1
|
Yoo C, Maury J, Gonzalez DE, Ko J, Xing D, Jenkins V, Dickerson B, Leonard M, Estes L, Johnson S, Chun J, Broeckel J, Pradelles R, Sowinski R, Rasmussen CJ, Kreider RB. Effects of Supplementation with a Microalgae Extract from Phaeodactylum tricornutum Containing Fucoxanthin on Cognition and Markers of Health in Older Individuals with Perceptions of Cognitive Decline. Nutrients 2024; 16:2999. [PMID: 39275314 PMCID: PMC11397347 DOI: 10.3390/nu16172999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
Phaeodactylum tricornutum (PT) is a microalgae extract that contains fucoxanthin and has been shown to enhance cognitive function in younger populations. The present study assessed if PT supplementation affects cognition in healthy, young-old, physically active adults with self-perceptions of cognitive and memory decline. METHODS Forty-three males and females (64.3 ± 6.0 years, 79.8 ± 16.0 kg, 27.0 ± 4.0 kg/m2) with perceptions of cognitive and memory decline completed the double-blind, randomized, parallel-arm, placebo-controlled intervention clinical trial. Participants were counterbalanced by sex and BMI and randomly allocated to their respective 12-week supplementation interventions, which were either the placebo (PL) or 1100 mg/day of PT containing 8.8 mg of fucoxanthin (FX). Fasting blood samples were collected, and cognitive assessments were performed during the testing session at 0, 4, and 12 weeks of intervention. The data were analyzed by multivariate and univariate general linear model (GLM) analyses with repeated measures, pairwise comparisons, and mean changes from baseline analysis with 95% confidence intervals (CIs) to assess the clinical significance of the findings. RESULTS FX supplementation significantly affected (p < 0.05) or exhibited tendencies toward significance (p > 0.05 to p < 0.10 with effect sizes ranging from medium to large) for word recall, picture recognition reaction time, Stroop color-word test, choice reaction time, and digit vigilance test variables. Additionally, FX supplementation promoted a more consistent clinical improvement from baseline values when examining mean changes with 95% CIs, although most differences were seen over time rather than between groups. CONCLUSIONS The results demonstrate some evidence that FX supplementation can improve working and secondary memory, vigilance, attention, accuracy, and executive function. There was also evidence that FX promoted more positive effects on insulin sensitivity and perceptions about sleep quality with no negative effects on clinical blood panels or perceived side effects. Additional research should investigate how FX may affect cognition in individuals perceiving memory and cognitive decline. Registered clinical trial #NCT05759910.
Collapse
Affiliation(s)
- Choongsung Yoo
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Jonathan Maury
- Research & Development Department, Microphyt, 34670 Baillargues, France; (J.M.); (R.P.)
| | - Drew E. Gonzalez
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Joungbo Ko
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Dante Xing
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Victoria Jenkins
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Broderick Dickerson
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Megan Leonard
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Landry Estes
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Sarah Johnson
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Jisun Chun
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Jacob Broeckel
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Rémi Pradelles
- Research & Development Department, Microphyt, 34670 Baillargues, France; (J.M.); (R.P.)
