1
|
Thapa BB, Huo C, Budhathoki R, Chaudhary P, Joshi S, Poudel PB, Magar RT, Parajuli N, Kim KH, Sohng JK. Metabolic Comparison and Molecular Networking of Antimicrobials in Streptomyces Species. Int J Mol Sci 2024; 25:4193. [PMID: 38673777 PMCID: PMC11050201 DOI: 10.3390/ijms25084193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Streptomyces are well-known for producing bioactive secondary metabolites, with numerous antimicrobials essential to fight against infectious diseases. Globally, multidrug-resistant (MDR) microorganisms significantly challenge human and veterinary diseases. To tackle this issue, there is an urgent need for alternative antimicrobials. In the search for potent agents, we have isolated four Streptomyces species PC1, BT1, BT2, and BT3 from soils collected from various geographical regions of the Himalayan country Nepal, which were then identified based on morphology and 16S rRNA gene sequencing. The relationship of soil microbes with different Streptomyces species has been shown in phylogenetic trees. Antimicrobial potency of isolates was carried out against Staphylococcus aureus American Type Culture Collection (ATCC) 43300, Shigella sonnei ATCC 25931, Salmonella typhi ATCC 14028, Klebsiella pneumoniae ATCC 700603, and Escherichia coli ATCC 25922. Among them, Streptomyces species PC1 showed the highest zone of inhibition against tested pathogens. Furthermore, ethyl acetate extracts of shake flask fermentation of these Streptomyces strains were subjected to liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis for their metabolic comparison and Global Natural Products Social Molecular Networking (GNPS) web-based molecular networking. We found very similar metabolite composition in four strains, despite their geographical variation. In addition, we have identified thirty-seven metabolites using LC-MS/MS analysis, with the majority belonging to the diketopiperazine class. Among these, to the best of our knowledge, four metabolites, namely cyclo-(Ile-Ser), 2-n-hexyl-5-n-propylresorcinol, 3-[(6-methylpyrazin-2-yl) methyl]-1H-indole, and cyclo-(d-Leu-l-Trp), were detected for the first time in Streptomyces species. Besides these, other 23 metabolites including surfactin B, surfactin C, surfactin D, and valinomycin were identified with the help of GNPS-based molecular networking.
Collapse
Affiliation(s)
- Bijaya Bahadur Thapa
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Kathmandu, Nepal; (B.B.T.); (R.B.); (P.C.); (S.J.); (N.P.)
| | - Chen Huo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Rabin Budhathoki
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Kathmandu, Nepal; (B.B.T.); (R.B.); (P.C.); (S.J.); (N.P.)
| | - Pratiksha Chaudhary
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Kathmandu, Nepal; (B.B.T.); (R.B.); (P.C.); (S.J.); (N.P.)
| | - Soniya Joshi
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Kathmandu, Nepal; (B.B.T.); (R.B.); (P.C.); (S.J.); (N.P.)
| | - Purna Bahadur Poudel
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (R.T.M.)
| | - Rubin Thapa Magar
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (R.T.M.)
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Kathmandu, Nepal; (B.B.T.); (R.B.); (P.C.); (S.J.); (N.P.)
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (R.T.M.)
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Jae Kyung Sohng
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (R.T.M.)
