1
|
Xu MM, Kang JY, Ji S, Wei YY, Wei SL, Ye JJ, Wang YG, Shen JL, Wu HM, Fei GH. Melatonin Suppresses Macrophage M1 Polarization and ROS-Mediated Pyroptosis via Activating ApoE/LDLR Pathway in Influenza A-Induced Acute Lung Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2520348. [PMID: 36425057 PMCID: PMC9681554 DOI: 10.1155/2022/2520348] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2023]
Abstract
Influenza virus infection is one of the strongest pathogenic factors for the development of acute lung injury (ALI)/ acute respiratory distress syndrome (ARDS). However, the underlying cellular and molecular mechanisms have not been clarified. In this study, we aim to investigate whether melatonin modulates macrophage polarization, oxidative stress, and pyroptosis via activating Apolipoprotein E/low-density lipoprotein receptor (ApoE/LDLR) pathway in influenza A-induced ALI. Here, wild-type (WT) and ApoE-/- mice were instilled intratracheally with influenza A (H3N2) and injected intraperitoneally with melatonin for 7 consecutive days. In vitro, WT and ApoE-/- murine bone marrow-derived macrophages (BMDMs) were pretreated with melatonin before H3N2 stimulation. The results showed that melatonin administration significantly attenuated H3N2-induced pulmonary damage, leukocyte infiltration, and edema; decreased the expression of proinflammatory M1 markers; enhanced anti-inflammatory M2 markers; and switched the polarization of alveolar macrophages (AMs) from M1 to M2 phenotype. Additionally, melatonin inhibited reactive oxygen species- (ROS-) mediated pyroptosis shown by downregulation of malonaldehyde (MDA) and ROS levels as well as inhibition of the NLRP3/GSDMD pathway and lactate dehydrogenase (LDH) release. Strikingly, the ApoE/LDLR pathway was activated when melatonin was applied in H3N2-infected macrophages and mice. ApoE knockout mostly abrogated the protective impacts of melatonin on H3N2-induced ALI and its regulatory ability on macrophage polarization, oxidative stress, and pyroptosis. Furthermore, recombinant ApoE3 (re-ApoE3) inhibited H3N2-induced M1 polarization of BMDMs with upregulation of MT1 and MT2 expression, but re-ApoE2 and re-ApoE4 failed to do this. Melatonin combined with re-ApoE3 played more beneficial protective effects on modulating macrophage polarization, oxidative stress, and pyroptosis in H3N2-infected ApoE-/- BMDMs. Our study indicated that melatonin attenuated influenza A- (H3N2-) induced ALI by inhibiting the M1 polarization of pulmonary macrophages and ROS-mediated pyroptosis via activating the ApoE/LDLR pathway. This study suggested that melatonin-ApoE/LDLR axis may serve as a novel therapeutic strategy for influenza virus-induced ALI.
Collapse
Affiliation(s)
- Meng-Meng Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
| | - Jia-Ying Kang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
| | - Shuang Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
| | - Yuan-Yuan Wei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
| | - Si-Liang Wei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
| | - Jing-Jing Ye
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
| | - Yue-Guo Wang
- Department of Emergency Critical Care Medicine, First Affiliated Hospital of Anhui Provincial Hospital, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China
| | - Ji-Long Shen
- Provincial Laboratory of Microbiology and Parasitology of Anhui Medical University, Hefei, 230022 Anhui, China
| | - Hui-Mei Wu
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
- Anhui Geriatric Institute, Department of Geriatric Respiratory Critical and Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
| | - Guang-He Fei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
| |
Collapse
|
2
|
Caruso C, Ligotti ME, Accardi G, Aiello A, Duro G, Galimberti D, Candore G. How Important Are Genes to Achieve Longevity? Int J Mol Sci 2022; 23:5635. [PMID: 35628444 PMCID: PMC9145989 DOI: 10.3390/ijms23105635] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 01/25/2023] Open
Abstract
Several studies on the genetics of longevity have been reviewed in this paper. The results show that, despite efforts and new technologies, only two genes, APOE and FOXO3A, involved in the protection of cardiovascular diseases, have been shown to be associated with longevity in nearly all studies. This happens because the genetic determinants of longevity are dynamic and depend on the environmental history of a given population. In fact, population-specific genes are thought to play a greater role in the attainment of longevity than those shared between different populations. Hence, it is not surprising that GWAS replicated associations of common variants with longevity have been few, if any, as these studies pool together different populations. An alternative way might be the study of long-life families. This type of approach is proving to be an ideal resource for uncovering protective alleles and associated biological signatures for healthy aging phenotypes and exceptional longevity.