| | - Ryan Sowinski
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Christopher J. Rasmussen
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| |
Collapse
|
2
|
Chen Y, Dong J, Gong L, Hong Y, Hu C, Bao Y, Chen H, Liu L, Huang L, Zhao Y, Zhang J, He S, Yan X, Wu X, Cui W. Fucoxanthin, a marine derived carotenoid, attenuates surgery-induced cognitive impairments via activating Akt and ERK pathways in aged mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155043. [PMID: 37639810 DOI: 10.1016/j.phymed.2023.155043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/31/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Fucoxanthin is the most abundant marine carotenoid derived from brown seaweeds, possesses antioxidant, anti-inflammatory, and neuroprotective properties, and might be benefit for the treatment of neurological disorders. Post-operative cognitive dysfunction (POCD) is a neurological symptom with learning and memory impairments, mainly affecting the elderly after surgery. However, there is no effective treatments for this symptom. PURPOSES In this study, we evaluated the neuroprotective effects of fucoxanthin against POCD in aged mice after surgery. STUDY DESIGN AND METHODS The animal model of POCD was established in 12 - 14 month aged mice with a laparotomy. Curcumin was used as a positive control. The beneficial effects of fucoxanthin on POCD was analyzed by behavioral tests. Pro-inflammatory cytokines were measured by Enzyme-linked Immunosorbent Assay (ELISA). And the expressions of key proteins in the Akt and ERK signaling pathways were analyzed by Western blotting analysis. The morphology of microglial cells and astrocytes was explored by immunohistochemical staining. The activity of antioxidant superoxide dismutase (SOD) and catalase (CAT) were measured by anti-oxidative enzyme activity assays. RESULTS Fucoxanthin at 100 - 200 mg/kg significantly attenuated cognitive dysfunction, with a similar potency as curcumin, in aged mice after surgery. In addition, fucoxanthin and curcumin significantly increased the expression of pAkt, prevented the activation of microglial cells and astrocytes, and inhibited the secretion of pro-inflammatory interleukin-1β (IL - 1β) and tumor necrosis factor-α (TNF-α). Furthermore, fucoxanthin and curcumin elevated the ERK pathway and potently increased the activity of antioxidant enzymes. Most importantly, U0126, an inhibitor of the ERK pathway, and wortmannin, an inhibitor of the Akt pathway, significantly abolished the cognitive-enhancing effects, as well as the inhibition of neuroinflammation and the reduction of oxidative stress, induced by fucoxanthin in aged mice after surgery. CONCLUSION Fucoxanthin might be developed as a functional food or drug for the treatment of POCD by inhibiting neuroinflammation and enhancing antioxidant capacity via the activation of the Akt and ERK signaling pathways.
Collapse
Affiliation(s)
- Yuan Chen
- The First Hospital of Ningbo University, Ningbo 315010, China; Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Jiahui Dong
- The First Hospital of Ningbo University, Ningbo 315010, China; Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Luyun Gong
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yirui Hong
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Chenwei Hu
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yongjie Bao
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Huiyue Chen
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Lin Liu
- Ningbo Women & Children Hospital, Ningbo 315012, China
| | - Ling Huang
- Ningbo Kangning Hospital, Ningbo 315201, China
| | | | - Jinrong Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Xiaojun Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Xiang Wu
- The First Hospital of Ningbo University, Ningbo 315010, China.
| | - Wei Cui
- The First Hospital of Ningbo University, Ningbo 315010, China; Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China; Ningbo Kangning Hospital, Ningbo 315201, China.
| |
Collapse
|
3
|
Chen Y, Li H, Yi TC, Shen J, Zhang J. Notch Signaling in Insect Development: A Simple Pathway with Diverse Functions. Int J Mol Sci 2023; 24:14028. [PMID: 37762331 PMCID: PMC10530718 DOI: 10.3390/ijms241814028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Notch signaling is an evolutionarily conserved pathway which functions between adjacent cells to establish their distinct identities. Despite operating in a simple mechanism, Notch signaling plays remarkably diverse roles in development to regulate cell fate determination, organ growth and tissue patterning. While initially discovered and characterized in the model insect Drosophila melanogaster, recent studies across various insect species have revealed the broad involvement of Notch signaling in shaping insect tissues. This review focuses on providing a comprehensive picture regarding the roles of the Notch pathway in insect development. The roles of Notch in the formation and patterning of the insect embryo, wing, leg, ovary and several specific structures, as well as in physiological responses, are summarized. These results are discussed within the developmental context, aiming to deepen our understanding of the diversified functions of the Notch signaling pathway in different insect species.
