1
|
Devic M, Dennu L, Lozano JC, Mariac C, Vergé V, Schatt P, Bouget FY, Sabot F. An INDEL genomic approach to explore population diversity of phytoplankton. BMC Genomics 2024; 25:1045. [PMID: 39506649 PMCID: PMC11539686 DOI: 10.1186/s12864-024-10896-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Although metabarcoding and metagenomic approaches have generated large datasets on worldwide phytoplankton species diversity, the intraspecific genetic diversity underlying the genetic adaptation of marine phytoplankton to specific environmental niches remains largely unexplored. This is mainly due to the lack of biological resources and tools for monitoring the dynamics of this diversity in space and time. RESULTS To gain insight into population diversity, a novel method based on INDEL markers was developed on Bathycoccus prasinos (Mamiellophyceae), an abundant and cosmopolitan species with strong seasonal patterns. Long read sequencing was first used to characterize structural variants among the genomes of six B. prasinos strains sampled from geographically distinct regions in the world ocean. Markers derived from identified insertions/deletions were validated by PCR then used to genotype 55 B. prasinos strains isolated during the winter bloom 2018-2019 in the bay of Banyuls-sur-Mer (Mediterranean Sea, France). This led to their classification into eight multi-loci genotypes and the sequencing of strains representative of local diversity, further improving the available genetic diversity of B. prasinos. Finally, selected markers were directly tracked on environmental DNA sampled during 3 successive blooms from 2018 to 2021, showcasing a fast and cost-effective approach to follow local population dynamics. CONCLUSIONS This method, which involves (i) pre-identifying the genetic diversity of B. prasinos in environmental samples by PCR, (ii) isolating cells from selected environmental samples and (iii) identifying genotypes representative of B. prasinos diversity for sequencing, can be used to comprehensively describe the diversity and population dynamics not only in B. prasinos but also potentially in other generalist phytoplankton species.
Collapse
Affiliation(s)
- Martine Devic
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS/Sorbonne University, Observatoire Océanologique, UMR 7621, Banyuls s/ Mer, 66650, France.
| | - Louis Dennu
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS/Sorbonne University, Observatoire Océanologique, UMR 7621, Banyuls s/ Mer, 66650, France.
| | - Jean-Claude Lozano
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS/Sorbonne University, Observatoire Océanologique, UMR 7621, Banyuls s/ Mer, 66650, France
| | - Cédric Mariac
- Diversité, Adaptation Et Développement Des Plantes (DIADE) UMR 232, University of Montpellier, IRD, CIRAD, 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
| | - Valérie Vergé
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS/Sorbonne University, Observatoire Océanologique, UMR 7621, Banyuls s/ Mer, 66650, France
| | - Philippe Schatt
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS/Sorbonne University, Observatoire Océanologique, UMR 7621, Banyuls s/ Mer, 66650, France
| | - François-Yves Bouget
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS/Sorbonne University, Observatoire Océanologique, UMR 7621, Banyuls s/ Mer, 66650, France.
| | - François Sabot
- Diversité, Adaptation Et Développement Des Plantes (DIADE) UMR 232, University of Montpellier, IRD, CIRAD, 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France.
| |
Collapse
|
2
|
Oliveira JIN, Cabral-de-Mello DC, Valente GT, Martins C. Transcribing the enigma: the B chromosome as a territory of uncharted RNAs. Genetics 2024; 227:iyae026. [PMID: 38513121 DOI: 10.1093/genetics/iyae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/10/2024] [Indexed: 03/23/2024] Open
Abstract
B chromosomes are supernumerary elements found in several groups of eukaryotes, including fungi, plants, and animals. Typically, these chromosomes either originate from their hosts through errors in meiosis or interspecifically through horizontal transfer. While many B chromosomes are primarily heterochromatic and possess a low number of coding genes, these additional elements are still capable of transcribing sequences and exerting influence on the expression of host genes. How B chromosomes escape elimination and which impacts can be promoted in the cell always intrigued the cytogeneticists. In pursuit of understanding the behavior and functional impacts of these extra elements, cytogenetic studies meet the advances of molecular biology, incorporating various techniques into investigating B chromosomes from a functional perspective. In this review, we present a timeline of studies investigating B chromosomes and RNAs, highlighting the advances and key findings throughout their history. Additionally, we identified which RNA classes are reported in the B chromosomes and emphasized the necessity for further investigation into new perspectives on the B chromosome functions. In this context, we present a phylogenetic tree that illustrates which branches either report B chromosome presence or have functional RNA studies related to B chromosomes. We propose investigating other unexplored RNA classes and conducting functional analysis in conjunction with cytogenetic studies to enhance our understanding of the B chromosome from an RNA perspective.
Collapse
Affiliation(s)
| | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro 13506-900, Brazil
| | - Guilherme T Valente
- Applied Biotechnology Laboratory, Clinical Hospital of Botucatu Medical School, Botucatu 18618-687, Brazil
| | - Cesar Martins
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| |
Collapse
|
3
|
Aubin E, Llauro C, Garrigue J, Mirouze M, Panaud O, El Baidouri M. Genome-wide analysis of horizontal transfer in non-model wild species from a natural ecosystem reveals new insights into genetic exchange in plants. PLoS Genet 2023; 19:e1010964. [PMID: 37856455 PMCID: PMC10586619 DOI: 10.1371/journal.pgen.1010964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
Horizontal transfer (HT) refers to the exchange of genetic material between divergent species by mechanisms other than reproduction. In recent years, several studies have demonstrated HTs in eukaryotes, particularly in the context of parasitic relationships and in model species. However, very little is known about HT in natural ecosystems, especially those involving non-parasitic wild species, and the nature of the ecological relationships that promote these HTs. In this work, we conducted a pilot study investigating HTs by sequencing the genomes of 17 wild non-model species from a natural ecosystem, the Massane forest, located in southern France. To this end, we developed a new computational pipeline called INTERCHANGE that is able to characterize HTs at the whole genome level without prior annotation and directly in the raw sequencing reads. Using this pipeline, we identified 12 HT events, half of which occurred between lianas and trees. We found that mainly low copy number LTR-retrotransposons from the Copia superfamily were transferred between these wild plant species, especially those of the Ivana and Ale lineages. This study revealed a possible new route for HTs between non-parasitic plants and provides new insights into the genomic characteristics of horizontally transferred DNA in plant genomes.