| |
Collapse
|
2
|
Santamaría RI, Martínez-Carrasco A, Tormo JR, Martín J, Genilloud O, Reyes F, Díaz M. Interactions of Different Streptomyces Species and Myxococcus xanthus Affect Myxococcus Development and Induce the Production of DK-Xanthenes. Int J Mol Sci 2023; 24:15659. [PMID: 37958645 PMCID: PMC10649082 DOI: 10.3390/ijms242115659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The co-culturing of microorganisms is a well-known strategy to study microbial interactions in the laboratory. This approach facilitates the identification of new signals and molecules produced by one species that affects other species' behavior. In this work, we have studied the effects of the interaction of nine Streptomyces species (S. albidoflavus, S. ambofaciens, S. argillaceus, S. griseus, S. lividans, S. olivaceus, S. parvulus, S. peucetius, and S. rochei) with the predator bacteria Myxococcus xanthus, five of which (S. albidoflavus, S. griseus, S. lividans, S. olivaceus, and S. argillaceus) induce mound formation of M. xanthus on complex media (Casitone Yeast extract (CYE) and Casitone tris (CTT); media on which M. xanthus does not form these aggregates under normal culture conditions. An in-depth study on S. griseus-M. xanthus interactions (the Streptomyces strain producing the strongest effect) has allowed the identification of two siderophores produced by S. griseus, demethylenenocardamine and nocardamine, responsible for this grouping effect over M. xanthus. Experiments using pure commercial nocardamine and different concentrations of FeSO4 show that iron depletion is responsible for the behavior of M. xanthus. Additionally, it was found that molecules, smaller than 3 kDa, produced by S. peucetius can induce the production of DK-xanthenes by M. xanthus.
Collapse
Affiliation(s)
- Ramón I. Santamaría
- Instituto de Biología Funcional y Genómica (IBFG), Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, C/Zacarías González, nº 2, 37007 Salamanca, Spain;
| | - Ana Martínez-Carrasco
- Instituto de Biología Funcional y Genómica (IBFG), Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, C/Zacarías González, nº 2, 37007 Salamanca, Spain;
| | - José R. Tormo
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (J.R.T.); (J.M.); (O.G.); (F.R.)
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (J.R.T.); (J.M.); (O.G.); (F.R.)
| | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (J.R.T.); (J.M.); (O.G.); (F.R.)
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (J.R.T.); (J.M.); (O.G.); (F.R.)
| | - Margarita Díaz
- Instituto de Biología Funcional y Genómica (IBFG), Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, C/Zacarías González, nº 2, 37007 Salamanca, Spain;
| |
Collapse
|
3
|
Han EJ, Lee SR, Hoshino S, Seyedsayamdost MR. Targeted Discovery of Cryptic Metabolites with Antiproliferative Activity. ACS Chem Biol 2022; 17:3121-3130. [PMID: 36228140 PMCID: PMC10171914 DOI: 10.1021/acschembio.2c00588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Microorganisms have provided a rich source of therapeutically valuable natural products. Recent advances in whole genome sequencing and bioinformatics have revealed immense untapped potential for new natural products in the form of silent or "cryptic" biosynthetic genes. We herein conducted high-throughput elicitor screening (HiTES) in conjunction with cytotoxicity assays against selected cancer cell lines with the goal of uncovering otherwise undetectable cryptic metabolites with antiproliferative activity. Application to Streptomyces clavuligerus facilitated identification of clavamates A and B, two bioactive metabolites with unusual structural features, as well as facile activation of a gene cluster coding for tunicamycin, which exhibited strong growth-inhibitory activity. The elicitor we identified was pleiotropic, additionally leading to the discovery of a modified, bicyclic pentapeptide natural product. Our results highlight the utility of this approach in identifying new molecules with antiproliferative activity from even overexploited microbial strains.
