-662-325-7570
| |
Collapse
|
20
|
Kulakova A, Efremov G, Shchennikova A, Kochieva E. Dependence of the content of starch and reducing sugars on the level of expression of the genes of β-amylases StBAM1 and StBAM9 and the amylase inhibitor StAI during long-term low-temperature storage of potato tubers. Vavilovskii Zhurnal Genet Selektsii 2022; 26:507-514. [PMID: 36313822 PMCID: PMC9556308 DOI: 10.18699/vjgb-22-62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/06/2022] Open
Abstract
Solanum tuberosum L. is the most important non-grain starch crop with a potential yield of 38-48 t/ha and a starch content of 13.2-18.7 %. Potato tubers are stored at a low temperature (2-4 °C) in a state of physiological dormancy. A disadvantage of this type of storage is the degradation of starch and the accumulation of reducing sugars (cold-induced sweetening), including due to an increase in the activity of β-amylases that hydrolyze starch to maltose. In this study, a comparative analysis of the β-amylase (StBAM1, StBAM9) and amylase inhibitor (StAI ) gene expression, as well as starch and reducing sugar content in tubers during long-term low-temperature storage (September, February, April) was performed using potato cultivars Nadezhda, Barin, Krasavchik, Severnoe siyanie and Utro. The β-amylase genes, StBAM9 and one of the two StBAM1 homologs (with the highest degree of homology with AtBAM1), were selected based on phylogenetic analysis data. Evaluation of the expression of these genes and the amylase inhibitor gene showed a tendency to decrease in transcription for all analyzed cultivars. The starch content also significantly decreased during tuber storage. The amount of reducing sugars increased in the September-April period, while in February-April, their content did not change (Krasavchik), decreased (Barin, Severnoe siyanie) or continued to grow (Utro, Nadezhda). It can be assumed that the gene activity of StBAM1 and StBAM9 correlates with the amount of starch (positively) and monosaccharides (negatively). The level of StAI expression, in turn, may be directly dependent on the level of StBAM1 expression. At the same time, there is no relationship between the degree of cultivar predisposition to cold-induced sweetening and the expression profile of the StBAM1, StBAM9, and StAI genes.
Collapse
Affiliation(s)
- A.V. Kulakova
- Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - G.I. Efremov
- Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - A.V. Shchennikova
- Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - E.Z. Kochieva
- Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
21
|
Recent Advances in Molecular Improvement for Potato Tuber Traits. Int J Mol Sci 2022; 23:ijms23179982. [PMID: 36077378 PMCID: PMC9456189 DOI: 10.3390/ijms23179982] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Potato is an important crop due to its nutritional value and high yield potential. Improving the quality and quantity of tubers remains one of the most important breeding objectives. Genetic mapping helps to identify suitable markers for use in the molecular breeding, and combined with transgenic approaches provides an efficient way for gaining desirable traits. The advanced plant breeding tools and molecular techniques, e.g., TALENS, CRISPR-Cas9, RNAi, and cisgenesis, have been successfully used to improve the yield and nutritional value of potatoes in an increasing world population scenario. The emerging methods like genome editing tools can avoid incorporating transgene to keep the food more secure. Multiple success cases have been documented in genome editing literature. Recent advances in potato breeding and transgenic approaches to improve tuber quality and quantity have been summarized in this review.
Collapse
|
22
|
Xiao Q, Huang T, Cao W, Ma K, Liu T, Xing F, Ma Q, Duan H, Ling M, Ni X, Liu Z. Profiling of transcriptional regulators associated with starch biosynthesis in sorghum ( Sorghum bicolor L.). FRONTIERS IN PLANT SCIENCE 2022; 13:999747. [PMID: 36110358 PMCID: PMC9468648 DOI: 10.3389/fpls.2022.999747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Starch presents as the major component of grain endosperm of sorghum (Sorghum bicolor L.) and other cereals, serving as the main energy supplier for both plants and animals, as well as important industrial raw materials of human beings, and was intensively concerned world widely. However, few documents focused on the pathway and transcriptional regulations of starch biosynthesis in sorghum. Here we presented the RNA-sequencing profiles of 20 sorghum tissues at different developmental stages to dissect key genes associated with sorghum starch biosynthesis and potential transcriptional regulations. A total of 1,708 highly expressed genes were detected, namely, 416 in grains, 736 in inflorescence, 73 in the stalk, 215 in the root, and 268 genes in the leaf. Besides, 27 genes encoded key enzymes associated with starch biosynthesis in sorghum were identified, namely, six for ADP-glucose pyrophosphorylase (AGPase), 10 for starch synthases (SSs), four for both starch-branching enzymes (SBE) and starch-debranching enzymes (DBEs), two for starch phosphorylases (SPs), and one for Brittle-1 (BT1). In addition, 65 transcription factors (TFs) that are highly expressed in endosperm were detected to co-express with 16 out of 27 genes, and 90 cis-elements were possessed by all 27 identified genes. Four NAC TFs were cloned, and the further assay results showed that three of them could in vitro bind to the CACGCAA motif within the promoters of SbBt1 and SbGBSSI, two key genes associated with starch biosynthesis in sorghum, functioning in similar ways that reported in other cereals. These results confirmed that sorghum starch biosynthesis might share the same or similar transcriptional regulations documented in other cereals, and provided informative references for further regulatory mechanism dissection of TFs involved in starch biosynthesis in sorghum.
Collapse
Affiliation(s)
- Qianlin Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Tianhui Huang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Wan Cao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Kuang Ma
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Tingting Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Fangyu Xing
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Qiannan Ma
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Hong Duan
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Min Ling
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xianlin Ni
- Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Deyang, China
- Sichuan Sub Center, National Sorghum Improvement Center, Luzhou, China
| | - Zhizhai Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
23
|
Dissecting the Chloroplast Proteome of the Potato (Solanum Tuberosum L.) and Its Comparison with the Tuber Amyloplast Proteome. PLANTS 2022; 11:plants11151915. [PMID: 35893618 PMCID: PMC9332351 DOI: 10.3390/plants11151915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/02/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
The chloroplast, the energy organelle unique to plants and green algae, performs many functions, including photosynthesis and biosynthesis of metabolites. However, as the most critical tuber crop worldwide, the chloroplast proteome of potato (Solanum tuberosum) has not been explored. Here, we use Percoll density gradient centrifugation to isolate intact chloroplasts from leaves of potato cultivar E3 and establish a reference proteome map of potato chloroplast by bottom-up proteomics. A total of 1834 non-redundant proteins were identified in the chloroplast proteome, including 51 proteins encoded by the chloroplast genome. Extensive sequence-based localization prediction revealed over 62% of proteins to be chloroplast resident by at least one algorithm. Sixteen proteins were selected to evaluate the prediction result by transient fluorescence assay, which confirmed that 14 were distributed in distinct internal compartments of the chloroplast. In addition, we identified 136 phosphorylation sites in 61 proteins encoded by chloroplast proteome. Furthermore, we reconstruct the snapshots along starch metabolic pathways in the two different types of plastids by a comparative analysis between chloroplast and previously reported amyloplast proteomes. Altogether, our results establish a comprehensive proteome map with post-translationally modified sites of potato chloroplast, which would provide the theoretical principle for the research of the photosynthesis pathway and starch metabolism.