Collapse
Affiliation(s)
- Emilie Aubin
- Laboratoire Génome et Développement des Plantes, Perpignan, Université de Perpignan Via Domitia, Perpignan, France
| | - Christel Llauro
- Laboratoire Génome et Développement des Plantes, Perpignan, Université de Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France
| | - Joseph Garrigue
- Réserve Naturelle Nationale de la forêt de la Massane, France
| | - Marie Mirouze
- Laboratoire Génome et Développement des Plantes, Perpignan, Université de Perpignan Via Domitia, Perpignan, France
- Diversité, Adaptation, Développement des Plantes, Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, France
| | - Olivier Panaud
- Laboratoire Génome et Développement des Plantes, Perpignan, Université de Perpignan Via Domitia, Perpignan, France
- Institut Universitaire de France, Paris, France
| | - Moaine El Baidouri
- Laboratoire Génome et Développement des Plantes, Perpignan, Université de Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France
| |
Collapse
|
4
|
Bajus M, Macko-Podgórni A, Grzebelus D, Baránek M. A review of strategies used to identify transposition events in plant genomes. FRONTIERS IN PLANT SCIENCE 2022; 13:1080993. [PMID: 36531345 PMCID: PMC9751208 DOI: 10.3389/fpls.2022.1080993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Transposable elements (TEs) were initially considered redundant and dubbed 'junk DNA'. However, more recently they were recognized as an essential element of genome plasticity. In nature, they frequently become active upon exposition of the host to stress conditions. Even though most transposition events are neutral or even deleterious, occasionally they may happen to be beneficial, resulting in genetic novelty providing better fitness to the host. Hence, TE mobilization may promote adaptability and, in the long run, act as a significant evolutionary force. There are many examples of TE insertions resulting in increased tolerance to stresses or in novel features of crops which are appealing to the consumer. Possibly, TE-driven de novo variability could be utilized for crop improvement. However, in order to systematically study the mechanisms of TE/host interactions, it is necessary to have suitable tools to globally monitor any ongoing TE mobilization. With the development of novel potent technologies, new high-throughput strategies for studying TE dynamics are emerging. Here, we present currently available methods applied to monitor the activity of TEs in plants. We divide them on the basis of their operational principles, the position of target molecules in the process of transposition and their ability to capture real cases of actively transposing elements. Their possible theoretical and practical drawbacks are also discussed. Finally, conceivable strategies and combinations of methods resulting in an improved performance are proposed.
Collapse
Affiliation(s)
- Marko Bajus
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| | - Alicja Macko-Podgórni
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Dariusz Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Miroslav Baránek
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| |
Collapse
|
5
|
ONT-Based Alternative Assemblies Impact on the Annotations of Unique versus Repetitive Features in the Genome of a Romanian Strain of Drosophila melanogaster. Int J Mol Sci 2022; 23:ijms232314892. [PMID: 36499217 PMCID: PMC9741293 DOI: 10.3390/ijms232314892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
To date, different strategies of whole-genome sequencing (WGS) have been developed in order to understand the genome structure and functions. However, the analysis of genomic sequences obtained from natural populations is challenging and the biological interpretation of sequencing data remains the main issue. The MinION device developed by Oxford Nanopore Technologies (ONT) is able to generate long reads with minimal costs and time requirements. These valuable assets qualify it as a suitable method for performing WGS, especially in small laboratories. The long reads resulted using this sequencing approach can cover large structural variants and repetitive sequences commonly present in the genomes of eukaryotes. Using MinION, we performed two WGS assessments of a Romanian local strain of Drosophila melanogaster, referred to as Horezu_LaPeri (Horezu). In total, 1,317,857 reads with a size of 8.9 gigabytes (Gb) were generated. Canu and Flye de novo assembly tools were employed to obtain four distinct assemblies with both unfiltered and filtered reads, achieving maximum reference genome coverages of 94.8% (Canu) and 91.4% (Flye). In order to test the quality of these assemblies, we performed a two-step evaluation. Firstly, we considered the BUSCO scores and inquired for a supplemental set of genes using BLAST. Subsequently, we appraised the total content of natural transposons (NTs) relative to the reference genome (ISO1 strain) and mapped the mdg1 retroelement as a resolution assayer. Our results reveal that filtered data provide only slightly enhanced results when considering genes identification, but the use of unfiltered data had a consistent positive impact on the global evaluation of the NTs content. Our comparative studies also revealed differences between Flye and Canu assemblies regarding the annotation of unique versus repetitive genomic features. In our hands, Flye proved to be moderately better for gene identification, while Canu clearly outperformed Flye for NTs analysis. Data concerning the NTs content were compared to those obtained with ONT for the D. melanogaster ISO1 strain, revealing that our strategy conducted to better results. Additionally, the parameters of our ONT reads and assemblies are similar to those reported for ONT experiments performed on various model organisms, revealing that our assembly data are appropriate for a proficient annotation of the Horezu genome.
Collapse
|
6
|
Marchi E, Jones M, Klenerman P, Frater J, Magiorkinis G, Belshaw R. BreakAlign: a Perl program to align chimaeric (split) genomic NGS reads and allow visual confirmation of novel retroviral integrations. BMC Bioinformatics 2022; 23:134. [PMID: 35428171 PMCID: PMC9013057 DOI: 10.1186/s12859-022-04621-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Retroviruses replicate by integrating a DNA copy into a host chromosome. Detecting novel retroviral integrations (ones not in the reference genome sequence of the host) from genomic NGS data is bioinformatically challenging and frequently produces many false positives. One common method of confirmation is visual inspection of an alignment of the chimaeric (split) reads that span a putative novel retroviral integration site. We perceived the need for a program that would facilitate this by producing a multiple alignment containing both the viral and host regions that flank an integration. RESULTS BreakAlign is a Perl program that uses blastn to produce such a multiple alignment. In addition to the NGS dataset and a reference viral sequence, the program requires either (a) the ~ 500nt host genome sequence that spans the putative integration or (b) coordinates of this putative integration in an installed copy of the reference human genome (multiple integrations can be processed automatically). BreakAlign is freely available from https://github.com/marchiem/breakalign and is accompanied by example files allowing a test run. CONCLUSION BreakAlign will confirm and facilitate characterisation of both (a) germline integrations of endogenous retroviruses and (b) somatic integrations of exogenous retroviruses such as HIV and HTLV. Although developed for use with genomic short-read NGS (second generation) data and retroviruses, it should also be useful for long-read (third generation) data and any mobile element with at least one conserved flanking region.
Collapse
Affiliation(s)
- Emanuele Marchi
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Mathew Jones
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Robert Belshaw
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
7
|
Lee YCG. Synergistic epistasis of the deleterious effects of transposable elements. Genetics 2022; 220:iyab211. [PMID: 34888644 PMCID: PMC9097265 DOI: 10.1093/genetics/iyab211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 11/12/2022] Open
Abstract
The replicative nature and generally deleterious effects of transposable elements (TEs) raise an outstanding question about how TE copy number is stably contained in host populations. Classic theoretical analyses predict that, when the decline in fitness due to each additional TE insertion is greater than linear, or when there is synergistic epistasis, selection against TEs can result in a stable equilibrium of TE copy number. While several mechanisms are predicted to yield synergistic deleterious effects of TEs, we lack empirical investigations of the presence of such epistatic interactions. Purifying selection with synergistic epistasis generates repulsion linkage between deleterious alleles. We investigated this population genetic signal in the likely ancestral Drosophila melanogaster population and found evidence supporting the presence of synergistic epistasis among TE insertions, especially TEs expected to exert large fitness impacts. Even though synergistic epistasis of TEs has been predicted to arise through ectopic recombination and TE-mediated epigenetic silencing mechanisms, we only found mixed support for the associated predictions. We observed signals of synergistic epistasis for a large number of TE families, which is consistent with the expectation that such epistatic interaction mainly happens among copies of the same family. Curiously, significant repulsion linkage was also found among TE insertions from different families, suggesting the possibility that synergism of TEs' deleterious fitness effects could arise above the family level and through mechanisms similar to those of simple mutations. Our findings set the stage for investigating the prevalence and importance of epistatic interactions in the evolutionary dynamics of TEs.