Collapse
Affiliation(s)
- Yao Chen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Haomiao Li
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Tian-Ci Yi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Junzheng Zhang
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| |
Collapse
|
4
|
Silva Meneguelli T, Duarte Villas Mishima M, Hermsdorff HHM, Martino HSD, Bressan J, Tako E. Effect of carotenoids on gut health and inflammatory status: A systematic review of in vivo animal studies. Crit Rev Food Sci Nutr 2023; 64:11206-11221. [PMID: 37450500 DOI: 10.1080/10408398.2023.2234025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Carotenoids have anti-inflammatory and antioxidant properties, being a potential bioactive compound for gut health. The objective of this systematic review was to investigate the effects of carotenoids on gut microbiota, gut barrier, and inflammation in healthy animals. The systematic search from PubMed, Scopus, and Lilacs databases were performed up to March 2023. The final screening included thirty studies, with different animal models (mice, rats, pigs, chicks, drosophila, fish, and shrimp), and different carotenoid sources (β-carotene, lycopene, astaxanthin, zeaxanthin, lutein, and fucoxanthin). The results suggested that carotenoids seem to act on gut microbiota by promoting beneficial effects on intestinal bacteria related to both inflammation and SCFA production; increase tight junction proteins expression, important for reducing intestinal permeability; increase the mucins expression, important in protecting against pathogens and toxins; improve morphological parameters important for digestion and absorption of nutrients; and reduce pro-inflammatory and increase anti-inflammatory cytokines. However, different carotenoids had distinct effects on gut health. In addition, there was heterogeneity between studies regarding animal model, duration of intervention, and doses used. This is the first systematic review to address the effects of carotenoids on gut health. Further studies are needed to better understand the effects of carotenoids on gut health.
Collapse
Affiliation(s)
| | | | | | | | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
McCarthy B, O’Neill G, Abu-Ghannam N. Potential Psychoactive Effects of Microalgal Bioactive Compounds for the Case of Sleep and Mood Regulation: Opportunities and Challenges. Mar Drugs 2022; 20:493. [PMID: 36005495 PMCID: PMC9410000 DOI: 10.3390/md20080493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/25/2023] Open
Abstract
Sleep deficiency is now considered an emerging global epidemic associated with many serious health problems, and a major cause of financial and social burdens. Sleep and mental health are closely connected, further exacerbating the negative impact of sleep deficiency on overall health and well-being. A major drawback of conventional treatments is the wide range of undesirable side-effects typically associated with benzodiazepines and antidepressants, which can be more debilitating than the initial disorder. It is therefore valuable to explore the efficiency of other remedies for complementarity and synergism with existing conventional treatments, leading to possible reduction in undesirable side-effects. This review explores the relevance of microalgae bioactives as a sustainable source of valuable phytochemicals that can contribute positively to mood and sleep disorders. Microalgae species producing these compounds are also catalogued, thus creating a useful reference of the state of the art for further exploration of this proposed approach. While we highlight possibilities awaiting investigation, we also identify the associated issues, including minimum dose for therapeutic effect, bioavailability, possible interactions with conventional treatments and the ability to cross the blood brain barrier. We conclude that physical and biological functionalization of microalgae bioactives can have potential in overcoming some of these challenges.
Collapse
Affiliation(s)
- Bozena McCarthy
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland; (B.M.); (G.O.)
| | - Graham O’Neill
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland; (B.M.); (G.O.)
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland
| | - Nissreen Abu-Ghannam
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland; (B.M.); (G.O.)
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland
| |
Collapse
|
6
|
Shaposhnikov MV, Guvatova ZG, Zemskaya NV, Koval LA, Schegoleva EV, Gorbunova AA, Golubev DA, Pakshina NR, Ulyasheva NS, Solovev IA, Bobrovskikh MA, Gruntenko NE, Menshanov PN, Krasnov GS, Kudryavseva AV, Moskalev AA. Molecular mechanisms of exceptional lifespan increase of Drosophila melanogaster with different genotypes after combinations of pro-longevity interventions. Commun Biol 2022; 5:566. [PMID: 35681084 PMCID: PMC9184560 DOI: 10.1038/s42003-022-03524-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Aging is one of the global challenges of our time. The search for new anti-aging interventions is also an issue of great actuality. We report on the success of Drosophila melanogaster lifespan extension under the combined influence of dietary restriction, co-administration of berberine, fucoxanthin, and rapamycin, photodeprivation, and low-temperature conditions up to 185 days in w1118 strain and up to 213 days in long-lived E(z)/w mutants. The trade-off was found between longevity and locomotion. The transcriptome analysis showed an impact of epigenetic alterations, lipid metabolism, cellular respiration, nutrient sensing, immune response, and autophagy in the registered effect. The lifespan of fruit flies can be extended up to 213 days under specialized conditions.