Collapse
|
24
|
Mishra S, Salichs O, DiGennaro P. Temporally Regulated Plant-Nematode Gene Networks Implicate Metabolic Pathways. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:616-626. [PMID: 35343249 DOI: 10.1094/mpmi-10-21-0256-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Root-knot nematodes (RKN) (Meloidogyne spp.) constantly communicate with their host to establish and maintain specialized feeding cells. They likely regulate this interaction by monitoring host biology. As plant host biology is influenced by light and gene expression varies correspondingly, RKN gene transcription and biology likely follow similar patterns. We profiled RKN transcripts over a period of 24 h and identified approximately 1,000 differentially expressed genes (DEG) in nematode and model host Medicago truncatula, with the majority of DEG occurring in the middle of the dark period. Many of the plant DEG are involved in defense-response pathways, while the nematode DEG are involved in establishing infection, suggesting a strong host-nematode interaction occurring during the dark. To identify interacting genes, we developed a plant-nematode gene network based on DEG signals. The phenylpropanoid pathway was identified as a significant plant-nematode interacting pathway, representing four of 33 genes in the network. We further examined if this pathway interacts similarly in another host, tomato, by quantifying phenolic and flavonoid compounds produced by this pathway. Phenolic compounds showed a significant increase in production during the day in uninoculated plants as compared with during the night. However, during the dark period, there was an increase in flavonoid content in infected plants when compared with uninfected controls, indicating potential host defense mechanisms active during the height of nematode activity at night. This study elucidated cross-species interacting pathways that could be targeted to develop novel management strategies to these important pests.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Shova Mishra
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Oscar Salichs
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Peter DiGennaro
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, U.S.A
| |
Collapse
|
25
|
Sergeeva EM, Larichev KT, Salina EA, Kochetov AV. Starch metabolism in potato <i>Solanum tuberosum</i> L. Vavilovskii Zhurnal Genet Selektsii 2022; 26:250-263. [PMID: 35774362 PMCID: PMC9168746 DOI: 10.18699/vjgb-22-32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
Starch is a major storage carbohydrate in plants. It is an important source of calories in the human and animal diet. Also, it is widely used in various industries. Native starch consists of water-insoluble semicrystalline granules formed by natural glucose polymers amylose and amylopectin. The physicochemical properties of starch are determined by the amylose:amylopectin ratio in the granule and degrees of their polymerization and phosphorylation. Potato Solanum tuberosum L. is one of the main starch-producing crops. Growing industrial needs necessitate the breeding of plant varieties with increased starch content and specified starch properties. This task demands detailed information on starch metabolism in the producing plant. It is a complex process, requiring the orchestrated work of many enzymes, transporter and targeting proteins, transcription factors, and other regulators. Two types of starch are recognized with regard to their biological functions. Transitory starch is synthesized in chloroplasts of photosynthetic organs and degraded in the absence of light, providing carbohydrates for cell needs. Storage starch is synthesized and stored in amyloplasts of storage organs: grains and tubers. The main enzymatic reactions of starch biosynthesis and degradation, as well as carbohydrate transport and metabolism, are well known in the case of transitory starch of the model plant Arabidopsis thaliana. Less is known about features of starch metabolism in storage organs, in particular, potato tubers. Several issues remain obscure: the roles of enzyme isoforms and different regulatory factors in tissues at various plant developmental stages and under different environmental conditions; alternative enzymatic processes; targeting and transport proteins. In this review, the key enzymatic reactions of plant carbohydrate metabolism, transitory and storage starch biosynthesis,
and starch degradation are discussed, and features specific for potato are outlined. Attention is also paid to the
known regulatory factors affecting starch metabolism
Collapse
Affiliation(s)
- E. M. Sergeeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - K. T. Larichev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - E. A. Salina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - A. V. Kochetov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
26
|
Zhang Z, Zhao J, Tappiban P, Ying Y, Hu Y, Xu F, Bao J. Diurnal changes in starch molecular structures and expression profiles of starch biosynthesis enzymes in rice developing seeds. Int J Biol Macromol 2022; 209:2165-2174. [PMID: 35500783 DOI: 10.1016/j.ijbiomac.2022.04.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/10/2022] [Accepted: 04/26/2022] [Indexed: 11/05/2022]
Abstract
The diurnal changes in the expression profiles of starch synthesis related enzymes (SSREs) has been previously studied in transitory starches, while its influences on storage starch molecular structures in the rice endosperm during seed development have not been elucidated. In this study, the changes in the transcript levels of starch synthesis related genes (SSRGs), the protein abundances and enzyme activities of SSREs as well as starch molecular structures in rice endosperm at 10 days after flowering (DAF) over the diurnal cycle were analyzed. It was found that the expression profiles of SSRG and the protein contents of SSREs displayed different diurnal patterns between two indica rice varieties with medium- and high-amylose content (AC), respectively. The expression levels of SSRGs were higher in the light time, and most SSREs also accumulated during this period except debranching enzymes. Amylose synthesis displayed distinct diurnal patterns in two rice varieties, which is attributed to the diurnal changes in the protein content of granule-bound starch synthase I (GBSSI), but amylopectin chain-length distributions (CLDs) remained unaltered due to its vast numbers of branches. The results provide the first step to understand the roles of each enzyme isoform involved in starch synthesis in response to diurnal regulation in rice endosperm.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jiajia Zhao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Piengtawan Tappiban
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yining Ying
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yaqi Hu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Feifei Xu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China.
| |
Collapse
|
27
|
Beyene G, Chauhan RD, Gehan J, Siritunga D, Taylor N. Cassava shrunken-2 homolog MeAPL3 determines storage root starch and dry matter content and modulates storage root postharvest physiological deterioration. PLANT MOLECULAR BIOLOGY 2022; 109:283-299. [PMID: 32270429 PMCID: PMC9163024 DOI: 10.1007/s11103-020-00995-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/05/2020] [Indexed: 05/05/2023]
Abstract
Among the five cassava isoforms (MeAPL1-MeAPL5), MeAPL3 is responsible for determining storage root starch content. Degree of storage root postharvest physiological deterioration (PPD) is directly correlated with starch content. AGPase is heterotetramer composed of two small and two large subunits each coded by small gene families in higher plants. Studies in cassava (Manihot esculenta) identified and characterized five isoforms of Manihot esculenta ADP-glucose pyrophosphorylase large subunit (MeAPL1-MeAPL5) and employed virus induced gene silencing (VIGS) to show that MeAPL3 is the key isoform responsible for starch and dry matter accumulation in cassava storage roots. Silencing of MeAPL3 in cassava through stable transgenic lines resulted in plants displaying significant reduction in storage root starch and dry matter content (DMC) and induced a distinct phenotype associated with increased petiole/stem angle, resulting in a droopy leaf phenotype. Plants with reduced starch and DMC also displayed significantly reduced or no postharvest physiological deterioration (PPD) compared to controls and lines with high DMC and starch content. This provides strong evidence for direct relationships between starch/dry matter content and its role in PPD and canopy architecture traits in cassava.