Collapse
Affiliation(s)
- Yuh Chwen G Lee
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
8
|
Kirov I, Merkulov P, Dudnikov M, Polkhovskaya E, Komakhin RA, Konstantinov Z, Gvaramiya S, Ermolaev A, Kudryavtseva N, Gilyok M, Divashuk MG, Karlov GI, Soloviev A. Transposons Hidden in Arabidopsis thaliana Genome Assembly Gaps and Mobilization of Non-Autonomous LTR Retrotransposons Unravelled by Nanotei Pipeline. PLANTS (BASEL, SWITZERLAND) 2021; 10:2681. [PMID: 34961152 PMCID: PMC8704663 DOI: 10.3390/plants10122681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 06/12/2023]
Abstract
Long-read data is a great tool to discover new active transposable elements (TEs). However, no ready-to-use tools were available to gather this information from low coverage ONT datasets. Here, we developed a novel pipeline, nanotei, that allows detection of TE-contained structural variants, including individual TE transpositions. We exploited this pipeline to identify TE insertion in the Arabidopsis thaliana genome. Using nanotei, we identified tens of TE copies, including ones for the well-characterized ONSEN retrotransposon family that were hidden in genome assembly gaps. The results demonstrate that some TEs are inaccessible for analysis with the current A. thaliana (TAIR10.1) genome assembly. We further explored the mobilome of the ddm1 mutant with elevated TE activity. Nanotei captured all TEs previously known to be active in ddm1 and also identified transposition of non-autonomous TEs. Of them, one non-autonomous TE derived from (AT5TE33540) belongs to TR-GAG retrotransposons with a single open reading frame (ORF) encoding the GAG protein. These results provide the first direct evidence that TR-GAGs and other non-autonomous LTR retrotransposons can transpose in the plant genome, albeit in the absence of most of the encoded proteins. In summary, nanotei is a useful tool to detect active TEs and their insertions in plant genomes using low-coverage data from Nanopore genome sequencing.
Collapse
Affiliation(s)
- Ilya Kirov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
- Kurchatov Genomics Center of ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia
| | - Pavel Merkulov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Maxim Dudnikov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
- Kurchatov Genomics Center of ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia
| | - Ekaterina Polkhovskaya
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Roman A. Komakhin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Zakhar Konstantinov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Sofya Gvaramiya
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Aleksey Ermolaev
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia; (A.E.); (N.K.)
| | - Natalya Kudryavtseva
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia; (A.E.); (N.K.)
| | - Marina Gilyok
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Mikhail G. Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
- Kurchatov Genomics Center of ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia
| | - Gennady I. Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Alexander Soloviev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| |
Collapse
|
9
|
Harnessing epigenetic variability for crop improvement: current status and future prospects. Genes Genomics 2021; 44:259-266. [PMID: 34807374 DOI: 10.1007/s13258-021-01189-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The epigenetic mechanisms play critical roles in a vast diversity of biological processes of plants, including development and response to environmental challenges. Particularly, DNA methylation is a stable epigenetic signature that supplements the genetics-based view of complex life phenomena. In crop breeding, the decrease in genetic diversity due to artificial selection of conventional breeding methods has been a long-standing concern. Therefore, the epigenetic diversity has been proposed as a new resource for future crop breeding, which will be hereinafter referred to as epibreeding. DISCUSSION The induction of methylome changes has been performed in plants by several methods including chemical drugs treatment and tissue culture. Target-specific epigenetic engineering has been also attempted by exogenous RNAi mediated by virus-induced gene silencing and grafting. Importantly, the new and innovative techniques including the CRISPR-Cas9 system have recently been adopted in epigenetic engineering of plant genomes, facilitating the efforts for epibreeding. CONCLUSION In this review, we introduce several examples of natural and induced epigenetic changes impacting on agronomic traits and discuss the methods for generating epigenomic diversity and site-specific epigenetic engineering.
Collapse
|
10
|
Baduel P, Quadrana L. Jumpstarting evolution: How transposition can facilitate adaptation to rapid environmental changes. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102043. [PMID: 33932785 DOI: 10.1016/j.pbi.2021.102043] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Because of their ability to replicate across genomes, transposable elements (TEs) represent major generators of large-effect mutations. As a result, chromatin-based mechanisms have evolved to control the mutational potential of TEs at multiple levels, from the epigenetic silencing of TE sequences, through the modulation of their integration space, up to the alleviation of the impact of new insertions. Although most TE insertions are highly deleterious, some can provide key adaptive variation. Together with their remarkable sensitivity to the environment and precise integration preferences, the unique characteristics of TEs place them as potent genomic engines of adaptive innovation. Herein, we review recent works exploring the regulation and impact of transposition in nature and discuss their implications for the evolutionary response of species to drastic environmental changes.
Collapse
Affiliation(s)
- Pierre Baduel
- Institut de Biologie de l'École Normale Supérieure, ENS, 46 rue d'Ulm, 75005, Paris, France
| | - Leandro Quadrana
- Institut de Biologie de l'École Normale Supérieure, ENS, 46 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
11
|
Retrotransposable Elements: DNA Fingerprinting and the Assessment of Genetic Diversity. Methods Mol Biol 2021; 2222:263-286. [PMID: 33301099 DOI: 10.1007/978-1-0716-0997-2_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Retrotransposable elements (RTEs) are highly common mobile genetic elements that are composed of several classes and make up the majority of eukaryotic genomes. The "copy-out and paste-in" life cycle of replicative transposition in these dispersive and ubiquitous RTEs leads to new genome insertions without excision of the original element. RTEs are important drivers of species diversity; they exhibit great variety in structure, size, and mechanisms of transposition, making them important putative components in genome evolution. Accordingly, various applications have been developed to explore the polymorphisms in RTE insertion patterns. These applications include conventional or anchored polymerase chain reaction (PCR) and quantitative or digital PCR with primers designed for the 5' or 3' junction. Marker systems exploiting these PCR methods can be easily developed and are inexpensively used in the absence of extensive genome sequence data. The main inter-repeat amplification polymorphism techniques include inter-retrotransposon amplified polymorphism (IRAP), retrotransposon microsatellite amplified polymorphism (REMAP), and Inter-Primer Binding Site (iPBS) for PCR amplification with a single or two primers.
Collapse
|
12
|
Wang F, Chen Z, Pei H, Guo Z, Wen D, Liu R, Song B. Transcriptome profiling analysis of tea plant (Camellia sinensis) using Oxford Nanopore long-read RNA-Seq technology. Gene 2020; 769:145247. [PMID: 33096183 DOI: 10.1016/j.gene.2020.145247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/16/2020] [Accepted: 10/15/2020] [Indexed: 01/22/2023]
Abstract
Transcriptome profiles have been widely captured using short-read sequencing technology, but there are still limitations partially due to the read length. Here, we generated long reads using Oxford Nanopore PromethION™ technology and short reads using the Illumina sequencing platform to study the transcriptome of root, stem, and leaf of Camellia sinensis cv. Fudingdabai. We mapped the Nanopore reads to the Shuchazao of C. sinensis genome sequence, and the mapping rates ranged from 82.63% to 90.59% (average 86.44%); this is lower than that of the Illumina reads which was 87.83% to 91.14% (average 90.12%). Gene expression level was quantified using the Nanopore and Illumina data and we observed a good agreement. The same tea leaf flavor synthesis pathways were highlighted using both sequencing technologies when analyzing the differentially expressed genes between leaf and root. Alternative splicing was then analyzed, and the intron-retention was observed as the most common alternative splicing. Moreover Nanopore long reads could correct transcript isoform annotation for differential expression investigation purposes. Nanopore sequencing techniques can provide a novel reference basis for molecular analysis of tea plants.