Collapse
Affiliation(s)
- Esther J. Han
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
- These authors contributed equally
| | - Seoung Rak Lee
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
- These authors contributed equally
| | - Shotaro Hoshino
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
4
|
An integrative-omics analysis of an industrial clavulanic acid-overproducing Streptomyces clavuligerus. Appl Microbiol Biotechnol 2022; 106:6139-6156. [PMID: 35945361 DOI: 10.1007/s00253-022-12098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
Abstract
Clavulanic acid (CA) is a clinically important secondary metabolite used to treat infectious diseases. We aimed to decipher complex regulatory mechanisms acting in CA biosynthesis by analyzing transcriptome- and proteome-wide alterations in an industrial CA overproducer Streptomyces clavuligerus strain, namely DEPA and its wild-type counterpart NRRL3585. A total of 924 differentially expressed genes (DEGs) and 271 differentially produced proteins (DPPs) were obtained by RNA-seq and nanoLC-MS/MS analyses, respectively. In particular, CA biosynthetic genes, namely, car (cad), cas2, oat2, pah, bls, ceas2, orf12, and claR, a cluster situated regulatory (CSR) gene, were significantly upregulated as shown by RNA-seq. Enzymes of clavam biosynthesis were downregulated considerably in the DEPA strain, while the genes involved in the arginine biosynthesis, one of the precursors of CA pathway, were overexpressed. However, the biosynthesis of the other CA precursor, glyceraldehyde-3-phosphate (G3P), was not affected. CA overproduction in the DEPA strain was correlated with BldD, BldG, BldM, and BldN (AdsA) overrepresentation. In addition, TetR, WhiB, and Xre family transcriptional regulators were shown to be significantly overrepresented. Several uncharacterized/unknown proteins differentially expressed in the DEPA strain await further studies for functional characterization. Correlation analysis indicated an acceptable degree of consistency between the transcriptome and proteome data. The study represents the first integrative-omics analysis in a CA overproducer S. clavuligerus strain, providing insights into the critical control points and potential rational engineering targets for a purposeful increase of CA yields in strain improvement. KEY POINTS: ∙ Transcriptome and proteome-wide alterations in industrial CA overproducer strain DEPA ∙ An acceptable degree of consistency between the transcriptome and proteome data ∙ New targets to be exploited for rational engineering.
Collapse
|
5
|
Gomez-Escribano JP, Algora Gallardo L, Bozhüyük KAJ, Kendrew SG, Huckle BD, Crowhurst NA, Bibb MJ, Collis AJ, Micklefield J, Herron PR, Wilkinson B. Genome editing reveals that pSCL4 is required for chromosome linearity in Streptomyces clavuligerus. Microb Genom 2021; 7:000669. [PMID: 34747689 PMCID: PMC8743545 DOI: 10.1099/mgen.0.000669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/09/2021] [Indexed: 12/28/2022] Open
Abstract
Streptomyces clavuligerus is an industrially important actinomycete whose genetic manipulation is limited by low transformation and conjugation efficiencies, low levels of recombination of introduced DNA, and difficulty in obtaining consistent sporulation. We describe the construction and application of versatile vectors for Cas9-mediated genome editing of this strain. To design spacer sequences with confidence, we derived a highly accurate genome assembly for an isolate of the type strain (ATCC 27064). This yielded a chromosome assembly (6.75 Mb) plus assemblies for pSCL4 (1795 kb) and pSCL2 (149 kb). The strain also carries pSCL1 (12 kb), but its small size resulted in only partial sequence coverage. The previously described pSCL3 (444 kb) is not present in this isolate. Using our Cas9 vectors, we cured pSCL4 with high efficiency by targeting the plasmid's parB gene. Five of the resulting pSCL4-cured isolates were characterized and all showed impaired sporulation. Shotgun genome sequencing of each of these derivatives revealed large deletions at the ends of the chromosomes in all of them, and for two clones sufficient sequence data was obtained to show that the chromosome had circularized. Taken together, these data indicate that pSCL4 is essential for the structural stability of the linear chromosome.