Collapse
Affiliation(s)
- Getu Beyene
- Donald Danforth Plant Science Center, St. Louis, MO, USA.
| | | | - Jackson Gehan
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Dimuth Siritunga
- Department of Biology, University of Puerto Rico, Mayaguez, Puerto Rico
| | - Nigel Taylor
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| |
Collapse
|
28
|
Jiang H, Li X, Ma L, Ren Y, Bi Y, Prusky D. Transcriptome sequencing and differential expression analysis of natural and BTH-treated wound healing in potato tubers (Solanum tuberosum L.). BMC Genomics 2022; 23:263. [PMID: 35382736 PMCID: PMC8981635 DOI: 10.1186/s12864-022-08480-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/14/2022] [Indexed: 02/05/2023] Open
Abstract
Background Wound healing is a representative phenomenon of potato tubers subjected to mechanical injuries. Our previous results found that benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) promoted the wound healing of potato tubers. However, the molecular mechanism related to inducible wound healing remains unknown. Results Transcriptomic evaluation of healing tissues from potato tubers at three stages, namely, 0 d (nonhealing), 5 d (wounded tubers healed for 5 d) and 5 d (BTH-treated tubers healed for 5 d) using RNA-Seq and differentially expressed genes (DEGs) analysis showed that more than 515 million high-quality reads were generated and a total of 7665 DEGs were enriched, and 16 of these DEGs were selected by qRT-PCR analysis to further confirm the RNA sequencing data. Gene ontology (GO) enrichment analysis indicated that the most highly DEGs were involved in metabolic and cellular processes, and KEGG enrichment analysis indicated that a large number of DEGs were associated with plant hormones, starch and sugar metabolism, fatty acid metabolism, phenylpropanoid biosynthesis and terpenoid skeleton biosynthesis. Furthermore, a few candidate transcription factors, including MYB, NAC and WRKY, and genes related to Ca2+-mediated signal transduction were also found to be differentially expressed during wound healing. Most of these enriched DEGs were upregulated after BTH treatment. Conclusion This comparative expression profile provided useful resources for studies of the molecular mechanism via these promising candidates involved in natural or elicitor-induced wound healing in potato tubers. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08480-1.
Collapse
Affiliation(s)
- Hong Jiang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Xue Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Li Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yingyue Ren
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.,Department of Postharvest Science, Agricultural Research Organization, 7505101, Rishon LeZion, Israel
| |
Collapse
|
29
|
Heo J, Bang WY, Jeong JC, Park SC, Lee JM, Choi S, Lee B, Lee YK, Kim K, Park SJ. The comparisons of expression pattern reveal molecular regulation of fruit metabolites in S. nigrum and S. lycopersicum. Sci Rep 2022; 12:5001. [PMID: 35322121 PMCID: PMC8943121 DOI: 10.1038/s41598-022-09032-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/15/2022] [Indexed: 11/28/2022] Open
Abstract
Solanum nigrum, known as black nightshade, is a medicinal plant that contains many beneficial metabolites in its fruit. The molecular mechanisms underlying the synthesis of these metabolites remain uninvestigated due to limited genetic information. Here, we identified 47,470 unigenes of S. nigrum from three different tissues by de novo transcriptome assembly, and 78.4% of these genes were functionally annotated. Moreover, gene ontology (GO) analysis using 18,860 differentially expressed genes (DEGs) revealed tissue-specific gene expression regulation. We compared gene expression patterns between S. nigrum and tomato (S. lycopersicum) in three tissue types. The expression patterns of carotenoid biosynthetic genes were different between the two species. Comparison of the expression patterns of flavonoid biosynthetic genes showed that 9 out of 14 enzyme-coding genes were highly upregulated in the fruit of S. nigrum. Using CRISPR-Cas9-mediated gene editing, we knocked out the R2R3-MYB transcription factor SnAN2 gene, an ortholog of S. lycopersicum ANTHOCYANIN 2. The mutants showed yellow/green fruits, suggesting that SnAN2 plays a major role in anthocyanin synthesis in S. nigrum. This study revealed the connection between gene expression regulation and corresponding phenotypic differences through comparative analysis between two closely related species and provided genetic resources for S. nigrum.
Collapse
Affiliation(s)
- Jung Heo
- Division of Biological Sciences and Research Institute for Basic Science, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Woo Young Bang
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Jae Cheol Jeong
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea
| | - Sung-Chul Park
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sungho Choi
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Byounghee Lee
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Young Koung Lee
- Institute of Plasma Technology, Korea Institute of Fusion Energy, 37 Dongjangsan-ro, Gunsan-si, Jeollabuk-do, 54004, Republic of Korea
| | - Keunhwa Kim
- Division of Biological Sciences and Research Institute for Basic Science, Wonkwang University, Iksan, 54538, Republic of Korea.
| | - Soon Ju Park
- Division of Biological Sciences and Research Institute for Basic Science, Wonkwang University, Iksan, 54538, Republic of Korea.
| |
Collapse
|
30
|
Li D, Lu X, Zhu Y, Pan J, Zhou S, Zhang X, Zhu G, Shang Y, Huang S, Zhang C. The multi-omics basis of potato heterosis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:671-687. [PMID: 34963038 DOI: 10.1111/jipb.13211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Heterosis is a fundamental biological phenomenon characterized by the superior performance of hybrids over their parents. Although tremendous progress has been reported in seed crops, the molecular mechanisms underlying heterosis in clonally propagated crops are largely unknown. Potato (Solanum tuberosum L.) is the most important tuber crop and an ongoing revolution is transforming potato from a clonally propagated tetraploid crop into a seed-propagated diploid hybrid potato. In our previous study, we developed the first generation of highly homozygous inbred lines of potato and hybrids with strong heterosis. Here, we integrated transcriptome, metabolome, and DNA methylation data to explore the genetic and molecular basis of potato heterosis at three developmental stages. We found that the initial establishment of heterosis in diploid potato was mainly due to dominant complementation. Flower color, male fertility, and starch and sucrose metabolism showed obvious gene dominant complementation in hybrids, and hybrids devoted more energy to primary metabolism for rapid growth. In addition, we identified ~2 700 allele-specific expression genes at each stage, which likely function in potato heterosis and might be regulated by CHH allele-specific methylation level. Our multi-omics analysis provides insight into heterosis in potato and facilitates the exploitation of heterosis in potato breeding.
