1
|
Tassetto M, Kunitomi M, Whitfield ZJ, Dolan PT, Sánchez-Vargas I, Garcia-Knight M, Ribiero I, Chen T, Olson KE, Andino R. Control of RNA viruses in mosquito cells through the acquisition of vDNA and endogenous viral elements. eLife 2019; 8:41244. [PMID: 31621580 PMCID: PMC6797480 DOI: 10.7554/elife.41244] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 09/10/2019] [Indexed: 01/02/2023] Open
Abstract
Aedes aegypti transmit pathogenic arboviruses while the mosquito itself tolerates the infection. We examine a piRNA-based immunity that relies on the acquisition of viral derived cDNA (vDNA) and how this pathway discriminates between self and non-self. The piRNAs derived from these vDNAs are essential for virus control and Piwi4 has a central role in the pathway. Piwi4 binds preferentially to virus-derived piRNAs but not to transposon-targeting piRNAs. Analysis of episomal vDNA from infected cells reveals that vDNA molecules are acquired through a discriminatory process of reverse-transcription and recombination directed by endogenous retrotransposons. Using a high-resolution Ae. aegypti genomic sequence, we found that vDNAs integrated in the host genome as endogenous viral elements (EVEs), produce antisense piRNAs that are preferentially loaded onto Piwi4. Importantly, EVE-derived piRNAs are specifically loaded onto Piwi4 to inhibit virus replication. Thus, Ae. aegypti employs a sophisticated antiviral mechanism that promotes viral persistence and generates long-lasting adaptive immunity.
Collapse
Affiliation(s)
- Michel Tassetto
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Mark Kunitomi
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Zachary J Whitfield
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Patrick T Dolan
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Irma Sánchez-Vargas
- Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Diseases Laboratory, Colorado State University, Fort Collins, United States
| | - Miguel Garcia-Knight
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Isabel Ribiero
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Taotao Chen
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Ken E Olson
- Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Diseases Laboratory, Colorado State University, Fort Collins, United States
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|