Collapse
Affiliation(s)
- Calogero Caruso
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, 90133 Palermo, Italy; (M.E.L.); (G.A.); (A.A.); (G.C.)
| | - Mattia Emanuela Ligotti
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, 90133 Palermo, Italy; (M.E.L.); (G.A.); (A.A.); (G.C.)
- Istituto per la Ricerca e l’Innovazione Biomedica, Consiglio Nazionale delle Ricerche, 90146 Palermo, Italy;
| | - Giulia Accardi
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, 90133 Palermo, Italy; (M.E.L.); (G.A.); (A.A.); (G.C.)
| | - Anna Aiello
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, 90133 Palermo, Italy; (M.E.L.); (G.A.); (A.A.); (G.C.)
| | - Giovanni Duro
- Istituto per la Ricerca e l’Innovazione Biomedica, Consiglio Nazionale delle Ricerche, 90146 Palermo, Italy;
| | | | - Giuseppina Candore
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, 90133 Palermo, Italy; (M.E.L.); (G.A.); (A.A.); (G.C.)
| |
Collapse
|
3
|
Fibronectin type III domain-containing 5 in cardiovascular and metabolic diseases: a promising biomarker and therapeutic target. Acta Pharmacol Sin 2021; 42:1390-1400. [PMID: 33214697 PMCID: PMC8379181 DOI: 10.1038/s41401-020-00557-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular and metabolic diseases are the leading causes of death and disability worldwide and impose a tremendous socioeconomic burden on individuals as well as the healthcare system. Fibronectin type III domain-containing 5 (FNDC5) is a widely distributed transmembrane glycoprotein that can be proteolytically cleaved and secreted as irisin to regulate glycolipid metabolism and cardiovascular homeostasis. In this review, we present the current knowledge on the predictive and therapeutic role of FNDC5 in a variety of cardiovascular and metabolic diseases, such as hypertension, atherosclerosis, ischemic heart disease, arrhythmia, metabolic cardiomyopathy, cardiac remodeling, heart failure, diabetes mellitus, and obesity.
Collapse
|
4
|
Ukraintseva S, Duan M, Arbeev K, Wu D, Bagley O, Yashkin AP, Gorbunova G, Akushevich I, Kulminski A, Yashin A. Interactions Between Genes From Aging Pathways May Influence Human Lifespan and Improve Animal to Human Translation. Front Cell Dev Biol 2021; 9:692020. [PMID: 34490245 PMCID: PMC8417405 DOI: 10.3389/fcell.2021.692020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022] Open
Abstract
A major goal of aging research is identifying genetic targets that could be used to slow or reverse aging - changes in the body and extend limits of human lifespan. However, majority of genes that showed the anti-aging and pro-survival effects in animal models were not replicated in humans, with few exceptions. Potential reasons for this lack of translation include a highly conditional character of genetic influence on lifespan, and its heterogeneity, meaning that better survival may be result of not only activity of individual genes, but also gene-environment and gene-gene interactions, among other factors. In this paper, we explored associations of genetic interactions with human lifespan. We selected candidate genes from well-known aging pathways (IGF1/FOXO growth signaling, P53/P16 apoptosis/senescence, and mTOR/SK6 autophagy and survival) that jointly decide on outcomes of cell responses to stress and damage, and so could be prone to interactions. We estimated associations of pairwise statistical epistasis between SNPs in these genes with survival to age 85+ in the Atherosclerosis Risk in Communities study, and found significant (FDR < 0.05) effects of interactions between SNPs in IGF1R, TGFBR2, and BCL2 on survival 85+. We validated these findings in the Cardiovascular Health Study sample, with P < 0.05, using survival to age 85+, and to the 90th percentile, as outcomes. Our results show that interactions between SNPs in genes from the aging pathways influence survival more significantly than individual SNPs in the same genes, which may contribute to heterogeneity of lifespan, and to lack of animal to human translation in aging research.