Collapse
Affiliation(s)
- Dawei Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Synthetic Biology Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518172, China
| | - Xiaoyue Lu
- Yunnan Key Laboratory of Potato Biology, The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Yanhui Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Synthetic Biology Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518172, China
| | - Jun Pan
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Synthetic Biology Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518172, China
| | - Shaoqun Zhou
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Synthetic Biology Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518172, China
| | - Xinyan Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Synthetic Biology Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518172, China
| | - Guangtao Zhu
- Yunnan Key Laboratory of Potato Biology, The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Yi Shang
- Yunnan Key Laboratory of Potato Biology, The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Sanwen Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Synthetic Biology Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518172, China
| | - Chunzhi Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Synthetic Biology Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518172, China
| |
Collapse
|
31
|
Uitdewilligen JGAML, Wolters AMA, van Eck HJ, Visser RGF. Allelic variation for alpha-Glucan Water Dikinase is associated with starch phosphate content in tetraploid potato. PLANT MOLECULAR BIOLOGY 2022; 108:469-480. [PMID: 34994920 PMCID: PMC8894227 DOI: 10.1007/s11103-021-01236-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Association analysis resulted in the identification of specific StGWD alleles causing either an increase or decrease in starch phosphate content which was verified in diploid and tetraploid potato mapping populations. Potatoes are grown for various purposes like French fries, table potatoes, crisps and for their starch. One of the most important aspects of potato starch is that it contains a high amount of phosphate ester groups which are considered to be important for providing improved functionalization after derivatization processes. Little is known about the variation in phosphate content as such in different potato varieties and thus we studied the genetic diversity for this trait. From other studies it was clear that the phosphate content is controlled by a quantitative trait locus (QTL) underlying the candidate gene α-Glucan Water Dikinase (StGWD) on chromosome 5. We performed direct amplicon sequencing of this gene by Sanger sequencing. Sequences of two StGWD amplicons from a global collection of 398 commercial cultivars and progenitor lines were used to identify 16 different haplotypes. By assigning tag SNPs to these haplotypes, each of the four alleles present in a cultivar could be deduced and linked to a phosphate content. A high value for intra-individual heterozygosity was observed (Ho = 0.765). The average number of different haplotypes per individual (Ai) was 3.1. Pedigree analysis confirmed that the haplotypes are identical-by-descent (IBD) and offered insight in the breeding history of elite potato germplasm. Haplotypes originating from introgression of wild potato accessions carrying resistance genes could be traced. Furthermore, association analysis resulted in the identification of specific StGWD alleles causing either an increase or decrease in starch phosphate content varying from 12 nmol PO4/mg starch to 38 nmol PO4/mg starch. These allele effects were verified in diploid and tetraploid mapping populations and offer possibilities to breed and select for this trait.
Collapse
Affiliation(s)
- J. G. A. M. L. Uitdewilligen
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ Wageningen, The Netherlands
- The Graduate School for Experimental Plant Sciences, Wageningen, The Netherlands
- Present Address: Limgroup BV, Born, The Netherlands
| | - A. M. A. Wolters
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ Wageningen, The Netherlands
| | - H. J. van Eck
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ Wageningen, The Netherlands
- Centre for BioSystems Genomics, Wageningen, The Netherlands
| | - R. G. F. Visser
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ Wageningen, The Netherlands
- Centre for BioSystems Genomics, Wageningen, The Netherlands
| |
Collapse
|
32
|
Ma Y, Choi SR, Wang Y, Chhapekar SS, Zhang X, Wang Y, Zhang X, Zhu M, Liu D, Zuo Z, Yan X, Gan C, Zhao D, Liang Y, Pang W, Lim YP. Starch content changes and metabolism-related gene regulation of Chinese cabbage synergistically induced by Plasmodiophora brassicae infection. HORTICULTURE RESEARCH 2022; 9:uhab071. [PMID: 35043157 PMCID: PMC9015896 DOI: 10.1093/hr/uhab071] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/31/2021] [Indexed: 05/10/2023]
Abstract
Clubroot is one of the major diseases adversely affecting Chinese cabbage (Brassica rapa) yield and quality. To precisely characterize the Plasmodiophora brassicae infection on Chinese cabbage, we developed a dual fluorescent staining method for simultaneously examining the pathogen, cell structures, and starch grains. The number of starch (amylopectin) grains increased in B. rapa roots infected by P. brassicae, especially from 14 to 21 days after inoculation. Therefore, the expression levels of 38 core starch metabolism genes were investigated by quantitative real-time PCR. Most genes related to starch synthesis were up-regulated at seven days after the P. brassicae inoculation, whereas the expression levels of the starch degradation-related genes increased at 14 days after the inoculation. Then genes encoding the core enzymes involved in starch metabolism were investigated by assessing their chromosomal distributions, structures, duplication events, and synteny among Brassica species. Genome comparisons indicated that 38 non-redundant genes belonging to six core gene families related to starch metabolism are highly conserved among Arabidopsis thaliana, B. rapa, Brassica nigra, and Brassica oleracea. Genome sequencing projects have revealed that P. brassicae obtained host nutrients by manipulating plant metabolism. Starch may serve as a carbon source for P. brassicae colonization as indicated by the histological observation and transcriptomic analysis. Results of this study may elucidate the evolution and expression of core starch metabolism genes and provide researchers with novel insights into the pathogenesis of clubroot in B. rapa.
Collapse
Affiliation(s)
- Yinbo Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Su Ryun Choi
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Yu Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Sushil Satish Chhapekar
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Xue Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yingjun Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xueying Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Meiyu Zhu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Di Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhennan Zuo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xinyu Yan
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Caixia Gan
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan 430070, China
| | - Di Zhao
- Analytical and Testing Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue Liang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Wenxing Pang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 305-764, Republic of Korea
| |
Collapse
|
33
|
Analysis of Global Gene Expression in Maize (Zea mays) Vegetative and Reproductive Tissues That Differ in Accumulation of Starch and Sucrose. PLANTS 2022; 11:plants11030238. [PMID: 35161219 PMCID: PMC8838981 DOI: 10.3390/plants11030238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022]
Abstract
Carbon allocation between vegetative and reproductive tissues impacts cereal grain production. Despite great agricultural importance, sink–source relationships have not been fully characterized at the early reproductive stages in maize. Here, we quantify the accumulation of non-structural carbohydrates and patterns of gene expression in the top internode of the stem and the female inflorescence of maize at the onset of grain filling (reproductive stage R1). Top internode stem and female inflorescence tissues of the Puma maize inbred line were collected at reproductive stage R1 (without pollination) and non-structural carbohydrates were quantified by spectrophotometry. The female inflorescence accumulated starch at higher levels than the top internode of the stem. Global mRNA transcript levels were then evaluated in both tissues by RNA sequencing. Gene expression analysis identified 491 genes differentially expressed between the female inflorescence and the top stem internode. Gene ontology classification of differentially expressed genes showed enrichment for sucrose synthesis, the light-dependent reactions of photosynthesis, and transmembrane transporters. Our results suggest that sugar transporters play a key role in sugar partitioning in the maize stem and reveal previously uncharacterized differences between the female inflorescence and the top internode of the stem at early reproductive stages.
