1
|
Canales Holzeis C, Gepts P, Koebner R, Mathur PN, Morgan S, Muñoz-Amatriaín M, Parker TA, Southern EM, Timko MP. The Kirkhouse Trust: Successes and Challenges in Twenty Years of Supporting Independent, Contemporary Grain Legume Breeding Projects in India and African Countries. PLANTS (BASEL, SWITZERLAND) 2024; 13:1818. [PMID: 38999658 PMCID: PMC11243813 DOI: 10.3390/plants13131818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
This manuscript reviews two decades of projects funded by the Kirkhouse Trust (KT), a charity registered in the UK. KT was established to improve the productivity of legume crops important in African countries and in India. KT's requirements for support are: (1) the research must be conducted by national scientists in their home institution, either a publicly funded agricultural research institute or a university; (2) the projects need to include a molecular biology component, which to date has mostly comprised the use of molecular markers for the selection of one or more target traits in a crop improvement programme; (3) the projects funded are included in consortia, to foster the creation of scientific communities and the sharing of knowledge and breeding resources. This account relates to the key achievements and challenges, reflects on the lessons learned and outlines future research priorities.
Collapse
Affiliation(s)
| | - Paul Gepts
- Section of Crop & Ecosystem Sciences, Department of Plant Sciences, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Robert Koebner
- The Kirkhouse Trust, Unit 6 Fenlock Court, Long Hanborough OX29 8LN, UK
| | | | - Sonia Morgan
- The Kirkhouse Trust, Unit 6 Fenlock Court, Long Hanborough OX29 8LN, UK
| | - María Muñoz-Amatriaín
- Departamento de Biología Molecular (Área Genética), Universidad de León, 24071 León, Spain
| | - Travis A Parker
- Section of Crop & Ecosystem Sciences, Department of Plant Sciences, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Edwin M Southern
- The Kirkhouse Trust, Unit 6 Fenlock Court, Long Hanborough OX29 8LN, UK
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
2
|
Jalal A, Rauf K, Iqbal B, Khalil R, Mustafa H, Murad M, Khalil F, Khan S, Oliveira CEDS, Filho MCMT. Engineering legumes for drought stress tolerance: Constraints, accomplishments, and future prospects. SOUTH AFRICAN JOURNAL OF BOTANY 2023; 159:482-491. [DOI: 10.1016/j.sajb.2023.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
|
3
|
Matos MKDS, Benko-Iseppon AM, Bezerra-Neto JP, Ferreira-Neto JRC, Wang Y, Liu H, Pandolfi V, Amorim LLB, Willadino L, do Vale Amorim TC, Kido EA, Vianello RP, Timko MP, Brasileiro-Vidal AC. The WRKY transcription factor family in cowpea: Genomic characterization and transcriptomic profiling under root dehydration. Gene X 2022; 823:146377. [PMID: 35231571 DOI: 10.1016/j.gene.2022.146377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/06/2022] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
Cowpea [Vigna unguiculata (L.) Walp.] is one of the most tolerant legume crops to drought and salt stresses. WRKY transcription factor (TF) family members stand out among plant transcriptional regulators related to abiotic stress tolerance. However, little information is currently available on the expression of the cowpea WRKY gene family (VuWRKY) in response to water deficit. Thus, we analyzed genomic and transcriptomic data from cowpea to identify VuWRKY members and characterize their structure and transcriptional response under root dehydration stress. Ninety-two complete VuWRKY genes were found in the cowpea genome based on their domain characteristics. They were clustered into three groups: I (15 members), II (58), and III (16), while three genes were unclassified. Domain analysis of the encoded proteins identified four major variants of the conserved heptapeptide motif WRKYGQK. In silico analysis of VuWRKY gene promoters identified eight candidate binding motifs of cis-regulatory elements, regulated mainly by six TF families associated with abiotic stress responses. Ninety-seven VuWRKY modulated splicing variants associated with 55 VuWRKY genes were identified via RNA-Seq analysis available at the Cowpea Genomics Consortium (CpGC) database. qPCR analyses showed that 22 genes are induced under root dehydration, with VuWRKY18, 21, and 75 exhibiting the most significant induction levels. Given their central role in activating signal transduction cascades in abiotic stress response, the data provide a foundation for the targeted modification of specific VuWRKY family members to improve drought tolerance in this important climate-resilient legume in the developing world and beyond.