Collapse
Affiliation(s)
- Svetlana Ukraintseva
- Biodemography of Aging Research Unit, Duke University, Durham, NC, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ou-Yang WL, Guo B, Xu F, Lin X, Li FXZ, Shan SK, Wu F, Wang Y, Zheng MH, Xu QS, Yuan LQ. The Controversial Role of Irisin in Clinical Management of Coronary Heart Disease. Front Endocrinol (Lausanne) 2021; 12:678309. [PMID: 34276559 PMCID: PMC8281113 DOI: 10.3389/fendo.2021.678309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/17/2021] [Indexed: 12/23/2022] Open
Abstract
Irisin, a PGC1α-dependent myokine, was once believed to have beneficial effects induced by exercise. Since its first discovery of adipose browning in 2012, multiple studies have been trying to explore the metabolic functions of irisin, such as glucose and lipid metabolism. However, recently many studies with irisin concentration measuring were doubt for methodological problems, which may account for the continuous inconsistencies. New tools like recombinant irisin and gene-knockout mice are required to reconfirm the questioned functions of irisin. In this paper, we make a critical introduction to the latest researches concerning the relationship between irisin and coronary heart disease, which includes atherosclerosis, stable angina pectoris and acute coronary syndromes. These studies provided various controversial evidence of short and long-term monitoring and therapeutic effect from molecular cellular mechanisms, in vivo experiments and epidemiological investigation. But with ambiguities, irisin still has a long way to go to identify its functions in the clinical management.
Collapse
Affiliation(s)
- Wen-Lu Ou-Yang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ling-Qing Yuan,
| |
Collapse
|
6
|
A brief overview about the physiology of fibronectin type III domain-containing 5. Cell Signal 2020; 76:109805. [PMID: 33031934 DOI: 10.1016/j.cellsig.2020.109805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 01/10/2023]
|
7
|
Płóciennik ŁA, Zaucha J, Zaucha JM, Łukaszuk K, Jóźwicki M, Płóciennik M, Cięszczyk P. Detection of epistasis between ACTN3 and SNAP-25 with an insight towards gymnastic aptitude identification. PLoS One 2020; 15:e0237808. [PMID: 32866209 PMCID: PMC7458280 DOI: 10.1371/journal.pone.0237808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/03/2020] [Indexed: 01/01/2023] Open
Abstract
In this study, we performed an analysis of the impact of performance enhancing polymorphisms (PEPs) on gymnastic aptitude while considering epistatic effects. Seven PEPs (rs1815739, rs8192678, rs4253778, rs6265, rs5443, rs1076560, rs362584) were considered in a case (gymnasts)-control (sedentary individuals) setting. The study sample comprised of two athletes' sets: 27 elite (aged 24.8 ± 2.1 years) and 46 sub-elite (aged 19.7 ± 2.4 years) sportsmen as well as a control group of 245 sedentary individuals (aged 22.5 ± 2.1 years). The DNA was derived from saliva and PEP alleles were determined by PCR, RT-PCR. Following Multifactor Dimensionality Reduction, logistic regression models were built. The synergistic effect for rs1815739 x rs362584 reached 5.43%. The rs1815739 x rs362584 epistatic regression model exhibited a good fit to the data (Chi-squared = 33.758, p ≈ 0) achieving a significant improvement in sportsmen identification over naïve guessing. The area under the receiver operating characteristic curve was 0.715 (Z-score = 38.917, p ≈ 0). In contrast, the additive ACTN3 -SNAP-25 logistic regression model has been verified as non-significant. We demonstrate that a gene involved in the differentiation of muscle architecture-ACTN3 and a gene, which plays an important role in the nervous system-SNAP-25 interact. From the perspective originally established by the Berlin Academy of Science in 1751, the matter of communication between the brain and muscles via nerves adopts molecular manifestations. Further in-vitro investigations are required to explain the molecular details of the rs1815739 -rs362584 interaction.
