1
|
Siew ZY, Tan YF, Iswara RP, Wong SF, Wong ST, Tan BK, Leong PP, Tan CW, Wang LF, Leong CO, Voon K. Human cytokeratin 1 plays a role in the interaction of Pteropine orthoreovirus with Hek293 cells but not HeLa cells. Microbes Infect 2024; 26:105243. [PMID: 38380604 DOI: 10.1016/j.micinf.2023.105243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/15/2023] [Accepted: 10/26/2023] [Indexed: 02/22/2024]
Abstract
Pteropine orthoreovirus (PRV) causes respiratory tract infections in humans. Despite its emergence as a zoonotic and respiratory virus, little is known about its cell tropism, which hampers progress in fully understanding its pathogenesis in humans. Hek293 cells are most susceptible to PRV infection, while HeLa cells are the least. Human cytokeratin 1 (CK1) was identified as the protein that interacts with PRV. The immunofluorescence assay and qPCR results revealed prior treatment with anti-CK1 may provide Hek293 cells protection against PRV. The KRT1-knockout Hek293 cells were less susceptible to PRV infection. Further study into the pathogenesis of PRV in humans is needed.
Collapse
Affiliation(s)
- Zhen Yun Siew
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Yeh Fong Tan
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | | | - Shew Fung Wong
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia; Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| | - Siew Tung Wong
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Boon Keat Tan
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Pooi Pooi Leong
- Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, Sg Long, Malaysia
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore; Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Chee Onn Leong
- Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia; AGTC Genomics, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Kenny Voon
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia; School of Medicine, International Medical University, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Tarigan R, Katta T, Takemae H, Shimoda H, Maeda K, Iida A, Hondo E. Distinct interferon response in bat and other mammalian cell lines infected with Pteropine orthoreovirus. Virus Genes 2021; 57:510-520. [PMID: 34432209 PMCID: PMC8386163 DOI: 10.1007/s11262-021-01865-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 08/09/2021] [Indexed: 12/24/2022]
Abstract
Bats serve as natural hosts of Pteropine orthoreovirus (PRV), an emerging group of bat-borne, zoonotic viruses. Bats appear to possess unique innate immune system responses that can inhibit viral replication, thus reducing clinical symptoms. We examined the innate immune response against PRV and assessed viral replication in cell lines derived from four bat species (Miniopterus fuliginosus, Pteropus dasymallus, Rhinolophus ferrumequinum, and Rousettus leschenaultii), one rodent (Mesocricetous auratus), and human (Homo sapiens). The expression levels of pattern recognition receptors (PRRs) (TLR3, RIG-I, and MDA5) and interferons (IFNB1 and IFNL1) were higher and PRV replication was lower in cell lines derived from M. fuliginosus, R. ferrumequinum, and R. leschenaultii. Reduction of IFNB1 expression by the knockdown of PRRs in the cell line derived from R. ferrumequinum was associated with increased PRV replication. The knockdown of RIG-I led to the most significant reduction in viral replication for all cell lines. These results suggest that RIG-I production is important for antiviral response against PRV in R. ferrumequinum.
Collapse
Affiliation(s)
- Ronald Tarigan
- Laboratory of Animal Morphology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Tetsufumi Katta
- Laboratory of Animal Morphology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hitoshi Takemae
- Laboratory of Animal Morphology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hiroshi Shimoda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ken Maeda
- Division of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Atsuo Iida
- Laboratory of Animal Morphology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Eiichi Hondo
- Laboratory of Animal Morphology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
3
|
Li X, Chen D, Li B, Yang Y, Yang Y. Combined transcriptomic, proteomic and biochemical approaches to identify the cadmium hyper-tolerance mechanism of turnip seedling leaves. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22458-22473. [PMID: 33420687 DOI: 10.1007/s11356-020-11454-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) pollution is a prominent environment problem, and great interests have been developed towards the molecular mechanism of Cd accumulation in plants. In this study, we conducted combined transcriptomic, proteomic and biochemical approaches to explore the detoxification of a Cd-hyperaccumulating turnip landrace exposed to 5 μM (T5) and 25 μM (T25) Cd treatments. A total of 1090 and 2111 differentially expressed genes (DEGs) and 161 and 303 differentially expressed proteins (DEPs) were identified in turnips under T5 and T25, respectively. However, poor correlations were observed in expression changes between mRNA and protein levels. The enriched KEGG pathways of DEGs with a high proportion (> 80%) of upregulated genes were focused on the flavonoid biosynthesis, sulphur metabolism and glucosinolate biosynthesis pathways, whereas those of DEPs were enriched on the glutathione metabolism pathway. This result suggests that these pathways contribute to Cd detoxification in turnips. Furthermore, induced antioxidant enzymes, heat stock proteins and stimulated protein acetylation modification seemed to play important roles in Cd tolerance in turnips. In addition, several metal transporters were found responsible for the Cd accumulation capacity of turnips. This study may serve as a basis for breeding low-Cd-accumulating vegetables for foodstuff or high-Cd-abstracting plants for phytoremediation.