Collapse
|
7
|
Zhang J, Wang P, Tan C, Zhao Y, Zhu Y, Bai J, Xiao X. Integrated transcriptomics and metabolomics unravel the metabolic pathway variations for barley β-glucan before and after fermentation with L. plantarum DY-1. Food Funct 2022; 13:4302-4314. [PMID: 35302565 DOI: 10.1039/d1fo02450g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The results of our previous study showed that the structure and function of β-glucan in barley were changed after fermentation by L. plantarum DY-1. In this study, the antioxidant activities of RBG (regular barley β-glucan, unfermented) and FBG (barley β-glucan, fermented with L. plantarum DY-1) were evaluated by adopting an in vivo animal model, Caenorhabditis elegans (C. elegans). We also carried out an integrated transcriptomic and metabolomic profiling for RBG and FBG to delineate their signature pathways. RBG treatment has better effects on SOD enzyme activity and ROS levels than FBG, while FBG treatment has better effects on the CAT enzyme activity and MDA content than RBG in C. elegans. Transcription group analysis showed that FBG mainly decreases the expression of the Cyp-D gene to inhibit the calcium signaling pathway, promotes the Wnt signaling pathway by up-regulating the GSK-3β gene and improving the oxidative damage of C. elegans; RBG mainly inhibits calcium signal pathways by reducing the expression of ANT-solute carrier family 25 genes, promoting life adjustment pathways by reducing the expression of the HSP-12.6 gene to improve the oxidative stress of C. elegans. Joint analysis showed that the difference between FBG and RBG in the regulation of oxidative stress is mainly reflected in the metabolism pathway of arachidonic acid. Under the regulation of FBG, the expression of the C03H5.4 gene was decreased, the expression of leukotriene A4, prostaglandin G2, arachidonic acid and phosphatidylcholine was decreased, and the expression of 14,15-DiHETrE was increased. Under the regulation of RBG, the expression of gene C03H5.4 was up-regulated, the expression of metabolites such as leukotriene B4 was up-regulated, and the expression of arachidonic acid and phosphatidylcholine was down-regulated.
Collapse
Affiliation(s)
- Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Ping Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Cui Tan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
8
|
Experimental evidence and mechanism of action of some popular neuro-nutraceutical herbs. Neurochem Int 2021; 149:105124. [PMID: 34245808 DOI: 10.1016/j.neuint.2021.105124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022]
Abstract
Brain and neuronal circuits constitute the most complex organ networks in human body. They not only control and coordinate functions of all other organs, but also represent one of the most-affected systems with stress, lifestyle and age. With global increase in aging populations, these neuropathologies have emerged as major concern for maintaining quality of life. Recent era has witnessed a surge in nutritional remediation of brain dysfunctions primarily by "nutraceuticals" that refer to functional foods and supplements with pharmacological potential. Specific dietary patterns with a balanced intake of carbohydrates, fatty acids, vitamins and micronutrients have also been ascertained to promote brain health. Dietary herbs and their phytochemicals with wide range of biological and pharmacological activities and minimal adverse effects have gained remarkable attention as neuro-nutraceuticals. Neuro-nutraceutical potentials of herbs are often expressed as effects on cognitive response, circadian rhythm, neuromodulatory, antioxidant and anti-inflammatory activities that are mediated by effects on gene expression, epigenetics, protein synthesis along with their turnover and metabolic pathways. Epidemiological and experimental evidence have implicated enormous applications of herbal supplementation in neurodegenerative and psychiatric disorders. The present review highlights the identification, experimental evidence and applications of some herbs including Bacopa monniera, Withania somnifera, Curcuma longa, Helicteres angustifolia, Undaria pinnatifida, Haematococcus pluvialis, and Vitis vinifera, as neuro-nutraceuticals.