Collapse
Affiliation(s)
- Łukasz Andrzej Płóciennik
- Department of Physical Education, Academy of Physical Education and Sport in Gdansk, Gdansk, Pomorskie Voivodeship, Poland
- FitnessFitback, Pomorskie Voivodeship, Poland
| | - Jan Zaucha
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Jan Maciej Zaucha
- Department of Haematology and Transplantation, Medical University of Gdansk, Gdansk, Pomorskie Voivodeship, Poland
| | - Krzysztof Łukaszuk
- Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Pomorskie Voivodeship, Poland
| | - Marek Jóźwicki
- Department of Architecture and Design, Academy of Fine Arts, Gdansk, Pomorskie Voivodeship, Poland
| | | | - Paweł Cięszczyk
- Department of Physical Education, Academy of Physical Education and Sport in Gdansk, Gdansk, Pomorskie Voivodeship, Poland
| |
Collapse
|
8
|
Giuliani C, Garagnani P, Franceschi C. Genetics of Human Longevity Within an Eco-Evolutionary Nature-Nurture Framework. Circ Res 2019; 123:745-772. [PMID: 30355083 DOI: 10.1161/circresaha.118.312562] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human longevity is a complex trait, and to disentangle its basis has a great theoretical and practical consequences for biomedicine. The genetics of human longevity is still poorly understood despite several investigations that used different strategies and protocols. Here, we argue that such rather disappointing harvest is largely because of the extraordinary complexity of the longevity phenotype in humans. The capability to reach the extreme decades of human lifespan seems to be the result of an intriguing mixture of gene-environment interactions. Accordingly, the genetics of human longevity is here described as a highly context-dependent phenomenon, within a new integrated, ecological, and evolutionary perspective, and is presented as a dynamic process, both historically and individually. The available literature has been scrutinized within this perspective, paying particular attention to factors (sex, individual biography, family, population ancestry, social structure, economic status, and education, among others) that have been relatively neglected. The strength and limitations of the most powerful and used tools, such as genome-wide association study and whole-genome sequencing, have been discussed, focusing on prominently emerged genes and regions, such as apolipoprotein E, Forkhead box O3, interleukin 6, insulin-like growth factor-1, chromosome 9p21, 5q33.3, and somatic mutations among others. The major results of this approach suggest that (1) the genetics of longevity is highly population specific; (2) small-effect alleles, pleiotropy, and the complex allele timing likely play a major role; (3) genetic risk factors are age specific and need to be integrated in the light of the geroscience perspective; (4) a close relationship between genetics of longevity and genetics of age-related diseases (especially cardiovascular diseases) do exist. Finally, the urgent need of a global approach to the largely unexplored interactions between the 3 genetics of human body, that is, nuclear, mitochondrial, and microbiomes, is stressed. We surmise that the comprehensive approach here presented will help in increasing the above-mentioned harvest.
Collapse
Affiliation(s)
- Cristina Giuliani
- From the Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology (C.G.), University of Bologna, Italy.,School of Anthropology and Museum Ethnography, University of Oxford, United Kingdom (C.G.).,Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, Italy (C.G.)
| | - Paolo Garagnani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES) (P.G.), University of Bologna, Italy.,Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden (P.G.)