Collapse
Affiliation(s)
- Fen Wang
- The Department of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China.
| | - Zhi Chen
- The Department of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Huimin Pei
- The Department of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Zhiyou Guo
- The Department of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Di Wen
- The Department of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Rong Liu
- The Department of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Baoxing Song
- The Department of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China.
| |
Collapse
|
13
|
Picart-Picolo A, Grob S, Picault N, Franek M, Llauro C, Halter T, Maier TR, Jobet E, Descombin J, Zhang P, Paramasivan V, Baum TJ, Navarro L, Dvořáčková M, Mirouze M, Pontvianne F. Large tandem duplications affect gene expression, 3D organization, and plant-pathogen response. Genome Res 2020; 30:1583-1592. [PMID: 33033057 PMCID: PMC7605254 DOI: 10.1101/gr.261586.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Rapid plant genome evolution is crucial to adapt to environmental changes. Chromosomal rearrangements and gene copy number variation (CNV) are two important tools for genome evolution and sources for the creation of new genes. However, their emergence takes many generations. In this study, we show that in Arabidopsis thaliana, a significant loss of ribosomal RNA (rRNA) genes with a past history of a mutation for the chromatin assembly factor 1 (CAF1) complex causes rapid changes in the genome structure. Using long-read sequencing and microscopic approaches, we have identified up to 15 independent large tandem duplications in direct orientation (TDDOs) ranging from 60 kb to 1.44 Mb. Our data suggest that these TDDOs appeared within a few generations, leading to the duplication of hundreds of genes. By subsequently focusing on a line only containing 20% of rRNA gene copies (20rDNA line), we investigated the impact of TDDOs on 3D genome organization, gene expression, and cytosine methylation. We found that duplicated genes often accumulate more transcripts. Among them, several are involved in plant–pathogen response, which could explain why the 20rDNA line is hyper-resistant to both bacterial and nematode infections. Finally, we show that the TDDOs create gene fusions and/or truncations and discuss their potential implications for the evolution of plant genomes.
Collapse
Affiliation(s)
- Ariadna Picart-Picolo
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Stefan Grob
- Institute of Plant and Microbial Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Nathalie Picault
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Michal Franek
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, 625 00 Brno, Czech Republic
| | - Christel Llauro
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Thierry Halter
- ENS, IBENS, CNRS/INSERM, PSL Research University, 75005 Paris, France
| | - Tom R Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Edouard Jobet
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Julie Descombin
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Panpan Zhang
- UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,IRD, UMR232 DIADE, 34394 Montpellier, France
| | | | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Lionel Navarro
- ENS, IBENS, CNRS/INSERM, PSL Research University, 75005 Paris, France
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, 625 00 Brno, Czech Republic
| | - Marie Mirouze
- UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,IRD, UMR232 DIADE, 34394 Montpellier, France
| | - Frédéric Pontvianne
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| |
Collapse
|
14
|
Lanciano S, Cristofari G. Measuring and interpreting transposable element expression. Nat Rev Genet 2020; 21:721-736. [PMID: 32576954 DOI: 10.1038/s41576-020-0251-y] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/21/2022]
Abstract
Transposable elements (TEs) are insertional mutagens that contribute greatly to the plasticity of eukaryotic genomes, influencing the evolution and adaptation of species as well as physiology or disease in individuals. Measuring TE expression helps to understand not only when and where TE mobilization can occur but also how this process alters gene expression, chromatin accessibility or cellular signalling pathways. Although genome-wide gene expression assays such as RNA sequencing include transposon-derived transcripts, most computational analytical tools discard or misinterpret TE-derived reads. Emerging approaches are improving the identification of expressed TE loci and helping to discriminate TE transcripts that permit TE mobilization from chimeric gene-TE transcripts or pervasive transcription. Here we review the main challenges associated with the detection of TE expression, including mappability, insertional and internal sequence polymorphisms, and the diversity of the TE transcriptional landscape, as well as the different experimental and computational strategies to solve them.
Collapse
|
15
|
Drost HG, Sanchez DH. Becoming a Selfish Clan: Recombination Associated to Reverse-Transcription in LTR Retrotransposons. Genome Biol Evol 2020; 11:3382-3392. [PMID: 31755923 PMCID: PMC6894440 DOI: 10.1093/gbe/evz255] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Transposable elements (TEs) are parasitic DNA bits capable of mobilization and mutagenesis, typically suppressed by host’s epigenetic silencing. Since the selfish DNA concept, it is appreciated that genomes are also molded by arms-races against natural TE inhabitants. However, our understanding of evolutionary processes shaping TEs adaptive populations is scarce. Here, we review the events of recombination associated to reverse-transcription in LTR retrotransposons, a process shuffling their genetic variants during replicative mobilization. Current evidence may suggest that recombinogenic retrotransposons could beneficially exploit host suppression, where clan behavior facilitates their speciation and diversification. Novel refinements to retrotransposons life-cycle and evolution models thus emerge.
Collapse
Affiliation(s)
- Hajk-Georg Drost
- The Sainsbury Laboratory, University of Cambridge, United Kingdom.,Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Diego H Sanchez
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Argentina
| |
Collapse
|
16
|
Shahid S, Slotkin RK. The current revolution in transposable element biology enabled by long reads. CURRENT OPINION IN PLANT BIOLOGY 2020; 54:49-56. [PMID: 32007731 DOI: 10.1016/j.pbi.2019.12.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Technological advancement in DNA sequencing read-length has drastically changed the quality and completeness of decoded genomes. The aim of this article is not to describe the different technologies of long-read sequencing, or the widely appreciated power of this technology in genome sequencing, assembly, and gene annotation. Instead, in this article, we provide our opinion that with the exception of genome production, transposable element biology is the most radically altered field as a consequence of the advent of long-read sequencing technology. We review how long-reads have been used to answer key questions in transposable element biology, and how in the future long-reads will help elucidate the function of the repetitive fraction of genomes.