Collapse
|
9
|
A comprehensive review of natural products against atopic dermatitis: Flavonoids, alkaloids, terpenes, glycosides and other compounds. Biomed Pharmacother 2021; 140:111741. [PMID: 34087696 DOI: 10.1016/j.biopha.2021.111741] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/24/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
Atopic dermatitis (AD) is considered a great challenge for human communities and imposes both physiological and mental burdens on patients. Natural products have widely been used to treat a wide range of diseases, including cancer, gastrointestinal diseases, asthma, neurological disorders, and infections. To seek potential natural products against AD, in the current review, we searched the terms "atopic dermatitis" and "natural product" in Pubmed, Medline, Web of Science,Science Direct, Embase, EBSCO, CINAHL, ACS. The results show that many natural products, especially puerarin, ferulic acid and ginsenosides, cound protect against AD. Meanwhile, we discussed the therapeutic mechanisms and showed that the natural products exert their anti-inflammatory effects by suppressing the quantity and activity of many inflammatory cell types and cytokines, including neutrophils, monocytes, lymphocytes, Langerhans cells, interleukins (ILs, including IL-1α, IL-1β, IL-4), TNF-α, and TSLP, IgE. via inhibition of JAK/STAT, MAPKs and NF-κB signaling pathways, thereby, halting the inflammatory cascade. Future investigations should focus on studies with more reflective of the clinical characteristics and demographics, so as to develop natural products that will be hopefully available for the treatment of human AD disease.
Collapse
|
10
|
Vasilopoulou MΑ, Ioannou E, Roussis V, Chondrogianni N. Modulation of the ubiquitin-proteasome system by marine natural products. Redox Biol 2021; 41:101897. [PMID: 33640701 PMCID: PMC7921624 DOI: 10.1016/j.redox.2021.101897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) is a key player in the maintenance of cellular protein homeostasis (proteostasis). Since proteasome function declines upon aging leading to the acceleration of its progression and the manifestation of age-related pathologies, many attempts have been performed towards proteasome activation as a strategy to promote healthspan and longevity. The marine environment hosts a plethora of organisms that produce a vast array of primary and secondary metabolites, the majority of which are unique, exhibiting a wide spectrum of biological activities. The fact that these biologically important compounds are also present in edible marine organisms has sparked the interest for elucidating their potential health-related applications. In this review, we focus on the antioxidant, anti-aging, anti-aggregation and anti-photoaging properties of various marine constituents. We further discuss representatives of marine compounds classes with regard to their potential (direct or indirect) action on UPS components that could serve as UPS modulators and exert beneficial effects on conditions such as oxidative stress, aging and age-related diseases.
Collapse
Affiliation(s)
- Mary Α Vasilopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece; Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larisa, Greece.
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece.
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece.
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece.
| |
Collapse
|
11
|
Wang X, Zhang Z, Zhang S, Yang F, Yang M, Zhou J, Hu Z, Xu X, Mao G, Chen G, Xiang W, Sun X, Xu N. Antiaging compounds from marine organisms. Food Res Int 2021; 143:110313. [DOI: 10.1016/j.foodres.2021.110313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
|
12
|
Iyappan P, Bala M, Sureshkumar M, Veeraraghavan VP, Palanisamy A. Fucoxanthin induced apoptotic cell death in oral squamous carcinoma (KB) cells. Bioinformation 2021; 17:181-191. [PMID: 34393435 PMCID: PMC8340688 DOI: 10.6026/97320630017181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
Fucoxanthin (Fx) is an active compound commonly found in the many types of seaweed with numerous biological activities. The main goal of this investigation is to explore the effect of Fx against the cell proliferation, apoptotic induction and oxidative stress in the oral squamous (KB) cell line. Cytotoxicity of Fx was determined by MTT assay. The intracellular ROS production, mitochondrial membrane potential (MMP) and apoptosis induction in KB cells were examined through DCFH-DA, Rhodamine-123 and DAPI, and dual staining techniques. Effect of Fx on the antioxidant enzymes and lipid peroxidation in the KB cells was studied through the standard procedures. Fx treated KB cells showed morphological changes and reduced cell survival, which is exhibited by the cytotoxic activity of 50 µM/ml (IC50) Fx against the KB cells. The Fx treatment considerably induced the apoptotosis cells (EB/AO) and decreased the MMP (Rh-123) in KB cells. Further, it was pointed out that there was an increased lipid peroxidation (LPO) with decreased antioxidants (CAT, SOD and GSH). These results concluded that Fx has the cytotoxic effect against KB cells and has the potential to induce the apoptosis via increased oxidative stress. Hence, the Fx can be a promising agent for the treatment of oral cancer and it may lead to the development of cancer therapeutics.