Collapse
|
34
|
Expression analyses of soluble starch synthase and starch branching enzyme isoforms in stem and leaf tissues under different photoperiods in lentil (Lens culinaris Medik.). Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00976-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
35
|
Takeuchi A, Ohnuma M, Teramura H, Asano K, Noda T, Kusano H, Tamura K, Shimada H. Creation of a potato mutant lacking the starch branching enzyme gene StSBE3 that was generated by genome editing using the CRISPR/dMac3-Cas9 system. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:345-353. [PMID: 34782822 PMCID: PMC8562579 DOI: 10.5511/plantbiotechnology.21.0727a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The potato tuber starch trait is changed depending on the composition of amylose and amylopectin. The amount of amylopectin is determined by the activity of the starch branching enzymes SBE1, SBE2, and SBE3 in potato. SBE3, a homolog of rice BEI, is a major gene that is abundant in tubers. In this study, we created mutants of the potato SBE3 gene using CRISPR/Cas9 attached to the translation enhancer dMac3. Potato has a tetraploid genome, and a four-allele mutant of the SBE3 gene is desired. Mutations in the SBE3 gene were found in 89 of 126 transformants of potato plants. Among these mutants, 10 lines contained four mutant SBE3 genes, indicating that 8% efficiency of target mutagenesis was achieved. These mutants grew normally, similar to the wild-type plant, and yielded sufficient amounts of tubers. The potato starch in these tubers was similar to that of the rice BEI mutant. Western blot analysis revealed the defective production of SBE3 in the mutant tubers, suggesting that these transformants were loss-of-function mutants of SBE3.
Collapse
Affiliation(s)
- Ami Takeuchi
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Mariko Ohnuma
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Hiroshi Teramura
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Kenji Asano
- Division of Northern Field Crop Research, Field Crop Breeding Group, NARO, 9-4 Shinsei-minami, Memuro, Kasai, Hokkaido 082-0081, Japan
| | - Takahiro Noda
- Division of Northern Field Crop Research, Field Crop Breeding Group, NARO, 9-4 Shinsei-minami, Memuro, Kasai, Hokkaido 082-0081, Japan
| | - Hiroaki Kusano
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Koji Tamura
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| |
Collapse
|
36
|
Song K, Lee DW, Kim J, Kim J, Guim H, Kim K, Jeon JS, Choi G. EARLY STARVATION 1 Is a Functionally Conserved Protein Promoting Gravitropic Responses in Plants by Forming Starch Granules. FRONTIERS IN PLANT SCIENCE 2021; 12:628948. [PMID: 34367195 PMCID: PMC8343138 DOI: 10.3389/fpls.2021.628948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/29/2021] [Indexed: 05/29/2023]
Abstract
Starch granules in the endodermis of plant hypocotyls act as statoliths that promote hypocotyl negative gravitropism-the directional growth of hypocotyls against gravity-in the dark. To identify the molecular components that regulate hypocotyl negative gravitropism, we performed a mutagenesis screen and isolated reduced gravitropic 1 (rgv1) mutants that lack starch granules in their hypocotyl endodermis and show reduced hypocotyl negative gravitropism in the dark. Using whole genome sequencing, we identified three different rgv1 mutants that are allelic to the previously reported early starvation 1 mutant, which is rapidly depleted of starch just before the dawn. ESV1 orthologs are present in starch-producing green organisms, suggesting ESV1 is a functionally conserved protein necessary for the formation of starch granules. Consistent with this, we found that liverwort and rice ESV1 can complement the Arabidopsis ESV1 mutant phenotype for both starch granules and hypocotyl negative gravitropism. To further investigate the function of ESV1 in other plants, we isolated rice ESV1 mutants and found that they show reduced levels of starch in their leaves and loosely packed starch granules in their grains. Both Arabidopsis and rice ESV1 mutants also lack starch granules in root columella and show reduced root gravitropism. Together, these results indicate ESV1 is a functionally conserved protein that promotes gravitropic responses in plants via its role in starch granule formation.
Collapse
Affiliation(s)
- Kijong Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Dae-Woo Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin-si, South Korea
| | - Jeongheon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jaewook Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hwanuk Guim
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, South Korea
| | - Keunhwa Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin-si, South Korea
| | - Giltsu Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
37
|
Zierer W, Rüscher D, Sonnewald U, Sonnewald S. Tuber and Tuberous Root Development. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:551-580. [PMID: 33788583 DOI: 10.1146/annurev-arplant-080720-084456] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Root and tuber crops have been an important part of human nutrition since the early days of humanity, providing us with essential carbohydrates, proteins, and vitamins. Today, they are especially important in tropical and subtropical regions of the world, where they help to feed an ever-growing population. Early induction and storage organ size are important agricultural traits, as they determine yield over time. During potato tuberization, environmental and metabolic status are sensed, ensuring proper timing of tuberization mediated by phloem-mobile signals. Coordinated cellular restructuring and expansion growth, as well as controlled storage metabolism in the tuber, are executed. This review summarizes our current understanding of potato tuber development and highlights similarities and differences to important tuberous root crop species like sweetpotato and cassava. Finally, we point out knowledge gaps that need to be filled before a complete picture of storage organ development can emerge.
Collapse
Affiliation(s)
- Wolfgang Zierer
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; , , ,
| | - David Rüscher
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; , , ,
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; , , ,
| | - Sophia Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; , , ,
| |
Collapse
|
38
|
WU Y, SUN M, LI S, MIN R, GAO C, LYU Q, REN Z, XIA Y. Molecular cloning, characterization and expression analysis of three key starch synthesis-related genes from the bulb of a rare lily germplasm, Lilium brownii var. giganteum. J Zhejiang Univ Sci B 2021; 22:476-491. [PMID: 34128371 PMCID: PMC8214946 DOI: 10.1631/jzus.b2000545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/10/2020] [Indexed: 11/11/2022]
Abstract
Starch is the predominant compound in bulb scales, and previous studies have shown that bulblet development is closely associated with starch enrichment. However, how starch synthesis affects bulbification at the molecular level is unclear. In this study, we demonstrate that Lilium brownii var. giganteum, a wild lily with a giant bulb in nature, and L. brownii, the native species, have different starch levels and characteristics according to cytological and ultra-structural observations. We cloned the complete sequence of three key gene-encoding enzymes (LbgAGPS, LbgGBSS, andLbgSSIII) during starch synthesis by rapid amplification of 5' and 3' complementary DNA (cDNA) ends (RACE) technology. Bioinformatics analysis revealed that the proteins deduced by these genes contain the canonical conserved domains. Constructed phylogenetic trees confirmed the evolutionary relationships with proteins from other species, including monocotyledons and dicotyledons. The transcript levels of various tissues and time course samples obtained during bulblet development uncovered relatively high expression levels in bulblets and gradual increase expression accompanying bulblet growth. Moreover, a set of single nucleotide polymorphisms (SNPs) was discovered in the AGPS genes of four lily genotypes, and a purifying selection fashion was predicted according to the non-synonymous/synonymous (Ka/Ks) values. Taken together, our results suggested that key starch-synthesizing genes might play important roles in bulblet development and lead to distinctive phenotypes in bulblet size.