Collapse
Affiliation(s)
- Saima Shahid
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, MO, USA; Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
17
|
Debladis E, Lee TF, Huang YJ, Lu JH, Mathioni SM, Carpentier MC, Llauro C, Pierron D, Mieulet D, Guiderdoni E, Chen PY, Meyers BC, Panaud O, Lasserre E. Construction and characterization of a knock-down RNA interference line of OsNRPD1 in rice ( Oryza sativa ssp japonica cv Nipponbare). Philos Trans R Soc Lond B Biol Sci 2020; 375:20190338. [PMID: 32075556 DOI: 10.1098/rstb.2019.0338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In plants, RNA-directed DNA methylation (RdDM) is a silencing mechanism relying on the production of 24-nt small interfering RNAs (siRNAs) by RNA POLYMERASE IV (Pol IV) to trigger methylation and inactivation of transposable elements (TEs). We present the construction and characterization of osnrpd1, a knock-down RNA interference line of OsNRPD1 gene that encodes the largest subunit of Pol IV in rice (Oryza sativa ssp japonica cv Nipponbare). We show that osnrpd1 displays a lower accumulation of OsNRPD1 transcripts, associated with an overall reduction of 24-nt siRNAs and DNA methylation level in all three contexts, CG, CHG and CHH. We uncovered new insertions of known active TEs, the LTR retrotransposons Tos17 and Lullaby and the long interspersed nuclear element-type retrotransposon Karma. However, we did not observe any clear developmental phenotype, contrary to what was expected for a mutant severely affected in RdDM. In addition, despite the presence of many putatively functional TEs in the rice genome, we found no evidence of in planta global reactivation of transposition. This knock-down of OsNRPD1 likely led to a weakly affected line, with no effect on development and a limited effect on transposition. We discuss the possibility that a knock-out mutation of OsNRPD1 would cause sterility in rice. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.
Collapse
Affiliation(s)
- Emilie Debladis
- Laboratoire Génome et Développement des Plantes, Université de Perpignan Via Domitia, 52, Avenue Paul alduy, 66860 Perpignan Cedex, France.,Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, 52, Avenue Paul alduy, 66860 Perpignan Cedex, France
| | - Tzuu-Fen Lee
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Yan-Jiun Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Jui-Hsien Lu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | | | - Marie-Christine Carpentier
- Laboratoire Génome et Développement des Plantes, Université de Perpignan Via Domitia, 52, Avenue Paul alduy, 66860 Perpignan Cedex, France.,Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, 52, Avenue Paul alduy, 66860 Perpignan Cedex, France
| | - Christel Llauro
- Laboratoire Génome et Développement des Plantes, Université de Perpignan Via Domitia, 52, Avenue Paul alduy, 66860 Perpignan Cedex, France.,Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, 52, Avenue Paul alduy, 66860 Perpignan Cedex, France
| | - Davy Pierron
- Laboratoire Génome et Développement des Plantes, Université de Perpignan Via Domitia, 52, Avenue Paul alduy, 66860 Perpignan Cedex, France.,Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, 52, Avenue Paul alduy, 66860 Perpignan Cedex, France
| | | | | | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA.,Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Olivier Panaud
- Laboratoire Génome et Développement des Plantes, Université de Perpignan Via Domitia, 52, Avenue Paul alduy, 66860 Perpignan Cedex, France.,Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, 52, Avenue Paul alduy, 66860 Perpignan Cedex, France.,Institut Universitaire de France, Paris, France
| | - Eric Lasserre
- Laboratoire Génome et Développement des Plantes, Université de Perpignan Via Domitia, 52, Avenue Paul alduy, 66860 Perpignan Cedex, France.,Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, 52, Avenue Paul alduy, 66860 Perpignan Cedex, France
| |
Collapse
|
18
|
Pucker B, Rückert C, Stracke R, Viehöver P, Kalinowski J, Weisshaar B. Twenty-Five Years of Propagation in Suspension Cell Culture Results in Substantial Alterations of the Arabidopsis Thaliana Genome. Genes (Basel) 2019; 10:E671. [PMID: 31480756 PMCID: PMC6770967 DOI: 10.3390/genes10090671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 01/16/2023] Open
Abstract
Arabidopsis thaliana is one of the best studied plant model organisms. Besides cultivation in greenhouses, cells of this plant can also be propagated in suspension cell culture. At7 is one such cell line that was established about 25 years ago. Here, we report the sequencing and the analysis of the At7 genome. Large scale duplications and deletions compared to the Columbia-0 (Col-0) reference sequence were detected. The number of deletions exceeds the number of insertions, thus indicating that a haploid genome size reduction is ongoing. Patterns of small sequence variants differ from the ones observed between A. thaliana accessions, e.g., the number of single nucleotide variants matches the number of insertions/deletions. RNA-Seq analysis reveals that disrupted alleles are less frequent in the transcriptome than the native ones.
Collapse
Affiliation(s)
- Boas Pucker
- Genetics and Genomics of Plants, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany.
| | - Christian Rückert
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany
| | - Ralf Stracke
- Genetics and Genomics of Plants, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany
| | - Prisca Viehöver
- Genetics and Genomics of Plants, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany
| | - Bernd Weisshaar
- Genetics and Genomics of Plants, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany
| |
Collapse
|
19
|
Catoni M, Jonesman T, Cerruti E, Paszkowski J. Mobilization of Pack-CACTA transposons in Arabidopsis suggests the mechanism of gene shuffling. Nucleic Acids Res 2019; 47:1311-1320. [PMID: 30476196 PMCID: PMC6379663 DOI: 10.1093/nar/gky1196] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/08/2018] [Accepted: 11/16/2018] [Indexed: 11/21/2022] Open
Abstract
Pack-TYPE transposons are a unique class of potentially mobile non-autonomous elements that can capture, merge and relocate fragments of chromosomal DNA. It has been postulated that their activity accelerates the evolution of host genes. However, this important presumption is based only on the sequences of currently inactive Pack-TYPE transposons and the acquisition of chromosomal DNA has not been recorded in real time. Analysing the DNA copy number variation in hypomethylated Arabidopsis lines, we have now for the first time witnessed the mobilization of novel Pack-TYPE elements related to the CACTA transposon family, over several plant generations. Remarkably, these elements can insert into genes as closely spaced direct repeats and they frequently undergo incomplete excisions, resulting in the deletion of one of the end sequences. These properties suggest a mechanism of efficient acquisition of genic DNA residing between neighbouring Pack-TYPE transposons and its subsequent mobilization. Our work documents crucial steps in the formation of in vivo novel Pack-TYPE transposons, and thus the possible mechanism of gene shuffling mediated by this type of mobile element.