Collapse
Affiliation(s)
- Petchi Iyappan
- Senior Lecturer, Faculty of Medicine, Bioscience and Nursing, School of Bioscience, Mahsa University, Saujana Putra Campus, Jalan SP2, Bandar Saujana Putra, 42610, Jenjarom, Selangor, Malaysia
| | - M.Devi Bala
- Research Scholar, Muthayammal College of Arts & Science (A Unit of VANETRA Group), Rasipuram, 637408, Namakkal, Tamilnadu, India
| | - M Sureshkumar
- Department of Zoology & Biotechnology, Muthayammal College of Arts & Science (A Unit of VANETRA Group), Rasipuram, 637408, Namakkal, Tamilnadu, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077
| | - Arulselvan Palanisamy
- Adjunct Associate Professor,Muthayammal Centre for Advanced Research (MCAR), Muthayammal College of Arts & Science (A Unit of VANETRA Group),Rasipuram, 637408, Namakkal, Tamilnadu, India
| |
Collapse
|
13
|
Koval L, Zemskaya N, Aliper A, Zhavoronkov A, Moskalev A. Evaluation of the geroprotective effects of withaferin A in Drosophila melanogaster. Aging (Albany NY) 2021; 13:1817-1841. [PMID: 33498013 PMCID: PMC7880378 DOI: 10.18632/aging.202572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/04/2021] [Indexed: 01/15/2023]
Abstract
Withanolides are a class of compounds usually found in plant extracts which are an attractive geroprotective drug design starting point. We evaluated the geroprotective properties of Withaferin A (WA) in vivo using the Drosophila model. Flies were supplemented by nutrient medium with WA (at a concentration of 1, 10, or 100 μM dissolved in ethanol) for the experiment group and 30 μM of ethanol for the control group. WA treatment at 10 and 100 μM concentrations prolong the median life span of D. melanogaster's male by 7.7, 9.6% (respectively) and the maximum life span (the age of death 90% of individuals) by 11.1% both. Also WA treatment at 1, 10 and 100 μM improved the intestinal barrier permeability in older flies and affected an expression of genes involved in antioxidant defense (PrxV), recognition of DNA damage (Gadd45), heat shock proteins (Hsp68, Hsp83), and repair of double-strand breaks (Ku80). WA was also shown to have a multidirectional effect on the resistance of flies to the prooxidant paraquat (oxidative stress) and 33° C hyperthermia (heat shock). WA treatment increased the resistance to oxidative stress in males at 4 and 7 week old and decreased it at 6 weeks old. It increased the male's resistance to hyperthermia at 2, 4 and 7 weeks old and decreased it at 3, 5 and 8 weeks old. WA treatment decreased the resistance to hyperthermia in females at 1, 2 and 3 weeks old and not affected on their resistance to oxidative stress.
Collapse
Affiliation(s)
- Liubov Koval
- Institute of Biology, Komi Science Centre, the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Komi Republic, Russia
| | - Nadezhda Zemskaya
- Institute of Biology, Komi Science Centre, the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Komi Republic, Russia
| | - Alexander Aliper
- Deep Longevity Ltd, Hong Kong Science and Technology Park, Hong Kong, China
| | - Alex Zhavoronkov
- Deep Longevity Ltd, Hong Kong Science and Technology Park, Hong Kong, China
| | - Alexey Moskalev
- Institute of Biology, Komi Science Centre, the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Komi Republic, Russia
| |
Collapse
|
14
|
Su QC, Wang X, Deng C, Yun YL, Zhao Y, Peng Y. Transcriptome responses to elevated CO 2 level and Wolbachia-infection stress in Hylyphantes graminicola (Araneae: Linyphiidae). INSECT SCIENCE 2020; 27:908-920. [PMID: 31215133 DOI: 10.1111/1744-7917.12701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/09/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
Hylyphantes graminicola is a resident spider species found in maize and cotton fields and is an important biological control agent of various pests. Previous studies have demonstrated that stress from elevated CO2 and Wolbachia infection can strongly affect spider species. Thus, based on CO2 levels (400 ppm, current atmospheric CO2 concentration and 800 ppm, high CO2 concentration) and Wolbachia status (Wolbachia-infected, W+ and Wolbachia-uninfected, W- ), we divided H. graminicola individuals into four treatment groups: W- 400 ppm, W- 800 ppm, W+ 400 ppm, and W+ 800 ppm. To investigate the effects of elevated CO2 levels (W- 400 vs W- 800), Wolbachia infection (W- 400 vs W+ 400), and the interactions between these two factors (W- 400 vs W+ 800), high-throughput transcriptome sequencing was employed to characterize the de novo transcriptome of the spiders and identify stress-related differentially expressed genes (DEGs). De novo assembly of complementary DNA sequences generated 86 688 unigenes, 23 938 of which were annotated in public databases. A total of 84, 21, and 157 DEGs were found among W- 400 vs W- 800, W- 400 vs W+ 400, and W- 400 vs W+ 800, respectively. Functional enrichment analysis revealed that metabolic processes, signaling, and catalytic activity were significantly affected by elevated CO2 levels and Wolbachia infection. Our findings suggest that the impact of elevated CO2 levels and Wolbachia infection on the H. graminicola transcriptome was, to a large extent, on genes involved in metabolic processes. This study is the first description of transcriptome changes in response to elevated CO2 levels and Wolbachia infection in spiders.