| | | |
Collapse
|
9
|
Santovito A, Galli G, Ruberto S. Evaluation of the possible association of body mass index and four metabolic gene polymorphisms with longevity in an Italian cohort: a role forAPOE,eNOSandFTOgene polymorphisms. Ann Hum Biol 2019; 46:425-429. [DOI: 10.1080/03014460.2019.1659413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alfredo Santovito
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Gabriella Galli
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Stefano Ruberto
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| |
Collapse
|
10
|
Morris BJ, Willcox BJ, Donlon TA. Genetic and epigenetic regulation of human aging and longevity. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1718-1744. [PMID: 31109447 PMCID: PMC7295568 DOI: 10.1016/j.bbadis.2018.08.039] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/02/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Abstract
Here we summarize the latest data on genetic and epigenetic contributions to human aging and longevity. Whereas environmental and lifestyle factors are important at younger ages, the contribution of genetics appears more important in reaching extreme old age. Genome-wide studies have implicated ~57 gene loci in lifespan. Epigenomic changes during aging profoundly affect cellular function and stress resistance. Dysregulation of transcriptional and chromatin networks is likely a crucial component of aging. Large-scale bioinformatic analyses have revealed involvement of numerous interaction networks. As the young well-differentiated cell replicates into eventual senescence there is drift in the highly regulated chromatin marks towards an entropic middle-ground between repressed and active, such that genes that were previously inactive "leak". There is a breakdown in chromatin connectivity such that topologically associated domains and their insulators weaken, and well-defined blocks of constitutive heterochromatin give way to generalized, senescence-associated heterochromatin, foci. Together, these phenomena contribute to aging.
Collapse
Affiliation(s)
- Brian J Morris
- Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, University of Sydney, New South Wales 2006, Australia; Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Kuakini Medical Center Campus, Honolulu, HI 96813, United States.
| | - Bradley J Willcox
- Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Kuakini Medical Center Campus, Honolulu, HI 96813, United States.
| | - Timothy A Donlon
- Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Departments of Cell & Molecular Biology and Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, United States.
| |
Collapse
|
11
|
The Genetic Variability of APOE in Different Human Populations and Its Implications for Longevity. Genes (Basel) 2019; 10:genes10030222. [PMID: 30884759 PMCID: PMC6471373 DOI: 10.3390/genes10030222] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
Human longevity is a complex phenotype resulting from the combinations of context-dependent gene-environment interactions that require analysis as a dynamic process in a cohesive ecological and evolutionary framework. Genome-wide association (GWAS) and whole-genome sequencing (WGS) studies on centenarians pointed toward the inclusion of the apolipoprotein E (APOE) polymorphisms ε2 and ε4, as implicated in the attainment of extreme longevity, which refers to their effect in age-related Alzheimer's disease (AD) and cardiovascular disease (CVD). In this case, the available literature on APOE and its involvement in longevity is described according to an anthropological and population genetics perspective. This aims to highlight the evolutionary history of this gene, how its participation in several biological pathways relates to human longevity, and which evolutionary dynamics may have shaped the distribution of APOE haplotypes across the globe. Its potential adaptive role will be described along with implications for the study of longevity in different human groups. This review also presents an updated overview of the worldwide distribution of APOE alleles based on modern day data from public databases and ancient DNA samples retrieved from literature in the attempt to understand the spatial and temporal frame in which present-day patterns of APOE variation evolved.