Collapse
Affiliation(s)
- Yun WU
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou310018, China
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Minyi SUN
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Shiqi LI
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Ruihan MIN
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Cong GAO
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Qundan LYU
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui323000, China
| | - Ziming REN
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Yiping XIA
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
39
|
Van Harsselaar JK, Claußen J, Lübeck J, Wörlein N, Uhlmann N, Sonnewald U, Gerth S. X-Ray CT Phenotyping Reveals Bi-Phasic Growth Phases of Potato Tubers Exposed to Combined Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:613108. [PMID: 33859657 PMCID: PMC8042327 DOI: 10.3389/fpls.2021.613108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/11/2021] [Indexed: 05/06/2023]
Abstract
As a consequence of climate change, heat waves in combination with extended drought periods will be an increasing threat to crop yield. Therefore, breeding stress tolerant crop plants is an urgent need. Breeding for stress tolerance has benefited from large scale phenotyping, enabling non-invasive, continuous monitoring of plant growth. In case of potato, this is compromised by the fact that tubers grow belowground, making phenotyping of tuber development a challenging task. To determine the growth dynamics of tubers before, during and after stress treatment is nearly impossible with traditional destructive harvesting approaches. In contrast, X-ray Computed Tomography (CT) offers the opportunity to access belowground growth processes. In this study, potato tuber development from initiation until harvest was monitored by CT analysis for five different genotypes under stress conditions. Tuber growth was monitored three times per week via CT analysis. Stress treatment was started when all plants exhibited detectable tubers. Combined heat and drought stress was applied by increasing growth temperature for 2 weeks and simultaneously decreasing daily water supply. CT analysis revealed that tuber growth is inhibited under stress within a week and can resume after the stress has been terminated. After cessation of stress, tubers started growing again and were only slightly and insignificantly smaller than control tubers at the end of the experimental period. These growth characteristics were accompanied by corresponding changes in gene expression and activity of enzymes relevant for starch metabolism which is the driving force for tuber growth. Gene expression and activity of Sucrose Synthase (SuSy) reaffirmed the detrimental impact of the stress on starch biosynthesis. Perception of the stress treatment by the tubers was confirmed by gene expression analysis of potential stress marker genes whose applicability for potato tubers is further discussed. We established a semi-automatic imaging pipeline to analyze potato tuber delevopment in a medium thoughput (5 min per pot). The imaging pipeline presented here can be scaled up to be used in high-throughput phenotyping systems. However, the combination with automated data processing is the key to generate objective data accelerating breeding efforts to improve abiotic stress tolerance of potato genotypes.
Collapse
Affiliation(s)
| | - Joelle Claußen
- Fraunhofer Institute for Integrated Circuits IIS, Development Centre X-Ray Technology, Fürth, Germany
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | | | - Norbert Wörlein
- Fraunhofer Institute for Integrated Circuits IIS, Development Centre X-Ray Technology, Fürth, Germany
| | - Norman Uhlmann
- Fraunhofer Institute for Integrated Circuits IIS, Development Centre X-Ray Technology, Fürth, Germany
| | - Uwe Sonnewald
- Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Gerth
- Fraunhofer Institute for Integrated Circuits IIS, Development Centre X-Ray Technology, Fürth, Germany
| |
Collapse
|
40
|
A comparative proteomic study of cold responses in potato leaves. Heliyon 2021; 7:e06002. [PMID: 33604464 PMCID: PMC7875832 DOI: 10.1016/j.heliyon.2021.e06002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/17/2020] [Accepted: 01/13/2021] [Indexed: 11/21/2022] Open
Abstract
The potato is an important food crop worldwide. While potatoes are rich in nutrition, the production suffers from yield loss caused by frost and freezing. This study used a common potato cultivar, ‘Zhengshu 6’, as the study system to measure the changes in the contents of soluble protein, malondialdehyde (MDA), proline, and chlorophyll after 1, 3, 5, and 7 days of low temperature treatment. We performed two-dimensional electrophoresis (2-DE) in combination with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) technology and identified 52 differentially expressed protein spots among these timepoints. Results showed that levels of soluble protein, MDA, and proline increased as the duration of the low temperature treatment increased, and the chlorophyll content decreased. The 52 identified protein spots were classified by function as involved in defense response, energy metabolism, photosynthesis, protein degradation, ribosome formation, signal transduction, cell movement, nitrogen metabolism, and other physiological processes, thus allowing potato plants to achieve metabolic balance at low temperatures.
Collapse
|
41
|
Dyachenko EA, Kulakova AV, Meleshin AA, Shchennikova AV, Kochieva EZ. Amylase Inhibitor SbAI in Potato Species: Structure, Variability and Expression Pattern. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542101004x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Wu Y, Ren Z, Gao C, Sun M, Li S, Min R, Wu J, Li D, Wang X, Wei Y, Xia Y. Change in Sucrose Cleavage Pattern and Rapid Starch Accumulation Govern Lily Shoot-to-Bulblet Transition in vitro. FRONTIERS IN PLANT SCIENCE 2021; 11:564713. [PMID: 33519832 PMCID: PMC7840508 DOI: 10.3389/fpls.2020.564713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/30/2020] [Indexed: 05/11/2023]
Abstract
In bulb crops, bulbing is a key progress in micropropagation and is the feature that most distinguishes bulbous crops from other plants. Generally, bulbing involves a shoot-to-bulblet transition; however, the underlying mechanism remains elusive. We explored this process by tracking the shoot-to-bulblet transition under different culture conditions. Rapid starch accumulation occurred at 15 days after transplanting (DAT) in the bulblet-inducing treatments as confirmed via histological observations and the significant elevation of starch synthesis related-gene transcription, including LohAGPS, LohAGPL, LohGBSS, LohSS, and LohSBE. However, for shoots that did not transition to bulblets and maintained the shoot status, much higher soluble sugars were detected. Interestingly, we observed a clear shift from invertase-catalyzed to sucrose synthase-catalyzed sucrose cleavage pattern based on the differential expression of LohCWIN and LohSuSy during the key transition stage (prior to and after bulbing at 0-15 DAT). Shoots that transitioned into bulblets showed significantly higher LohSuSy expression, especially LohSuSy4 expression, than shoots that did not transition. A symplastic phloem unloading pathway at the bulblet emergence stage (15 DAT) was verified via the 6(5)-carboxyfluorescein diacetate fluorescent tracer. We propose that starch is the fundamental compound in the shoot-to-bulblet transition and that starch synthesis is likely triggered by the switch from apoplastic to symplastic sucrose unloading, which may be related to sucrose depletion. Furthermore, this study is the first to provide a complete inventory of the genes involved in starch metabolism based on our transcriptome data. Two of these genes, LohAGPS1.2b and LohSSIIId, were verified by rapid amplification of cDNA ends cloning, and these data will provide additional support for Lilium research since whole genome is currently lacking.