Collapse
Affiliation(s)
- Marco Catoni
- The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK.,School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Thomas Jonesman
- The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Elisa Cerruti
- The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Jerzy Paszkowski
- The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| |
Collapse
|
20
|
Marakli S. In silico determination of transposon-derived miRNAs and targets in Aegilops species. J Biomol Struct Dyn 2019; 38:3098-3109. [PMID: 31402758 DOI: 10.1080/07391102.2019.1654409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Transposable elements (TEs) are found almost in all living organism, shaping organisms' genomes. miRNAs are noncoding RNA types which are especially important in gene expression regulations. Many previously determined plant miRNAs are identical/homologous to transposons (TE-MIR). The aim of this study was computational characterization of novel TE-related miRNAs and their targets in Aegilops genome by using stringent criteria. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed by BLAST2GO. Seventeen novel TE-related miRNAs in Aegilops genome were identified for the first time. GO analyses indicated that 40 targets played different roles in biological processes, cellular components and molecular functions. Moreover, these genes were involved in 10 metabolic pathways such as purine metabolism, nitrogen metabolism, oxidative phosphorylation, etc. as a result of KEGG analyses. Identification of miRNAs and their targets are significant to understand miRNA-TEs relationships and even how TEs affect plant growth and development. Obtaining results of this study are expected to provide possible new insight into Aegilops and its related species, wheat, with respect to miRNAs evolution and domestication.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sevgi Marakli
- Department of Medical Services and Techniques, Amasya University, Sabuncuoglu Serefeddin Health Services Vocational School, Amasya, Turkey.,Amasya University, Central Research Laboratory, Amasya, Turkey
| |
Collapse
|
21
|
Constructing a Reference Genome in a Single Lab: The Possibility to Use Oxford Nanopore Technology. PLANTS 2019; 8:plants8080270. [PMID: 31390788 PMCID: PMC6724115 DOI: 10.3390/plants8080270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/29/2019] [Accepted: 08/04/2019] [Indexed: 12/19/2022]
Abstract
The whole genome sequencing (WGS) has become a crucial tool in understanding genome structure and genetic variation. The MinION sequencing of Oxford Nanopore Technologies (ONT) is an excellent approach for performing WGS and it has advantages in comparison with other Next-Generation Sequencing (NGS): It is relatively inexpensive, portable, has simple library preparation, can be monitored in real-time, and has no theoretical limits on reading length. Sorghum bicolor (L.) Moench is diploid (2n = 2x = 20) with a genome size of about 730 Mb, and its genome sequence information is released in the Phytozome database. Therefore, sorghum can be used as a good reference. However, plant species have complex and large genomes when compared to animals or microorganisms. As a result, complete genome sequencing is difficult for plant species. MinION sequencing that produces long-reads can be an excellent tool for overcoming the weak assembly of short-reads generated from NGS by minimizing the generation of gaps or covering the repetitive sequence that appears on the plant genome. Here, we conducted the genome sequencing for S. bicolor cv. BTx623 while using the MinION platform and obtained 895,678 reads and 17.9 gigabytes (Gb) (ca. 25× coverage of reference) from long-read sequence data. A total of 6124 contigs (covering 45.9%) were generated from Canu, and a total of 2661 contigs (covering 50%) were generated from Minimap and Miniasm with a Racon through a de novo assembly using two different tools and mapped assembled contigs against the sorghum reference genome. Our results provide an optimal series of long-read sequencing analysis for plant species while using the MinION platform and a clue to determine the total sequencing scale for optimal coverage that is based on various genome sizes.
Collapse
|
22
|
Jung H, Winefield C, Bombarely A, Prentis P, Waterhouse P. Tools and Strategies for Long-Read Sequencing and De Novo Assembly of Plant Genomes. TRENDS IN PLANT SCIENCE 2019; 24:700-724. [PMID: 31208890 DOI: 10.1016/j.tplants.2019.05.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/01/2019] [Accepted: 05/10/2019] [Indexed: 05/16/2023]
Abstract
The commercial release of third-generation sequencing technologies (TGSTs), giving long and ultra-long sequencing reads, has stimulated the development of new tools for assembling highly contiguous genome sequences with unprecedented accuracy across complex repeat regions. We survey here a wide range of emerging sequencing platforms and analytical tools for de novo assembly, provide background information for each of their steps, and discuss the spectrum of available options. Our decision tree recommends workflows for the generation of a high-quality genome assembly when used in combination with the specific needs and resources of a project.
Collapse
Affiliation(s)
- Hyungtaek Jung
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| | - Christopher Winefield
- Department of Wine, Food, and Molecular Biosciences, Lincoln University, 7647 Christchurch, New Zealand
| | - Aureliano Bombarely
- Department of Bioscience, University of Milan, Milan 20133, Italy; School of Plants and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Peter Prentis
- School of Earth, Environmental, and Biological Sciences, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Peter Waterhouse
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4001, Australia; School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
23
|
Malmberg MM, Spangenberg GC, Daetwyler HD, Cogan NOI. Assessment of low-coverage nanopore long read sequencing for SNP genotyping in doubled haploid canola (Brassica napus L.). Sci Rep 2019; 9:8688. [PMID: 31213642 PMCID: PMC6582154 DOI: 10.1038/s41598-019-45131-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/28/2019] [Indexed: 11/16/2022] Open
Abstract
Despite the high accuracy of short read sequencing (SRS), there are still issues with attaining accurate single nucleotide polymorphism (SNP) genotypes at low sequencing coverage and in highly duplicated genomes due to misalignment. Long read sequencing (LRS) systems, including the Oxford Nanopore Technologies (ONT) minION, have become popular options for de novo genome assembly and structural variant characterisation. The current high error rate often requires substantial post-sequencing correction and would appear to prevent the adoption of this system for SNP genotyping, but nanopore sequencing errors are largely random. Using low coverage ONT minION sequencing for genotyping of pre-validated SNP loci was examined in 9 canola doubled haploids. The minION genotypes were compared to the Illumina sequences to determine the extent and nature of genotype discrepancies between the two systems. The significant increase in read length improved alignment to the genome and the absence of classical SRS biases results in a more even representation of the genome. Sequencing errors are present, primarily in the form of heterozygous genotypes, which can be removed in completely homozygous backgrounds but requires more advanced bioinformatics in heterozygous genomes. Developments in this technology are promising for routine genotyping in the future.
Collapse
Affiliation(s)
- M M Malmberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - G C Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - H D Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - N O I Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia. .,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia.
| |
Collapse
|
24
|
Lai RW, Lu R, Danthi PS, Bravo JI, Goumba A, Sampathkumar NK, Benayoun BA. Multi-level remodeling of transcriptional landscapes in aging and longevity. BMB Rep 2019. [PMID: 30526773 PMCID: PMC6386224 DOI: 10.5483/bmbrep.2019.52.1.296] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In multi-cellular organisms, the control of gene expression is key not only for development, but also for adult cellular homeostasis, and gene expression has been observed to be deregulated with aging. In this review, we discuss the current knowledge on the transcriptional alterations that have been described to occur with age in metazoans. First, we discuss age-related transcriptional changes in protein-coding genes, the expected functional impact of such changes, and how known pro-longevity interventions impact these changes. Second, we discuss the changes and impact of emerging aspects of transcription in aging, including age-related changes in splicing, lncRNAs and circRNAs. Third, we discuss the changes and potential impact of transcription of transposable elements with aging. Fourth, we highlight small ncRNAs and their potential impact on the regulation of aging phenotypes. Understanding the aging transcriptome will be key to identify important regulatory targets, and ultimately slow-down or reverse aging and extend healthy lifespan in humans.
Collapse
Affiliation(s)
- Rochelle W Lai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Ryan Lu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Prakroothi S Danthi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Juan I Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089; Graduate program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
| | - Alexandre Goumba
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089; USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089; USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
25
|
Carpentier MC, Manfroi E, Wei FJ, Wu HP, Lasserre E, Llauro C, Debladis E, Akakpo R, Hsing YI, Panaud O. Retrotranspositional landscape of Asian rice revealed by 3000 genomes. Nat Commun 2019; 10:24. [PMID: 30604755 PMCID: PMC6318337 DOI: 10.1038/s41467-018-07974-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022] Open
Abstract
The recent release of genomic sequences for 3000 rice varieties provides access to the genetic diversity at species level for this crop. We take advantage of this resource to unravel some features of the retrotranspositional landscape of rice. We develop software TRACKPOSON specifically for the detection of transposable elements insertion polymorphisms (TIPs) from large datasets. We apply this tool to 32 families of retrotransposons and identify more than 50,000 TIPs in the 3000 rice genomes. Most polymorphisms are found at very low frequency, suggesting that they may have occurred recently in agro. A genome-wide association study shows that these activations in rice may be triggered by external stimuli, rather than by the alteration of genetic factors involved in transposable element silencing pathways. Finally, the TIPs dataset is used to trace the origin of rice domestication. Our results suggest that rice originated from three distinct domestication events.