Collapse
Affiliation(s)
- Juan Pablo Gomez-Escribano
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- Present address: Department of Bioresources for Bioeconomy and Health Research, Leibniz Institute, DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Lis Algora Gallardo
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Kenan A. J. Bozhüyük
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- Present address: Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Steven G. Kendrew
- Biotechnology and Environmental Shared Service, GlaxoSmithKline, Southdown View Way, Worthing BN14 8QH, UK
- Engineered Biodesign Limited, Cambridge CB1 3SN, UK
| | - Benjamin D. Huckle
- Biotechnology and Environmental Shared Service, GlaxoSmithKline, Southdown View Way, Worthing BN14 8QH, UK
| | - Nicola A. Crowhurst
- Biotechnology and Environmental Shared Service, GlaxoSmithKline, Southdown View Way, Worthing BN14 8QH, UK
| | - Mervyn J. Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Andrew J. Collis
- Biotechnology and Environmental Shared Service, GlaxoSmithKline, Southdown View Way, Worthing BN14 8QH, UK
| | - Jason Micklefield
- Department of Chemistry, Manchester Institute for Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Paul R. Herron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
6
|
An Analysis of Biosynthesis Gene Clusters and Bioactivity of Marine Bacterial Symbionts. Curr Microbiol 2021; 78:2522-2533. [PMID: 34041587 DOI: 10.1007/s00284-021-02535-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/05/2021] [Indexed: 01/28/2023]
Abstract
Symbiotic marine bacteria have a pivotal role in drug discovery due to the synthesis of diverse biologically potential compounds. The marine bacterial phyla proteobacteria, actinobacteria and firmicutes are commonly associated with marine macro organisms and frequently reported as dominant bioactive compound producers. They can produce biologically active compounds that possess antimicrobial, antiviral, antitumor, antibiofilm and antifouling properties. Synthesis of these bioactive compounds is controlled by a set of genes of their genomes that is known as biosynthesis gene clusters (BGCs). The development in the field of biotechnology and bioinformatics has uncovered the potential BGCs of the bacterial genome and its functions. Now-a-days researchers have focused their attention on the identification of potential BGCs for the discovery of novel bioactive compounds using advanced technology. This review highlights the marine bacterial symbionts and their BGCs which are responsible for the synthesis of bioactive compounds.
Collapse
|
7
|
Kurt-Kızıldoğan A, Akarsu N, Otur Ç, Kivrak A, Aslan-Ertas N, Arslan S, Mutlu D, Konus M, Yılmaz C, Cetin D, Topal T, Şahin N. A Novel 4H-Chromen-4-One Derivative from Marine Streptomyces ovatisporus S4702T as Potential Antibacterial and Anti-Cancer Agent. Anticancer Agents Med Chem 2021; 22:362-370. [PMID: 33719978 DOI: 10.2174/1871520621666210311085748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Marine actinomycetes are among indispensable sources of natural bioactive compounds with unique antimicrobial and anti-cancer activities. OBJECTIVE Herein, it was aimed to elucidate bioactive potential of a marine-derived Streptomyces ovatisporus S4702T, isolated previously. METHODS Streptomyces ovatisporus S4702T was cultured in N-Z Amine broth and extraction was carried out using different organic solvents. Bioassay guided purification was followed by chemical characterization using NMR and LC-MS/MS. The compound was then evaluated for its antibacterial, antioxidant and cytotoxic activities. RESULTS Etyl acetate extracts gave the highest antibacterial activity and chemical characterization of this extract indicated the formula as C15H29O5N3 and the corresponding possible molecular structure as 4H-chromen-4-one derivative. It was found highly potent against Bacillus subtilis ATCC 6633 (MIC: 0.25 µg ml-1) and Micrococcus luteus ATCC 9341 (MBC: 0.5 µg ml-1). It has no remarkable antioxidant activity, but higher EC50 value and less cytotoxicity against normal cells. The EC50 values of this chromen derivative were found as 9.68 µg ml-1 for human colon carcinoma, 9.93 µg ml-1 for human prostate adenocarcinoma and 25.5 µg ml-1 for human embryonic kidney cells. CONCLUSION Overall, the presented 4H-chromen-4-one derivative is a remarkable bioactive compound with potent antibacterial and cytotoxic activity. With its high bioactive potential, it is proposed as a good candidate in medicine.