Collapse
Affiliation(s)
- Yun Wu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ziming Ren
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Cong Gao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Minyi Sun
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shiqi Li
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ruihan Min
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Danqing Li
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiuyun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yanping Wei
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
He W, Li J, Pu M, Xu ZG, Gan L. Response of photosynthate distribution in potato plants to different LED spectra. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:1128-1137. [PMID: 32951630 DOI: 10.1071/fp20131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Although light is essential to photosynthesis, few studies have examined the effects of different LED spectra on photosynthate distribution in potato plants. Therefore, we exposed tuberising potato plants to white (W), red (R), blue (B) and green (G) LED treatments and compared tuber development and carbohydrate partitioning among the plants. R-treated plants had greater photosynthetic leaf area during tuber development compared with those under other treatments, thus enhancing assimilation. Although R-treated plants had higher 13C assimilation in the leaves, stems and roots than those under B treatment, there was no difference in partitioning of 13C assimilation and yield in the tubers of each plant between R and B treatments. For the tuber size, R-treated plants had a higher ratio of large tubers (>20 g) and a lower ratio of small (2-20 g) and medium-sized (10-20 g) tubers than those under W. B-treated plants had more medium-sized and large tubers than those under W. The reason may be that plants under R treatment distributed more assimilated 13C in their first tuber than those under other treatments. By contrast, plants under B balanced photosynthate distribution among their tubers. Leaves under G treatment had lower photosynthetic efficiency and ΦPSII than those under W, R or B treatment, which resulted in lower 13C photosynthate allocation in organs and lower tuber yield per plant than in R and B treatments. Overall, R treatment promoted 13C assimilation and led to more large tubers than other treatments. B-treated plants distributed more photosynthates into tubers rather than other organs and showed balanced tuber development.
Collapse
Affiliation(s)
- Wei He
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jin Li
- National Lighting Test Centre, Beijing 100020, China
| | - Min Pu
- Lumlux Corp., Suzhou, Jiangsu 215143, China
| | - Zhi-Gang Xu
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; and Corresponding authors. ;
| | - Lijun Gan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; and Corresponding authors. ;
| |
Collapse
|
44
|
Shi HD, Zhang WQ, Lu HY, Zhang WQ, Ye H, Liu DD. Functional characterization of a starch synthesis-related gene AmAGP in Amorphophallus muelleri. PLANT SIGNALING & BEHAVIOR 2020; 15:1805903. [PMID: 32799608 PMCID: PMC7588197 DOI: 10.1080/15592324.2020.1805903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
has attracted tremendous interest because of its high contents of glucomannan and starch. Very few genes regulating glucomannan and starch were reported in Amorphophallus. In this study, an ADP-glucose pyrophosphorylase (AGP) gene that plays a significant role in plant starch synthesis was cloned from Amorphophallus muelleri. It was shown that it encoded a predicted protein containing a conserved plant ADP-Glucose-PP repeat domain and seven potential ligand-binding sites. The real-time quantitative PCR showed that AmAGP was most abundant in tubers, and it was positively correlated with starch content. Additionally, its influencers about temperature and exogenous plant hormone were also discussed, showing that AmAGP expressed highly in tubers under treatments using 25°C and IAA. Furthermore, starch content was closely related to AmAGP expression level, suggesting that AmAGP was involved in the regulation of starch synthesis in A. muelleri. Therefore, identifying the sequence of AmAGP and its expression pattern during tuber enlarging and the changes of its transcript levels in response to temperature and plant hormones would contribute to a better understanding of starch synthesis, and also providing a reference information for future preferable breeding for obtaining more starch or more glucomannan in Amorphophallus.
Collapse
Affiliation(s)
- Hong-Di Shi
- School of Agriculture, Yunnan University, Kunming, China
| | - Wan-Qiao Zhang
- School of Agriculture, Yunnan University, Kunming, China
| | - Hong-Ye Lu
- School of International Education, Baise University, Baise, China
| | - Wen-Qian Zhang
- Department of Science and Education, Xintai Modern Agricultural Development Service Center, Xintai, China
| | - Hui Ye
- School of Agriculture, Yunnan University, Kunming, China
| | - Dan-Dan Liu
- School of Agriculture, Yunnan University, Kunming, China
| |
Collapse
|
45
|
eQTL mapping of the 12S globulin cruciferin gene PGCRURSE5 as a novel candidate associated with starch content in potato tubers. Sci Rep 2020; 10:17168. [PMID: 33051578 PMCID: PMC7553954 DOI: 10.1038/s41598-020-74285-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/30/2020] [Indexed: 11/09/2022] Open
Abstract
Tuber starch content (TSC) is a very important trait in potato (Solanum tuberosum L.). This study is the first to use expression quantitative trait loci (eQTL) mapping of transcript-derived markers for TSC in potato. Thirty-four differentially expressed genes were selected by comparing the RNA-seq data of contrasting bulked segregants. For the 11 candidate genes, we determined their relative expression levels across the segregating diploid potato population using RT-qPCR. We detected 36 eQTL as candidate genes distributed on all twelve potato chromosomes, and nine of them overlapped with QTL for TSC. Peaks for two eQTL, eAGPaseS-a and ePGRCRURSE5, were close to the corresponding loci of the large subunit of ADP-glucose pyrophosphorylase (AGPaseS-a) and the 12S globulin cruciferin gene (PGCRURSE5), respectively. The eQTL peaks for AGPaseS-a and PGRCRURSE5 explained 41.0 and 28.3% of the phenotypic variation at the transcript level. We showed the association of the DNA markers for AGPaseS-a and PGRCRURSE5 with QTL for TSC, and significant correlation between the expression level of PGRCRURSE5 and TSC. We did not observe a significant correlation between the expression level of AGPaseS-a and TSC. We concluded that the cruciferin gene PGRCRURSE5 is a novel candidate involved in the regulation of starch content in potato tubers.
Collapse
|
46
|
Sun H, Li J, Song H, Yang D, Deng X, Liu J, Wang Y, Ma J, Xiong Y, Liu Y, Yang M. Comprehensive analysis of AGPase genes uncovers their potential roles in starch biosynthesis in lotus seed. BMC PLANT BIOLOGY 2020; 20:457. [PMID: 33023477 PMCID: PMC7541243 DOI: 10.1186/s12870-020-02666-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/23/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Starch in the lotus seed contains a high proportion of amylose, which endows lotus seed a promising property in the development of hypoglycemic and low-glycemic index functional food. Currently, improving starch content is one of the major goals for seed-lotus breeding. ADP-glucose pyrophosphorylase (AGPase) plays an essential role in regulating starch biosynthesis in plants, but little is known about its characterization in lotus. RESULTS We describe the nutritional compositions of lotus seed among 30 varieties with starch as a major component. Comparative transcriptome analysis showed that AGPase genes were differentially expressed in two varieties (CA and JX) with significant different starch content. Seven putative AGPase genes were identified in the lotus genome (Nelumbo nucifera Gaertn.), which could be grouped into two subfamilies. Selective pressure analysis indicated that purifying selection acted as a vital force in the evolution of AGPase genes. Expression analysis revealed that lotus AGPase genes have varying expression patterns, with NnAGPL2a and NnAGPS1a as the most predominantly expressed, especially in seed and rhizome. NnAGPL2a and NnAGPS1a were co-expressed with a number of starch and sucrose metabolism pathway related genes, and their expressions were accompanied by increased AGPase activity and starch content in lotus seed. CONCLUSIONS Seven AGPase genes were characterized in lotus, with NnAGPL2a and NnAGPS1a, as the key genes involved in starch biosynthesis in lotus seed. These results considerably extend our understanding on lotus AGPase genes and provide theoretical basis for breeding new lotus varieties with high-starch content.