Collapse
Affiliation(s)
- Marie-Christine Carpentier
- Laboratoire Génome et Développement des Plantes, UMR CNRS/UPVD 5096, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy., 66860, Perpignan Cedex, France
| | - Ernandes Manfroi
- Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90040-060, Brazil
| | - Fu-Jin Wei
- Institute of Plant and Microbial Biology, Academia Sinica, 128, Section 2, Yien-chu-yuan Road, Nankang, 115, Taipei, Taiwan
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, 305-8687, Ibaraki, Japan
| | - Hshin-Ping Wu
- Institute of Plant and Microbial Biology, Academia Sinica, 128, Section 2, Yien-chu-yuan Road, Nankang, 115, Taipei, Taiwan
| | - Eric Lasserre
- Laboratoire Génome et Développement des Plantes, UMR CNRS/UPVD 5096, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy., 66860, Perpignan Cedex, France
| | - Christel Llauro
- Laboratoire Génome et Développement des Plantes, UMR CNRS/UPVD 5096, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy., 66860, Perpignan Cedex, France
| | - Emilie Debladis
- Laboratoire Génome et Développement des Plantes, UMR CNRS/UPVD 5096, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy., 66860, Perpignan Cedex, France
| | - Roland Akakpo
- Laboratoire Génome et Développement des Plantes, UMR CNRS/UPVD 5096, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy., 66860, Perpignan Cedex, France
| | - Yue-Ie Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, 128, Section 2, Yien-chu-yuan Road, Nankang, 115, Taipei, Taiwan
| | - Olivier Panaud
- Laboratoire Génome et Développement des Plantes, UMR CNRS/UPVD 5096, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy., 66860, Perpignan Cedex, France.
- Institut Universitaire de France, 1 rue Descartes, 75231, Paris Cedex 05, France.
| |
Collapse
|
26
|
Lai RW, Lu R, Danthi PS, Bravo JI, Goumba A, Sampathkumar NK, Benayoun BA. Multi-level remodeling of transcriptional landscapes in aging and longevity. BMB Rep 2019; 52:86-108. [PMID: 30526773 PMCID: PMC6386224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Indexed: 07/15/2024] Open
Abstract
In multi-cellular organisms, the control of gene expression is key not only for development, but also for adult cellular homeostasis, and gene expression has been observed to be deregulated with aging. In this review, we discuss the current knowledge on the transcriptional alterations that have been described to occur with age in metazoans. First, we discuss age-related transcriptional changes in protein-coding genes, the expected functional impact of such changes, and how known pro-longevity interventions impact these changes. Second, we discuss the changes and impact of emerging aspects of transcription in aging, including age-related changes in splicing, lncRNAs and circRNAs. Third, we discuss the changes and potential impact of transcription of transposable elements with aging. Fourth, we highlight small ncRNAs and their potential impact on the regulation of aging phenotypes. Understanding the aging transcriptome will be key to identify important regulatory targets, and ultimately slow-down or reverse aging and extend healthy lifespan in humans. [BMB Reports 2019; 52(1): 86-108].
Collapse
Affiliation(s)
| | | | - Prakroothi S. Danthi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089,
USA
| | - Juan I. Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089,
USA
- Graduate program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089,
USA
| | - Alexandre Goumba
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089,
USA
| | | | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089,
USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089,
USA
- USC Stem Cell Initiative, Los Angeles, CA 90089,
USA
| |
Collapse
|
27
|
Foster TM, Aranzana MJ. Attention sports fans! The far-reaching contributions of bud sport mutants to horticulture and plant biology. HORTICULTURE RESEARCH 2018; 5:44. [PMID: 30038785 PMCID: PMC6046048 DOI: 10.1038/s41438-018-0062-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/06/2018] [Indexed: 05/08/2023]
Abstract
A bud sport is a lateral shoot, inflorescence or single flower/fruit with a visibly different phenotype from the rest of the plant. The new phenotype is often caused by a stable somatic mutation in a single cell that is passed on to its clonal descendants and eventually populates part or all of a meristem. In many cases, a bud sport can be vegetatively propagated, thereby preserving the novel phenotype without sexual reproduction. Bud sports provide new characteristics while retaining the desirable qualities of the parent plant, which is why many bud sports have been developed into popular cultivars. We present an overview of the history of bud sports, the causes and methods of detecting somaclonal variation, and the types of mutant phenotypes that have arisen spontaneously. We focus on examples where the molecular or cytological changes causing the phenotype have been identified. Analysis of these sports has provided valuable insight into developmental processes, gene function and regulation, and in some cases has revealed new information about layer-specific roles of some genes. Examination of the molecular changes causing a phenotype and in some cases reversion back to the original state has contributed to our understanding of the mechanisms that drive genomic evolution.
Collapse
Affiliation(s)
- Toshi M. Foster
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4474 New Zealand
| | - Maria José Aranzana
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| |
Collapse
|
28
|
Fraiture MA, Saltykova A, Hoffman S, Winand R, Deforce D, Vanneste K, De Keersmaecker SCJ, Roosens NHC. Nanopore sequencing technology: a new route for the fast detection of unauthorized GMO. Sci Rep 2018; 8:7903. [PMID: 29785005 PMCID: PMC5962636 DOI: 10.1038/s41598-018-26259-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/09/2018] [Indexed: 01/10/2023] Open
Abstract
In order to strengthen the current genetically modified organism (GMO) detection system for unauthorized GMO, we have recently developed a new workflow based on DNA walking to amplify unknown sequences surrounding a known DNA region. This DNA walking is performed on transgenic elements, commonly found in GMO, that were earlier detected by real-time PCR (qPCR) screening. Previously, we have demonstrated the ability of this approach to detect unauthorized GMO via the identification of unique transgene flanking regions and the unnatural associations of elements from the transgenic cassette. In the present study, we investigate the feasibility to integrate the described workflow with the MinION Next-Generation-Sequencing (NGS). The MinION sequencing platform can provide long read-lengths and deal with heterogenic DNA libraries, allowing for rapid and efficient delivery of sequences of interest. In addition, the ability of this NGS platform to characterize unauthorized and unknown GMO without any a priori knowledge has been assessed.