Collapse
Affiliation(s)
- Xiong Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Di Chen
- School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Boqun Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ya Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yongping Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
4
|
Irving AT, Zhang Q, Kong PS, Luko K, Rozario P, Wen M, Zhu F, Zhou P, Ng JHJ, Sobota RM, Wang LF. Interferon Regulatory Factors IRF1 and IRF7 Directly Regulate Gene Expression in Bats in Response to Viral Infection. Cell Rep 2020; 33:108345. [PMID: 33147460 PMCID: PMC8755441 DOI: 10.1016/j.celrep.2020.108345] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/23/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Bat cells and tissue have elevated basal expression levels of antiviral genes commonly associated with interferon alpha (IFNα) signaling. Here, we show Interferon Regulatory Factor 1 (IRF1), 3, and 7 levels are elevated in most bat tissues and that, basally, IRFs contribute to the expression of type I IFN ligands and high expression of interferon regulated genes (IRGs). CRISPR knockout (KO) of IRF 1/3/7 in cells reveals distinct subsets of genes affected by each IRF in an IFN-ligand signaling-dependent and largely independent manner. As the master regulators of innate immunity, the IRFs control the kinetics and maintenance of the IRG response and play essential roles in response to influenza A virus (IAV), herpes simplex virus 1 (HSV-1), Melaka virus/Pteropine orthoreovirus 3 Melaka (PRV3M), and Middle East respiratory syndrome-related coronavirus (MERS-CoV) infection. With its differential expression in bats compared to that in humans, this highlights a critical role for basal IRF expression in viral responses and potentially immune cell development in bats with relevance for IRF function in human biology.
Collapse
Affiliation(s)
- Aaron T Irving
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University International Campus, Haining, China; Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Qian Zhang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore; University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Pui-San Kong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Katarina Luko
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Pritisha Rozario
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Ming Wen
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Peng Zhou
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore; Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Justin H J Ng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology (A(∗)STAR), Singapore, Singapore; Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
5
|
Irving AT, Rozario P, Kong PS, Luko K, Gorman JJ, Hastie ML, Chia WN, Mani S, Lee BPH, Smith GJD, Mendenhall IH, Larman HB, Elledge SJ, Wang LF. Robust dengue virus infection in bat cells and limited innate immune responses coupled with positive serology from bats in IndoMalaya and Australasia. Cell Mol Life Sci 2020; 77:1607-1622. [PMID: 31352533 PMCID: PMC11104837 DOI: 10.1007/s00018-019-03242-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/10/2019] [Accepted: 07/22/2019] [Indexed: 01/19/2023]
Abstract
Natural reservoir hosts can sustain infection of pathogens without succumbing to overt disease. Multiple bat species host a plethora of viruses, pathogenic to other mammals, without clinical symptoms. Here, we detail infection of bat primary cells, immune cells, and cell lines with Dengue virus. While antibodies and viral RNA were previously detected in wild bats, their ability to sustain infection is not conclusive. Old-world fruitbat cells can be infected, producing high titres of virus with limited cellular responses. In addition, there is minimal interferon (IFN) response in cells infected with MOIs leading to dengue production. The ability to support in vitro replication/production raises the possibility of bats as a transient host in the life cycle of dengue or similar flaviviruses. New antibody serology evidence from Asia/Pacific highlights the previous exposure and raises awareness that bats may be involved in flavivirus dynamics and infection of other hosts.
Collapse
Affiliation(s)
| | | | | | | | - Jeffrey J Gorman
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Marcus L Hastie
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Wan Ni Chia
- Duke-NUS Medical School, Singapore, Singapore
| | | | | | | | | | | | - Stephen J Elledge
- Harvard University Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Lin-Fa Wang
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|