Collapse
Affiliation(s)
| | - Neslihan Akarsu
- Department of Agricultural Biotechnology, Ondokuz Mayıs University, 55139, Samsun. Turkey
| | - Çiğdem Otur
- Department of Agricultural Biotechnology, Ondokuz Mayıs University, 55139, Samsun. Turkey
| | - Arif Kivrak
- Department of Chemistry, Van Yuzuncu Yil University, 65080, Van. Turkey
| | | | - Sevki Arslan
- Department of Biology, Pamukkale University, 20100, Denizli. Turkey
| | - Dogukan Mutlu
- Department of Biology, Pamukkale University, 20100, Denizli. Turkey
| | - Metin Konus
- Department of Molecular Biology and Genetics, Van Yuzuncu Yil University, 65080, Van. Turkey
| | - Can Yılmaz
- Department of Molecular Biology and Genetics, Van Yuzuncu Yil University, 65080, Van. Turkey
| | - Dogan Cetin
- Department of Molecular Biology and Genetics, Van Yuzuncu Yil University, 65080, Van. Turkey
| | - Tufan Topal
- High Technology Application and Research Center, Pamukkale University, 20020, Denizli. Turkey
| | - Nevzat Şahin
- Department of Molecular Biology and Genetics, Ondokuz Mayıs University, 55139, Samsun. Turkey
| |
Collapse
|
8
|
Characterization of Actinomycetes Strains Isolated from the Intestinal Tract and Feces of the Larvae of the Longhorn Beetle Cerambyx welensii. Microorganisms 2020; 8:microorganisms8122013. [PMID: 33339339 PMCID: PMC7766275 DOI: 10.3390/microorganisms8122013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 01/06/2023] Open
Abstract
Actinomycetes constitute a large group of Gram-positive bacteria present in different habitats. One of these habitats involves the association of these bacteria with insects. In this work, we have studied twenty-four actinomycetes strains isolated from the intestinal tract and feces from larvae of the xylophagous coleopteran Cerambyx welensii and have shown that seventeen strains present hydrolytic activity of some of the following substrates: cellulose, hemicellulose, starch and proteins. Fourteen of the isolates produce antimicrobial molecules against the Gram-positive bacteria Micrococcus luteus. Analysis of seven strains led us to identify the production of a wide number of compounds including streptanoate, alpiniamide A, alteramides A and B, coproporphyrin III, deferoxamine, demethylenenocardamine, dihydropicromycin, nocardamine, picromycin, surugamides A, B, C, D and E, tirandamycins A and B, and valinomycin. A significant number of other compounds, whose molecular formulae are not included in the Dictionary of Natural Products (DNP), were also present in the extracts analyzed, which opens up the possibility of identifying new active antibiotics. Molecular identification of ten of the isolated bacteria determined that six of them belong to the genus Streptomyces, two of them are included in the genus Amycolatopsis and two in the genus Nocardiopsis.
Collapse
|
9
|
Vial L, Hommais F. Plasmid-chromosome cross-talks. Environ Microbiol 2019; 22:540-556. [PMID: 31782608 DOI: 10.1111/1462-2920.14880] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022]
Abstract
Plasmids can be acquired by recipient bacteria at a significant cost while conferring them advantageous traits. To counterbalance the costs of plasmid carriage, both plasmids and host bacteria have developed a tight regulatory network that may involve a cross-talk between the chromosome and the plasmids. Although plasmid regulation by chromosomal regulators is generally well known, chromosome regulation by plasmid has been far less investigated. Yet, a growing number of studies have highlighted an impact of plasmids on their host bacteria. Here, we describe the plasmid-chromosome cross-talk from the plasmid point of view. We summarize data about the chromosomal adaptive mutations generated by plasmid carriage; the impact of the loss of a domesticated plasmid or the gain of a new plasmid. Then, we present the control of plasmid-encoded regulators on chromosomal gene expression. The involvement of regulators homologous to chromosome-encoded proteins is illustrated by the H-NS-like proteins, and by the Rap-Phr system. Finally, plasmid-specific regulators of chromosomal gene expression are presented, which highlight the involvement of transcription factors and sRNAs. A comprehensive analysis of the mechanisms that allow a given plasmid to impact the chromosome of bacterium will help to understand the tight cross-talk between plasmids and the chromosome.