Collapse
|
12
|
Griffin EF, Scopel SE, Stephen CA, Holzhauer AC, Vaji MA, Tuckey RA, Berkowitz LA, Caldwell KA, Caldwell GA. ApoE-associated modulation of neuroprotection from Aβ-mediated neurodegeneration in transgenic Caenorhabditis elegans. Dis Model Mech 2019; 12:dmm.037218. [PMID: 30683808 PMCID: PMC6398492 DOI: 10.1242/dmm.037218] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/17/2019] [Indexed: 12/13/2022] Open
Abstract
Allele-specific distinctions in the human apolipoprotein E (APOE) locus represent the best-characterized genetic predictor of Alzheimer's disease (AD) risk. Expression of isoform APOEε2 is associated with reduced risk, while APOEε3 is neutral and APOEε4 carriers exhibit increased susceptibility. Using Caenorhabditis elegans, we generated a novel suite of humanized transgenic nematodes to facilitate neuronal modeling of amyloid-beta peptide (Aβ) co-expression in the context of distinct human APOE alleles. We found that co-expression of human APOEε2 with Aβ attenuated Aβ-induced neurodegeneration, whereas expression of the APOEε4 allele had no effect on neurodegeneration, indicating a loss of neuroprotective capacity. Notably, the APOEε3 allele displayed an intermediate phenotype; it was not neuroprotective in young adults but attenuated neurodegeneration in older animals. There was no functional impact from the three APOE isoforms in the absence of Aβ co-expression. Pharmacological treatment that examined neuroprotective effects of APOE alleles on calcium homeostasis showed allele-specific responses to changes in ER-associated calcium dynamics in the Aβ background. Additionally, Aβ suppressed survival, an effect that was rescued by APOEε2 and APOEε3, but not APOEε4. Expression of the APOE alleles in neurons, independent of Aβ, exerted no impact on survival. Taken together, these results illustrate that C. elegans provides a powerful in vivo platform with which to explore how AD-associated neuronal pathways are modulated by distinct APOE gene products in the context of Aβ-associated neurotoxicity. The significance of both ApoE and Aβ to AD highlights the utility of this new pre-clinical model as a means to dissect their functional inter-relationship.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Edward F Griffin
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Samuel E Scopel
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Cayman A Stephen
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Adam C Holzhauer
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Madeline A Vaji
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Ryan A Tuckey
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Laura A Berkowitz
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA.,Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center for Research on the Basic Biology of Aging, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA .,Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center for Research on the Basic Biology of Aging, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| |
Collapse
|
13
|
Marais AD. Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology 2018; 51:165-176. [PMID: 30598326 DOI: 10.1016/j.pathol.2018.11.002] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/16/2022]
Abstract
Apolipoprotein E (apoE), a 34 kDa circulating glycoprotein of 299 amino acids, predominantly synthesised in the liver, associates with triglyceride-rich lipoproteins to mediate the clearance of their remnants after enzymatic lipolysis in the circulation. Its synthesis in macrophages initiates the formation of high density-like lipoproteins to effect reverse cholesterol transport to the liver. In the nervous system apoE forms similar lipoproteins which perform the function of distributing lipids amongst cells. ApoE accounts for much of the variation in plasma lipoproteins by three common variants (isoforms) that influence low-density lipoprotein concentration and the risk of atherosclerosis. ApoE2 generally is most favourable and apoE4 least favourable for cardiovascular and neurological health. The apoE variants relate to different amino acids at positions 112 and 158: cysteine in both for apoE2, arginine at both sites for apoE4, and respectively cysteine and arginine for apoE3 that is viewed as the wild type. Paradoxically, under metabolic stress, homozygosity for apoE2 may result in dysbetalipoproteinaemia in adults owing to impaired binding of remnant lipoproteins to the LDL receptor and related proteins as well as heparan sulphate proteoglycans. This highly atherogenic condition is also seen with other mutations in apoE, but with autosomal dominant inheritance. Mutations in apoE may also cause lipoprotein glomerulopathy. In the central nervous system apoE binds amyloid β-protein and tau protein and fragments may incur cellular damage. ApoE4 is a strong risk factor for the development of Alzheimer's disease. ApoE has several other physiological effects that may influence health and disease, including supply of docosahexaenoic acid for the brain and modulating immune and inflammatory responses. Genotyping of apoE may have application in disorders of lipoprotein metabolism as well as glomerulopathy and may be relevant to personalised medicine in understanding cardiovascular risk, and the outcome of nutritional and therapeutic interventions. Quantitation of apoE will probably not be clinically useful. ApoE is also of interest as it may generate peptides with biological function and could be employed in nanoparticles that may allow crossing of the blood-brain barrier. Therapeutic options may emerge from these newer insights.
Collapse
Affiliation(s)
- A David Marais
- Chemical Pathology Division, Pathology Department, University of Cape Town Health Science Faculty and National Health Laboratory Service, Cape Town, South Africa.
| |
Collapse
|