Collapse
Affiliation(s)
- Mitalle Karen da Silva Matos
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Ana Maria Benko-Iseppon
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - João Pacifico Bezerra-Neto
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - José Ribamar Costa Ferreira-Neto
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Yu Wang
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hai Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Valesca Pandolfi
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Lidiane Lindinalva Barbosa Amorim
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Lilia Willadino
- Laboratório de Cultura de Tecidos Vegetais, Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Thialisson Caaci do Vale Amorim
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Ederson Akio Kido
- Laboratório de Genética Molecular, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Rosana Pereira Vianello
- Laboratório de Biotecnologia, Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa de Arroz e Feijão, Goiânia, Brazil
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
| | - Ana Christina Brasileiro-Vidal
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil.
| |
Collapse
|
4
|
Che P, Chang S, Simon MK, Zhang Z, Shaharyar A, Ourada J, O'Neill D, Torres-Mendoza M, Guo Y, Marasigan KM, Vielle-Calzada JP, Ozias-Akins P, Albertsen MC, Jones TJ. Developing a rapid and highly efficient cowpea regeneration, transformation and genome editing system using embryonic axis explants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:817-830. [PMID: 33595147 DOI: 10.1101/738971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/11/2021] [Indexed: 05/21/2023]
Abstract
Cowpea (Vigna unguiculata (L.) Walp.) is one of the most important legume crops planted worldwide, but despite decades of effort, cowpea transformation is still challenging due to inefficient Agrobacterium-mediated transfer DNA delivery, transgenic selection and in vitro shoot regeneration. Here, we report a highly efficient transformation system using embryonic axis explants isolated from imbibed mature seeds. We found that removal of the shoot apical meristem from the explants stimulated direct multiple shoot organogenesis from the cotyledonary node tissue. The application of a previously reported ternary transformation vector system provided efficient Agrobacterium-mediated gene delivery, while the utilization of spcN as selectable marker enabled more robust transgenic selection, plant recovery and transgenic plant generation without escapes and chimera formation. Transgenic cowpea plantlets developed exclusively from the cotyledonary nodes at frequencies of 4% to 37% across a wide range of cowpea genotypes. CRISPR/Cas-mediated gene editing was successfully demonstrated. The transformation principles established here could also be applied to other legumes to increase transformation efficiencies.