Collapse
Affiliation(s)
- Ludovic Vial
- Université de Lyon, 69622, Lyon, France.,Université Lyon 1, 69622, Villeurbanne, France.,CNRS, UMR 5557 Ecologie Microbienne, 69622, Villeurbanne, France.,INRA, UMR1418 Ecologie Microbienne, 69622, Villeurbanne, France
| | - Florence Hommais
- Université de Lyon, 69622, Lyon, France.,Université Lyon 1, 69622, Villeurbanne, France.,CNRS, UMR 5240 Microbiologie Adaptation et Pathogénie, 69622, Villeurbanne, France
| |
Collapse
|
10
|
AbuSara NF, Piercey BM, Moore MA, Shaikh AA, Nothias LF, Srivastava SK, Cruz-Morales P, Dorrestein PC, Barona-Gómez F, Tahlan K. Comparative Genomics and Metabolomics Analyses of Clavulanic Acid-Producing Streptomyces Species Provides Insight Into Specialized Metabolism. Front Microbiol 2019; 10:2550. [PMID: 31787949 PMCID: PMC6856088 DOI: 10.3389/fmicb.2019.02550] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/22/2019] [Indexed: 01/13/2023] Open
Abstract
Clavulanic acid is a bacterial specialized metabolite, which inhibits certain serine β-lactamases, enzymes that inactivate β-lactam antibiotics to confer resistance. Due to this activity, clavulanic acid is widely used in combination with penicillin and cephalosporin (β-lactam) antibiotics to treat infections caused by β-lactamase-producing bacteria. Clavulanic acid is industrially produced by fermenting Streptomyces clavuligerus, as large-scale chemical synthesis is not commercially feasible. Other than S. clavuligerus, Streptomyces jumonjinensis and Streptomyces katsurahamanus also produce clavulanic acid along with cephamycin C, but information regarding their genome sequences is not available. In addition, the Streptomyces contain many biosynthetic gene clusters thought to be "cryptic," as the specialized metabolites produced by them are not known. Therefore, we sequenced the genomes of S. jumonjinensis and S. katsurahamanus, and examined their metabolomes using untargeted mass spectrometry along with S. clavuligerus for comparison. We analyzed the biosynthetic gene cluster content of the three species to correlate their biosynthetic capacities, by matching them with the specialized metabolites detected in the current study. It was recently reported that S. clavuligerus can produce the plant-associated metabolite naringenin, and we describe more examples of such specialized metabolites in extracts from the three Streptomyces species. Detailed comparisons of the biosynthetic gene clusters involved in clavulanic acid (and cephamycin C) production were also performed, and based on our analyses, we propose the core set of genes responsible for producing this medicinally important metabolite.
Collapse
Affiliation(s)
- Nader F. AbuSara
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Brandon M. Piercey
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Marcus A. Moore
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Arshad Ali Shaikh
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Louis-Félix Nothias
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | | | - Pablo Cruz-Morales
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Mexico
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Francisco Barona-Gómez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Mexico
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
11
|
Martín JF, Liras P. Harnessing microbiota interactions to produce bioactive metabolites: communication signals and receptor proteins. Curr Opin Pharmacol 2019; 48:8-16. [PMID: 30933876 DOI: 10.1016/j.coph.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/23/2019] [Accepted: 02/27/2019] [Indexed: 11/30/2022]
Abstract
Numerous microbial communities live in soil, aquatic habitats, plants, and animal bodies. Microbial genome sequences have revealed that thousands of biosynthetic gene clusters (BGCs) are present in different bacteria and filamentous fungi. Many of these BGCs are not expressed in pure cultures in the laboratory. However, a large part of these silent clusters is expressed in nature when complex microbial populations are studied. The encoding specialized metabolites are frequently produced at very low concentrations but still they serve as communication signals that produce important biochemical and differentiation effects on other microorganisms of the consortium. Many specialized metabolites acting as communication signals have been identified, including autoinducers, intergeneric, and interkingdom cues. These signals trigger expression of silent BGCs in other microorganisms, thus providing new compounds with interesting biological and pharmacological activities. Examples of interactions between different bacteria or between bacteria and fungi are described here. Finally, the relevance of the human microbiota and the production in vivo of specialized metabolites of medical interest is discussed.