Collapse
Affiliation(s)
- Qi-Chen Su
- State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, China
| | - Xia Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, China
| | - Chan Deng
- State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, China
| | - Yue-Li Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, China
| | - Yao Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, China
| | - Yu Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
15
|
Guvatova Z, Dalina A, Marusich E, Pudova E, Snezhkina A, Krasnov G, Kudryavtseva A, Leonov S, Moskalev A. Protective effects of carotenoid fucoxanthin in fibroblasts cellular senescence. Mech Ageing Dev 2020; 189:111260. [DOI: 10.1016/j.mad.2020.111260] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/27/2022]
|
16
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
17
|
Qiu S, Shen Y, Zhang L, Ma B, Amadu AA, Ge S. Antioxidant assessment of wastewater-cultivated Chlorella sorokiniana in Drosophila melanogaster. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Abstract
Multiple interventions in the aging process have been discovered to extend the healthspan of model organisms. Both industry and academia are therefore exploring possible transformative molecules that target aging and age-associated diseases. In this overview, we summarize the presented talks and discussion points of the 5th Annual Aging and Drug Discovery Forum 2018 in Basel, Switzerland. Here academia and industry came together, to discuss the latest progress and issues in aging research. The meeting covered talks about the mechanistic cause of aging, how longevity signatures may be highly conserved, emerging biomarkers of aging, possible interventions in the aging process and the use of artificial intelligence for aging research and drug discovery. Importantly, a consensus is emerging both in industry and academia, that molecules able to intervene in the aging process may contain the potential to transform both societies and healthcare.
Collapse
|
19
|
Moskalev AA, Shaposhnikov MV, Zemskaya NV, Koval LА, Schegoleva EV, Guvatova ZG, Krasnov GS, Solovev IA, Sheptyakov MA, Zhavoronkov A, Kudryavtseva AV. Transcriptome Analysis of Long-lived Drosophila melanogaster E(z) Mutants Sheds Light on the Molecular Mechanisms of Longevity. Sci Rep 2019; 9:9151. [PMID: 31235842 PMCID: PMC6591219 DOI: 10.1038/s41598-019-45714-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/11/2019] [Indexed: 12/15/2022] Open
Abstract
The E(z) histone methyltransferase heterozygous mutation in Drosophila is known to increase lifespan and stress resistance. However, the longevity mechanisms of E(z) mutants have not been revealed. Using genome-wide transcriptome analysis, we demonstrated that lifespan extension, increase of resistance to hyperthermia, oxidative stress and endoplasmic reticulum stress, and fecundity enhancement in E(z) heterozygous mutants are accompanied by changes in the expression level of 239 genes (p < 0.05). Our results demonstrated sex-specific effects of E(z) mutation on gene expression, which, however, did not lead to differences in lifespan extension in both sexes. We observed that a mutation in an E(z) gene leads to perturbations in gene expression, most of which participates in metabolism, such as Carbohydrate metabolism, Lipid metabolism, Drug metabolism, Nucleotide metabolism. Age-dependent changes in the expression of genes involved in pathways related to immune response, cell cycle, and ribosome biogenesis were found.