Collapse
Affiliation(s)
- Ping Che
- Corteva Agriscience, Johnston, Iowa, 50131, USA
| | | | | | - Zhifen Zhang
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, University of Georgia Tifton Campus, Tifton, GA, 31973, USA
| | | | | | | | - Mijael Torres-Mendoza
- Group of Reproductive Development and Apomixis, UGA Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Irapuato, Guanajuato, 36821, México
| | - Yinping Guo
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, University of Georgia Tifton Campus, Tifton, GA, 31973, USA
| | - Kathleen M Marasigan
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, University of Georgia Tifton Campus, Tifton, GA, 31973, USA
| | - Jean-Philippe Vielle-Calzada
- Group of Reproductive Development and Apomixis, UGA Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Irapuato, Guanajuato, 36821, México
| | - Peggy Ozias-Akins
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, University of Georgia Tifton Campus, Tifton, GA, 31973, USA
| | | | | |
Collapse
|
5
|
Che P, Chang S, Simon MK, Zhang Z, Shaharyar A, Ourada J, O’Neill D, Torres‐Mendoza M, Guo Y, Marasigan KM, Vielle‐Calzada J, Ozias‐Akins P, Albertsen MC, Jones TJ. Developing a rapid and highly efficient cowpea regeneration, transformation and genome editing system using embryonic axis explants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:817-830. [PMID: 33595147 PMCID: PMC8252785 DOI: 10.1111/tpj.15202] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/11/2021] [Indexed: 05/21/2023]
Abstract
Cowpea (Vigna unguiculata (L.) Walp.) is one of the most important legume crops planted worldwide, but despite decades of effort, cowpea transformation is still challenging due to inefficient Agrobacterium-mediated transfer DNA delivery, transgenic selection and in vitro shoot regeneration. Here, we report a highly efficient transformation system using embryonic axis explants isolated from imbibed mature seeds. We found that removal of the shoot apical meristem from the explants stimulated direct multiple shoot organogenesis from the cotyledonary node tissue. The application of a previously reported ternary transformation vector system provided efficient Agrobacterium-mediated gene delivery, while the utilization of spcN as selectable marker enabled more robust transgenic selection, plant recovery and transgenic plant generation without escapes and chimera formation. Transgenic cowpea plantlets developed exclusively from the cotyledonary nodes at frequencies of 4% to 37% across a wide range of cowpea genotypes. CRISPR/Cas-mediated gene editing was successfully demonstrated. The transformation principles established here could also be applied to other legumes to increase transformation efficiencies.
Collapse
Affiliation(s)
- Ping Che
- Corteva AgriscienceJohnstonIowa50131USA
| | - Shujun Chang
- Corteva AgriscienceJohnstonIowa50131USA
- Present address:
Benson Hill Biosystems1100 Corporate Square Dr. Suite 150St. LouisMO63132USA
| | | | - Zhifen Zhang
- Department of Horticulture and Institute of Plant Breeding, Genetics & GenomicsUniversity of Georgia Tifton CampusTiftonGA31973USA
| | - Ahmed Shaharyar
- Corteva AgriscienceJohnstonIowa50131USA
- Present address:
Benson Hill Biosystems1100 Corporate Square Dr. Suite 150St. LouisMO63132USA
| | - Jesse Ourada
- Corteva AgriscienceJohnstonIowa50131USA
- Present address:
Benson Hill Biosystems1100 Corporate Square Dr. Suite 150St. LouisMO63132USA
| | | | - Mijael Torres‐Mendoza
- Group of Reproductive Development and Apomixis, UGA Laboratorio Nacional de Genómica para la BiodiversidadCINVESTAV IrapuatoGuanajuato36821México
| | - Yinping Guo
- Department of Horticulture and Institute of Plant Breeding, Genetics & GenomicsUniversity of Georgia Tifton CampusTiftonGA31973USA
| | - Kathleen M. Marasigan
- Department of Horticulture and Institute of Plant Breeding, Genetics & GenomicsUniversity of Georgia Tifton CampusTiftonGA31973USA
| | - Jean‐Philippe Vielle‐Calzada
- Group of Reproductive Development and Apomixis, UGA Laboratorio Nacional de Genómica para la BiodiversidadCINVESTAV IrapuatoGuanajuato36821México
| | - Peggy Ozias‐Akins
- Department of Horticulture and Institute of Plant Breeding, Genetics & GenomicsUniversity of Georgia Tifton CampusTiftonGA31973USA
| | | | | |
Collapse
|
6
|
Deepika YS, Mahadevakumar S, Amruthesh KN, Sridhar KR, Lakshmidevi N. Dactuliophora mysorensis sp. nov.: A New Species of Mycelia Sterilia Causing Zonate Leaf Spot on Cowpea in India. Curr Microbiol 2020; 77:4140-4151. [PMID: 33029717 DOI: 10.1007/s00284-020-02229-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/26/2020] [Indexed: 11/28/2022]