Collapse
Affiliation(s)
- Marie-Alice Fraiture
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Bioinformatics (PBB), J. Wytsmanstraat 14, 1050, Brussels, Belgium
- Scientific Institute of Public Health (WIV-ISP), Biosafety and Biotechnology Unit (SBB), J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Assia Saltykova
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Bioinformatics (PBB), J. Wytsmanstraat 14, 1050, Brussels, Belgium
- Ghent University (UGent), Department of Information Technology, IMEC, Internet Technology and Data Science Lab (IDLab), Technologiepark-Zwijnaarde 15, 9052, Ghent, Belgium
| | - Stefan Hoffman
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Bioinformatics (PBB), J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Raf Winand
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Bioinformatics (PBB), J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Dieter Deforce
- Ghent University, Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutical Biotechnology, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Kevin Vanneste
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Bioinformatics (PBB), J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Sigrid C J De Keersmaecker
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Bioinformatics (PBB), J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Nancy H C Roosens
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Bioinformatics (PBB), J. Wytsmanstraat 14, 1050, Brussels, Belgium.
| |
Collapse
|
29
|
Lanciano S, Mirouze M. Transposable elements: all mobile, all different, some stress responsive, some adaptive? Curr Opin Genet Dev 2018; 49:106-114. [PMID: 29705597 DOI: 10.1016/j.gde.2018.04.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/06/2018] [Accepted: 04/11/2018] [Indexed: 12/12/2022]
Abstract
Transposable elements (TEs) were first identified through the polymorphisms they induced in plants and animals. Genomic studies have later revealed that TEs were highly abundant in eukaryotic genomes. Recently, more precise single individual genomic analyses have unravelled the huge diversity of TE insertions in many plant and animal species. In most cases the stress conditions behind this diversity are not known and neither is the adaptive capacity of these natural TE-induced variants. Here, we review some of the most recent examples of TE-related impacts on gene expression at the locus or the genome level and discuss the rich diversity of the TE repertoire and its potential role in adaptive evolution.
Collapse
Affiliation(s)
- Sophie Lanciano
- IRD, DIADE, University of Perpignan, Laboratory of Plant Genome and Development, Perpignan, France
| | - Marie Mirouze
- IRD, DIADE, University of Perpignan, Laboratory of Plant Genome and Development, Perpignan, France.
| |
Collapse
|
30
|
Kalendar R, Amenov A, Daniyarov A. Use of retrotransposon-derived genetic markers to analyse genomic variability in plants. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 46:15-29. [PMID: 30939255 DOI: 10.1071/fp18098] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/23/2018] [Indexed: 06/09/2023]
Abstract
Transposable elements (TEs) are common mobile genetic elements comprising several classes and making up the majority of eukaryotic genomes. The movement and accumulation of TEs has been a major force shaping the genes and genomes of most organisms. Most eukaryotic genomes are dominated by retrotransposons and minimal DNA transposon accumulation. The 'copy and paste' lifecycle of replicative transposition produces new genome insertions without excising the original element. Horizontal TE transfer among lineages is rare. TEs represent a reservoir of potential genomic instability and RNA-level toxicity. Many TEs appear static and nonfunctional, but some are capable of replicating and mobilising to new positions, and somatic transposition events have been observed. The overall structure of retrotransposons and the domains responsible for the phases of their replication are highly conserved in all eukaryotes. TEs are important drivers of species diversity and exhibit great variety in their structure, size and transposition mechanisms, making them important putative actors in evolution. Because TEs are abundant in plant genomes, various applications have been developed to exploit polymorphisms in TE insertion patterns, including conventional or anchored PCR, and quantitative or digital PCR with primers for the 5' or 3' junction. Alternatively, the retrotransposon junction can be mapped using high-throughput next-generation sequencing and bioinformatics. With these applications, TE insertions can be rapidly, easily and accurately identified, or new TE insertions can be found. This review provides an overview of the TE-based applications developed for plant species and assesses the contributions of TEs to the analysis of plants' genetic diversity.
Collapse
Affiliation(s)
- Ruslan Kalendar
- Department of Agricultural Sciences, PO Box 27 (Latokartanonkaari 5), FI-00014 University of Helsinki, Helsinki, Finland
| | - Asset Amenov
- RSE 'National Center for Biotechnology', 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Asset Daniyarov
- RSE 'National Center for Biotechnology', 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| |
Collapse
|
31
|
Cho J. Transposon-Derived Non-coding RNAs and Their Function in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:600. [PMID: 29774045 PMCID: PMC5943564 DOI: 10.3389/fpls.2018.00600] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/16/2018] [Indexed: 05/03/2023]
Abstract
Transposable elements (TEs) are often regarded as harmful genomic factors and indeed they are strongly suppressed by the epigenetic silencing mechanisms. On the other hand, the mobilization of TEs brings about variability of genome and transcriptome which are essential in the survival and evolution of the host species. The vast majority of such controlling TEs influence the neighboring genes in cis by either promoting or repressing the transcriptional activities. Although TEs are highly repetitive in the genomes and transcribed in specific stress conditions or developmental stages, the trans-acting regulatory roles of TE-derived RNAs have been rarely studied. It was only recently that TEs were investigated for their regulatory roles as a form of RNA. Particularly in plants, TEs are ample source of small RNAs such as small interfering (si) RNAs and micro (mi) RNAs. Those TE-derived small RNAs have potentials to affect non-TE transcripts by sequence complementarity, thereby generating novel gene regulatory networks including stress resistance and hybridization barrier. Apart from the small RNAs, a number of long non-coding RNAs (lncRNAs) are originated from TEs in plants. For example, a retrotransposon-derived lncRNA expressed in rice root acts as a decoy RNA or miRNA target mimic which negatively controls miRNA171. The post-transcriptional suppression of miRNA171 in roots ensures the stabilization of the target transcripts encoding SCARECROW-LIKE transcription factors, the key regulators of root development. In this review article, the recent discoveries of the regulatory roles of TE-derived RNAs in plants will be highlighted.
Collapse
|
32
|
McGinty RJ, Rubinstein RG, Neil AJ, Dominska M, Kiktev D, Petes TD, Mirkin SM. Nanopore sequencing of complex genomic rearrangements in yeast reveals mechanisms of repeat-mediated double-strand break repair. Genome Res 2017; 27:2072-2082. [PMID: 29113982 PMCID: PMC5741057 DOI: 10.1101/gr.228148.117] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/26/2017] [Indexed: 01/25/2023]
Abstract
Improper DNA double-strand break (DSB) repair results in complex genomic rearrangements (CGRs) in many cancers and various congenital disorders in humans. Trinucleotide repeat sequences, such as (GAA)n repeats in Friedreich's ataxia, (CTG)n repeats in myotonic dystrophy, and (CGG)n repeats in fragile X syndrome, are also subject to double-strand breaks within the repetitive tract followed by DNA repair. Mapping the outcomes of CGRs is important for understanding their causes and potential phenotypic effects. However, high-resolution mapping of CGRs has traditionally been a laborious and highly skilled process. Recent advances in long-read DNA sequencing technologies, specifically Nanopore sequencing, have made possible the rapid identification of CGRs with single base pair resolution. Here, we have used whole-genome Nanopore sequencing to characterize several CGRs that originated from naturally occurring DSBs at (GAA)n microsatellites in Saccharomyces cerevisiae. These data gave us important insights into the mechanisms of DSB repair leading to CGRs.
Collapse
Affiliation(s)
- Ryan J McGinty
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA
| | | | - Alexander J Neil
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA
| | - Margaret Dominska
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Denis Kiktev
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|