Collapse
Affiliation(s)
- Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia. .,Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia. .,Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | | | - Nadezhda V Zemskaya
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
| | - Liubov А Koval
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
| | - Eugenia V Schegoleva
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
| | - Zulfiya G Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya A Solovev
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
| | | | | | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
20
|
Mitochondrial Function, Mobility and Lifespan Are Improved in Drosophila melanogaster by Extracts of 9- cis-β-Carotene from Dunaliella salina. Mar Drugs 2019; 17:md17050279. [PMID: 31083322 PMCID: PMC6563070 DOI: 10.3390/md17050279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/01/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022] Open
Abstract
Carotenoids are implicated in alleviating ageing and age-related diseases in humans. While data from different carotenoids are mixed in their outcomes, those for 9-cis-β-carotene indicate general positive effects, although basic data on its biological impact are limited. Here, we show that supplementation with 9-cis-β-carotene in ageing Drosophila melanogaster improved mitochondrial function in terms of ATP production and whole-body respiration and extended mean lifespan. It also resulted in improved mobility. These data provide a potential biological rational for the beneficial effects of dietary supplementation with 9-cis-β-carotene. These effects may be based on the maintenance of a sound mitochondrial function.
Collapse
|
21
|
Afzal S, Garg S, Ishida Y, Terao K, Kaul SC, Wadhwa R. Rat Glioma Cell-Based Functional Characterization of Anti-Stress and Protein Deaggregation Activities in the Marine Carotenoids, Astaxanthin and Fucoxanthin. Mar Drugs 2019; 17:E189. [PMID: 30909572 PMCID: PMC6470788 DOI: 10.3390/md17030189] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
Stress, protein aggregation, and loss of functional properties of cells have been shown to contribute to several deleterious pathologies including cancer and neurodegeneration. The incidence of these pathologies has also been shown to increase with age and are often presented as evidence to the cumulative effect of stress and protein aggregation. Prevention or delay of onset of these diseases may prove to be unprecedentedly beneficial. In this study, we explored the anti-stress and differentiation-inducing potential of two marine bioactive carotenoids (astaxanthin and fucoxanthin) using rat glioma cells as a model. We found that the low (nontoxic) doses of both protected cells against UV-induced DNA damage, heavy metal, and heat-induced protein misfolding and aggregation of proteins. Their long-term treatment in glioma cells caused the induction of physiological differentiation into astrocytes. These phenotypes were supported by upregulation of proteins that regulate cell proliferation, DNA damage repair mechanism, and glial differentiation, suggesting their potential for prevention and treatment of stress, protein aggregation, and age-related pathologies.
Collapse
Affiliation(s)
- Sajal Afzal
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan.
| | - Sukant Garg
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.
| | - Yoshiyuki Ishida
- CycloChem Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Keiji Terao
- CycloChem Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Sunil C Kaul
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.
| | - Renu Wadhwa
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan.
| |
Collapse
|
22
|
Zhang L, Wang H. Autophagy in Traumatic Brain Injury: A New Target for Therapeutic Intervention. Front Mol Neurosci 2018; 11:190. [PMID: 29922127 PMCID: PMC5996030 DOI: 10.3389/fnmol.2018.00190] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/15/2018] [Indexed: 11/23/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the most devastating forms of brain injury. Many pathological mechanisms such as oxidative stress, apoptosis and inflammation all contribute to the secondary brain damage and poor outcomes of TBI. Current therapies are often ineffective and poorly tolerated, which drive the explore of new therapeutic targets for TBI. Autophagy is a highly conserved intracellular mechanism during evolution. It plays an important role in elimination abnormal intracellular proteins or organelles to maintain cell stability. Besides, autophagy has been researched in various models including TBI. Previous studies have deciphered that regulation of autophagy by different molecules and pathways could exhibit anti-oxidative stress, anti-apoptosis and anti-inflammation effects in TBI. Hence, autophagy is a promising target for further therapeutic development in TBI. The present review provides an overview of current knowledge about the mechanism of autophagy, the frequently used methods to monitor autophagy, the functions of autophagy in TBI as well as its potential molecular mechanisms based on the pharmacological regulation of autophagy.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
23
|
Affiliation(s)
- Yuriy L Orlov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
| | - Ancha V Baranova
- Research Centre of Medical Genetics, Moscow, Russia
- George Mason University, Fairfax, VA, USA
| | | | | |
Collapse
|