Abstract
Cowpea is an important pulse crop extensively grown in arid and semi-arid tropics which is affected by a number of diseases. Fungi belonging to mycelia sterilia are known to cause many diseases on cereals and pulses. During the cowpea field survey in Mysore District of Karnataka (India), Dactuliophora sp. was identified as the major pathogen causing zonate leaf spot (ZLS) disease. The fungal pathogen was isolated from naturally infected cowpea leaves and identified as a member belongs to the genus Dactuliophora, which was previously described by CLA Leakey in the year 1964 on Vigna unguiculata from Africa. However, detailed morphological and cultural examinations of the pathogen revealed striking differences from that of D. tarrii. Based on differences in morphology with D. tarrii, a new species Dactuliophora mysorensis sp. nov. is described herein. The disease incidence as well as disease index was estimated for 3 years (2016-2018). The severity of the disease was high during August-November. High incidence and disease index of ZLS was recorded in Doddamaragowdanahally region. The pathogenicity tests demonstrated similar symptoms of ZLS. The ITS barcoding revealed that the pathogen is closely related to Rhizoctonia bataticola and Macrophomina phaseolina. Further, in vitro evaluation of fungicides was carried out by poisoned food technique. Among the five fungicides examined, only two systemic fungicides (Benomyl and Carbendazim) were effective against D. mysorensis. Thus, the present study recommends Benomyl and Carbendazim for management of ZLS disease caused by D. mysorensis.
Collapse
Affiliation(s)
- Y S Deepika
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - S Mahadevakumar
- Applied Phytopathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India.
| | - K N Amruthesh
- Applied Phytopathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - K R Sridhar
- Department of Biosciences, Mangalore University, Mangalagangotri, Mangalore, Karnataka, 574199, India
- Centre for Environmental Studies, Yenepoya (Deemed to be) University, Mangalore, Karnataka, 575018, India
| | - N Lakshmidevi
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| |
Collapse
|
7
|
Deepika YS, Mahadevakumar S, Amruthesh KN, Lakshmidevi N. A new collar rot disease of cowpea (Vigna unguiculata) caused by Aplosporella hesperidica in India. Lett Appl Microbiol 2020; 71:154-163. [PMID: 32255198 DOI: 10.1111/lam.13293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/01/2022]
Abstract
Cowpea is an important pulse crop cultivated in arid and semi-arid regions of the world. During field survey, a characteristic wilt was observed in around 45 ha of cowpea fields with incidence 17-25%. Infection was seen in pre-flowering stage and infected plants showed quick wilt symptoms with tan lesions near the stem-soil interface. Fungal pathogens associated were isolated on PDA, which produced dark to grey olivaceous colonies in the centre, and aerial mycelia were appressed with floccose and white to smoke-grey. Conidia are aseptate, initially hyaline, smooth-walled, broadly ellipsoidal with rounded ends becoming dark brown. Based on these morphological features, the fungal pathogen was identified as Aplosporella sp. The ITS-rDNA region was amplified using ITS1/ITS4 primers and sequenced. The nBLAST and phylogenetic analysis confirmed the pathogen as Aplosporella hesperidica. The Koch's postulates were performed on 45-days-old cowpea plants with mycelial disc of A. hesperidica. Development of typical necrotic lesions was observed after 28 days of post-inoculation and the pathogen's identity was confirmed based on re-isolation. Efficacy of fungicides evaluated in vitro showed that the pathogen is highly sensitive to systemic fungicides rather than the contact fungicides. The cowpea production was severely affected owing to the causative agent A. hesperidica. The collar rot disease of cowpea by A. hesperidica is the first report in India. SIGNIFICANCE AND IMPACT OF THE STUDY: A new collar rot disease of cowpea recorded from India has been investigated. The necrotic lesions were enlarged and eventually quick wilt and death of the host plant was observed with incidence ranged from 17 to 25%. Associated fungal pathogen was isolated and identified as Aplosporella hesperidica based on morphology and ITS-rDNA sequence analysis. Koch's postulates were performed under greenhouse conditions and in vitro evaluation of fungicides shows that the pathogen is sensitive to systemic fungicides. This is the first report of A. hesperidica causing collar rot disease of cowpea in India.