Collapse
Affiliation(s)
- Heng Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Juanjuan Li
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000 Hubei China
| | - Heyun Song
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049 China
| | - Dong Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Xianbao Deng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Juan Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Yunmeng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049 China
| | - Junyu Ma
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049 China
| | - Yaqian Xiong
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049 China
| | - Yanling Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Mei Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074 China
| |
Collapse
|
47
|
Huang SH, Liu YX, Deng R, Lei TT, Tian AJ, Ren HH, Wang SF, Wang XF. Genome-wide identification and expression analysis of the GSK gene family in Solanum tuberosum L. under abiotic stress and phytohormone treatments and functional characterization of StSK21 involvement in salt stress. Gene 2020; 766:145156. [PMID: 32949696 DOI: 10.1016/j.gene.2020.145156] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 01/29/2023]
Abstract
Plant Glycogen Synthase Kinase 3 (GSK3)/SHAGGY-like kinase (GSK) proteins play important roles in modulating growth, development, and stress responses in several plant species. However, little is known about the members of the potato GSK (StGSK) family. Here, nine StGSK genes were identified and phylogenetically grouped into four clades. Gene duplication analysis revealed that segmental duplication contributed to the expansion of the StGSK family. Gene structure and motif pattern analyses indicated that similar exon/intron and motif organizations were found in StGSKs from the same clade. Conserved motif and kinase activity analyses indicated that the StGSKs encode active protein kinases, and they were shown to be distributed throughout whole cells. Cis-acting regulatory element analysis revealed the presence of many growth-, hormone-, and stress-responsive elements within the promoter regions of the StGSKs, which is consistent with their expression in different organs, and their altered expression in response to hormone and stress treatments. Association network analysis indicated that various proteins, including two confirmed BES1 family transcription factors, potentially interact with StGSKs. Overexpression of StSK21 provides enhanced sensitivity to salt stress in Arabidopsis thaliana plants. Overall, these results reveal that StGSK proteins are active protein kinases with purported functions in regulating growth, development, and stress responses.
Collapse
Affiliation(s)
- Shu-Hua Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yu-Xiu Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Rui Deng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Tian-Tian Lei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Ai-Juan Tian
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Hai-Hua Ren
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Shu-Fen Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xiao-Feng Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
48
|
Pfister B, Zeeman SC, Rugen MD, Field RA, Ebenhöh O, Raguin A. Theoretical and experimental approaches to understand the biosynthesis of starch granules in a physiological context. PHOTOSYNTHESIS RESEARCH 2020; 145:55-70. [PMID: 31955343 PMCID: PMC7308250 DOI: 10.1007/s11120-019-00704-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Starch, a plant-derived insoluble carbohydrate composed of glucose polymers, is the principal carbohydrate in our diet and a valuable raw material for industry. The properties of starch depend on the arrangement of glucose units within the constituent polymers. However, key aspects of starch structure and the underlying biosynthetic processes are not well understood, limiting progress towards targeted improvement of our starch crops. In particular, the major component of starch, amylopectin, has a complex three-dimensional, branched architecture. This architecture stems from the combined actions of a multitude of enzymes, each having broad specificities that are difficult to capture experimentally. In this review, we reflect on experimental approaches and limitations to decipher the enzymes' specificities and explore possibilities for in silico simulations of these activities. We believe that the synergy between experimentation and simulation is needed for the correct interpretation of experimental data and holds the potential to greatly advance our understanding of the overall starch biosynthetic process. We furthermore propose that the formation of glucan secondary structures, concomitant with its synthesis, is a previously overlooked factor that directly affects amylopectin architecture through its impact on enzyme function.
Collapse
Affiliation(s)
- Barbara Pfister
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Samuel C Zeeman
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Michael D Rugen
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Oliver Ebenhöh
- Department of Biology, Institute of Quantitative and Theoretical Biology, Heinrich-Heine University, 40225, Düsseldorf, Germany
- Department of Biology, Cluster of Excellence on Plant Sciences, Institute of Quantitative and Theoretical Biology, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Adélaïde Raguin
- Department of Biology, Institute of Quantitative and Theoretical Biology, Heinrich-Heine University, 40225, Düsseldorf, Germany.
| |
Collapse
|
49
|
Smith AM, Zeeman SC. Starch: A Flexible, Adaptable Carbon Store Coupled to Plant Growth. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:217-245. [PMID: 32075407 DOI: 10.1146/annurev-arplant-050718-100241] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Research in the past decade has uncovered new and surprising information about the pathways of starch synthesis and degradation. This includes the discovery of previously unsuspected protein families required both for processes and for the long-sought mechanism of initiation of starch granules. There is also growing recognition of the central role of leaf starch turnover in making carbon available for growth across the day-night cycle. Sophisticated systems-level control mechanisms involving the circadian clock set rates of nighttime starch mobilization that maintain a steady supply of carbon until dawn and modulate partitioning of photosynthate into starch in the light, optimizing the fraction of assimilated carbon that can be used for growth. These discoveries also uncover complexities: Results from experiments with Arabidopsis leaves in conventional controlled environments are not necessarily applicable to other organs or species or to growth in natural, fluctuating environments.
Collapse
Affiliation(s)
| | - Samuel C Zeeman
- Institute of Plant Molecular Biology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
50
|
Transcriptome Analysis Reveals Key Pathways and Hormone Activities Involved in Early Microtuber Formation of Dioscorea opposita. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8057929. [PMID: 32258146 PMCID: PMC7086419 DOI: 10.1155/2020/8057929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
Chinese yam (Dioscorea opposita) is an important tuberous crop used for both food and medicine. Despite a long history of cultivation, the understanding of D. opposita genetics and molecular biology remains scant, which has limited its genetic improvement. This work presents a de novo transcriptome sequencing analysis of microtuber formation in D. opposita. We assembled cDNA libraries from different stages during the process of microtuber formation, designated as initial explants (EXP), axillary bud proliferation after three weeks (BUD), and microtuber visible after four weeks (MTV). More differentially expressed genes (DEGs) and pathways were identified between BUD vs. EXP than in MTV vs. BUD, indicating that proliferation of the axillary bud is the key stage of microtuber induction. Gene classification and pathway enrichment analysis showed that microtuber formation is tightly coordinated with primary metabolism, such as amino acid biosynthesis, ribosomal component biosynthesis, and starch and sucrose metabolism. The formation of the microtuber is regulated by a variety of plant hormones, including ABA. Combined with analysis of physiological data, we suggest that ABA positively regulates tuberization in D. opposita. This study will serve as an empirical foundation for future molecular studies and for the propagation of D. opposita germplasm in field crops.
Collapse
|