Collapse
Affiliation(s)
- Juan F Martín
- Department of Molecular Biology, Section Microbiology, University of León, 24071 León, Spain.
| | - Paloma Liras
- Department of Molecular Biology, Section Microbiology, University of León, 24071 León, Spain
| |
Collapse
|
12
|
Ayala‐Ruano S, Santander‐Gordón D, Tejera E, Perez‐Castillo Y, Armijos-Jaramillo V. A putative antimicrobial peptide from Hymenoptera in the megaplasmid pSCL4 of Streptomyces clavuligerus ATCC 27064 reveals a singular case of horizontal gene transfer with potential applications. Ecol Evol 2019; 9:2602-2614. [PMID: 30891203 PMCID: PMC6406012 DOI: 10.1002/ece3.4924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 11/06/2022] Open
Abstract
Streptomyces clavuligerus is a Gram-positive bacterium that is a high producer of secondary metabolites with industrial applications. The production of antibiotics such as clavulanic acid or cephamycin has been extensively studied in this species; nevertheless, other aspects, such as evolution or ecology, have received less attention. Furthermore, genes that arise from ancient events of lateral transfer have been demonstrated to be implicated in important functions of host species. This approximation discovered relevant genes that genomic analyses overlooked. Thus, we studied the impact of horizontal gene transfer in the S. clavuligerus genome. To perform this task, we applied whole-genome analysis to identify a laterally transferred sequence from different domains. The most relevant result was a putative antimicrobial peptide (AMP) with a clear origin in the Hymenoptera order of insects. Next, we determined that two copies of these genes were present in the megaplasmid pSCL4 but absent in the S. clavuligerus ATCC 27064 chromosome. Additionally, we found that these sequences were exclusive to the ATCC 27064 strain (and so were not present in any other bacteria) and we also verified the expression of the genes using RNAseq data. Next, we used several AMP predictors to validate the original annotation extracted from Hymenoptera sequences and explored the possibility that these proteins had post-translational modifications using peptidase cleavage prediction. We suggest that Hymenoptera AMP-like proteins of S. clavuligerus ATCC 27064 may be useful for both species adaptation and as an antimicrobial molecule with industrial applications.
Collapse
Affiliation(s)
- Sebastián Ayala‐Ruano
- Universidad San Francisco de Quito, Colegio de Ciencias Biológicas y Ambientales (COCIBA‐USFQ)QuitoEcuador
| | - Daniela Santander‐Gordón
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias AplicadasUniversidad de Las AméricasQuitoEcuador
| | - Eduardo Tejera
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias AplicadasUniversidad de Las AméricasQuitoEcuador
- Grupo de Bio‐QuimioinformáticaUniversidad de Las AméricasQuitoEcuador
| | - Yunierkis Perez‐Castillo
- Grupo de Bio‐QuimioinformáticaUniversidad de Las AméricasQuitoEcuador
- Ciencias Físicas y Matemáticas‐Facultad de Formación GeneralUniversidad de Las AméricasQuitoEcuador
| | - Vinicio Armijos-Jaramillo
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias AplicadasUniversidad de Las AméricasQuitoEcuador
- Grupo de Bio‐QuimioinformáticaUniversidad de Las AméricasQuitoEcuador
| |
Collapse
|