Collapse
Affiliation(s)
- Y S Deepika
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, Karnataka, India.,Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - S Mahadevakumar
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - K N Amruthesh
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - N Lakshmidevi
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| |
Collapse
|
8
|
Lonardi S, Muñoz‐Amatriaín M, Liang Q, Shu S, Wanamaker SI, Lo S, Tanskanen J, Schulman AH, Zhu T, Luo M, Alhakami H, Ounit R, Hasan AM, Verdier J, Roberts PA, Santos JR, Ndeve A, Doležel J, Vrána J, Hokin SA, Farmer AD, Cannon SB, Close TJ. The genome of cowpea (Vigna unguiculata [L.] Walp.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:767-782. [PMID: 31017340 PMCID: PMC6852540 DOI: 10.1111/tpj.14349] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 05/19/2023]
Abstract
Cowpea (Vigna unguiculata [L.] Walp.) is a major crop for worldwide food and nutritional security, especially in sub-Saharan Africa, that is resilient to hot and drought-prone environments. An assembly of the single-haplotype inbred genome of cowpea IT97K-499-35 was developed by exploiting the synergies between single-molecule real-time sequencing, optical and genetic mapping, and an assembly reconciliation algorithm. A total of 519 Mb is included in the assembled sequences. Nearly half of the assembled sequence is composed of repetitive elements, which are enriched within recombination-poor pericentromeric regions. A comparative analysis of these elements suggests that genome size differences between Vigna species are mainly attributable to changes in the amount of Gypsy retrotransposons. Conversely, genes are more abundant in more distal, high-recombination regions of the chromosomes; there appears to be more duplication of genes within the NBS-LRR and the SAUR-like auxin superfamilies compared with other warm-season legumes that have been sequenced. A surprising outcome is the identification of an inversion of 4.2 Mb among landraces and cultivars, which includes a gene that has been associated in other plants with interactions with the parasitic weed Striga gesnerioides. The genome sequence facilitated the identification of a putative syntelog for multiple organ gigantism in legumes. A revised numbering system has been adopted for cowpea chromosomes based on synteny with common bean (Phaseolus vulgaris). An estimate of nuclear genome size of 640.6 Mbp based on cytometry is presented.
Collapse
Affiliation(s)
- Stefano Lonardi
- Department of Computer Science and EngineeringUniversity of CaliforniaRiversideCA92521USA
| | - María Muñoz‐Amatriaín
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCA92521USA
- Present address:
Department of Soil and Crop SciencesColorado State UniversityFort CollinsCO80523USA
| | - Qihua Liang
- Department of Computer Science and EngineeringUniversity of CaliforniaRiversideCA92521USA
| | - Shengqiang Shu
- US Department of Energy Joint Genome InstituteWalnut CreekCA94598USA
| | - Steve I. Wanamaker
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCA92521USA
| | - Sassoum Lo
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCA92521USA
| | - Jaakko Tanskanen
- Natural Resources Institute Finland (Luke)HelsinkiFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
- Viikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
| | - Alan H. Schulman
- Natural Resources Institute Finland (Luke)HelsinkiFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
- Viikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
| | - Tingting Zhu
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| | - Ming‐Cheng Luo
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| | - Hind Alhakami
- Department of Computer Science and EngineeringUniversity of CaliforniaRiversideCA92521USA
| | - Rachid Ounit
- Department of Computer Science and EngineeringUniversity of CaliforniaRiversideCA92521USA
| | - Abid Md. Hasan
- Department of Computer Science and EngineeringUniversity of CaliforniaRiversideCA92521USA
| | - Jerome Verdier
- Institut de Recherche en Horticulture et SemencesINRAUniversité d'Angers49071BeaucouzéFrance
| | | | - Jansen R.P. Santos
- Department of NematologyUniversity of CaliforniaRiversideCA92521USA
- Departamento de FitopatologiaInstituto de Ciências BiológicasUniversidade de BrasíliaBrasíliaDFBrazil
| | - Arsenio Ndeve
- Department of NematologyUniversity of CaliforniaRiversideCA92521USA
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental BotanyOlomoucCzech Republic
| | - Jan Vrána
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental BotanyOlomoucCzech Republic
| | | | | | - Steven B. Cannon
- US Department of Agriculture–Agricultural Research ServiceAmesIAUSA
| | - Timothy J. Close
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCA92521USA
| |
Collapse
|
9
|
Misra VA, Wafula EK, Wang Y, dePamphilis CW, Timko MP. Genome-wide identification of MST, SUT and SWEET family sugar transporters in root parasitic angiosperms and analysis of their expression during host parasitism. BMC PLANT BIOLOGY 2019; 19:196. [PMID: 31088371 PMCID: PMC6515653 DOI: 10.1186/s12870-019-1786-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 04/17/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Root parasitic weeds are a major constraint to crop production worldwide causing significant yearly losses in yield and economic value. These parasites cause their destruction by attaching to their hosts with a unique organ, the haustorium, that allows them to obtain the nutrients (sugars, amino acids, etc.) needed to complete their lifecycle. Parasitic weeds differ in their nutritional requirements and degree of host dependency and the differential expression of sugar transporters is likely to be a critical component in the parasite's post-attachment survival. RESULTS We identified gene families encoding monosaccharide transporters (MSTs), sucrose transporters (SUTs), and SWEETs (Sugars Will Eventually be Exported Transporters) in three root-parasitic weeds differing in host dependency: Triphysaria versicolor (facultative hemiparasite), Phelipanche aegyptiaca (holoparasite), and Striga hermonthica (obligate hemiparasite). The phylogenetic relationship and differential expression profiles of these genes throughout parasite development were examined to uncover differences existing among parasites with different levels of host dependence. Differences in estimated gene numbers are found among the three parasites, and orthologs within the different sugar transporter gene families are found to be either conserved among the parasites in their expression profiles throughout development, or to display parasite-specific differences in developmentally-timed expression. For example, MST genes in the pGLT clade express most highly before host connection in Striga and Triphysaria but not Phelipanche, whereas genes in the MST ERD6-like clade are highly expressed in the post-connection growth stages of Phelipanche but highest in the germination and reproduction stages in Striga. Whether such differences reflect changes resulting from differential host dependence levels is not known. CONCLUSIONS While it is tempting to speculate that differences in estimated gene numbers and expression profiles among members of MST, SUT and SWEET gene families in Phelipanche, Striga and Triphysaria reflect the parasites' levels of host dependence, additional evidence that altered transporter gene expression is causative versus consequential is needed. Our findings identify potential targets for directed manipulation that will allow for a better understanding of the nutrient transport process and perhaps a means for controlling the devastating effects of these parasites on crop productivity.
Collapse
Affiliation(s)
- Vikram A. Misra
- Department of Biology, University of Virginia, Gilmer Hall 044, Charlottesville, VA 22904 USA
| | - Eric K. Wafula
- Department of Biology, Penn State University, University Park, PA 16802 USA
| | - Yu Wang
- Department of Biology, University of Virginia, Gilmer Hall 044, Charlottesville, VA 22904 USA
- Present Address: Center for Quantitative Sciences, Vanderbilt University, 2220 Pierce Avenue, 571 Preston Research Building, Nashville, TN 37232-6848 USA
| | | | - Michael P. Timko
- Department of Biology, University of Virginia, Gilmer Hall 044, Charlottesville, VA 22904 USA
| |
Collapse
|