1
|
Wang M, Xu P, Zhou J, Ge J, Xu G. Characterization of the molecular, cellular, and behavioral changes caused by exposure to a saline-alkali environment in the Chinese mitten crab, Eriocheir sinensis. ENVIRONMENTAL RESEARCH 2024; 262:119956. [PMID: 39255905 DOI: 10.1016/j.envres.2024.119956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
In the context of global warming, the accelerated evaporation of seawater will lead to a continuous expansion of saline-alkali land area. As an important economic freshwater crustacean, investigation on the mechanism of damage to Eriocheir sinensis (E. sinensis) under saline-alkali environment will provide a valuable precedent for understanding the detrimental effect of climate change on crustaceans. In this study, histopathological analysis and integrative omics analysis were employed to explore the injury mechanism on the cerebral nervous system of E. sinensis exposure to saline-alkali stress. Our findings revealed that under this stress E. sinensis exhibited behavioral disorders and damage to cerebral neurosecretory cells and key organelles. Additionally, several pathways related to detoxification metabolism, neurotransmitter synthesis, and antioxidant defense were significantly down-regulated. Collectively, these results show, for the first time, that saline-alkali stress can induce neurodegenerative disease-like symptoms in E. sinensis, and provide critical information for understanding the harmful effects of saline-alkali environments.
Collapse
Affiliation(s)
- Meiyao Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.
| | - Jun Zhou
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Jiachun Ge
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.
| |
Collapse
|
2
|
Wang M, Zhou J, Ge J, Tang Y, Xu G. Exploration of Synergistic Regulation Mechanisms of Cerebral Ganglion and Muscle in Eriocheir sinensis Activated in Response to Alkalinity Stress. Animals (Basel) 2024; 14:2374. [PMID: 39199908 PMCID: PMC11350872 DOI: 10.3390/ani14162374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
The cerebral ganglion and muscle are important regulatory tissues in Eriocheir sinensis. Therefore, it is of great significance to explore their synergistic roles in this organism's anti-stress response. In this study, proteomics, metabolomics, and combination analyses of the cerebral ganglion and muscle of E. sinensis under alkalinity stress were performed. The cerebral ganglion and muscle played a significant synergistic regulatory role in alkalinity adaptation. The key regulatory pathways involved were amino acid metabolism, energy metabolism, signal transduction, and the organismal system. They also played a modulatory role in the TCA cycle, nerve signal transduction, immune response, homeostasis maintenance, and ion channel function. In conclusion, the present study provides a theoretical reference for further research on the mechanisms regulating the growth and development of E. sinensis in saline-alkaline environments. In addition, it provides theoretical guidelines for promoting the vigorous development of the E. sinensis breeding industry in saline-alkaline environments in the future.
Collapse
Affiliation(s)
- Meiyao Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jun Zhou
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; (J.Z.); (J.G.)
| | - Jiachun Ge
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; (J.Z.); (J.G.)
| | - Yongkai Tang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
3
|
Liu T, Nie H, Ding J, Huo Z, Yan X. Physiological and transcriptomic analysis provides new insights into osmoregulation mechanism of Ruditapes philippinarum under low and high salinity stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173215. [PMID: 38750748 DOI: 10.1016/j.scitotenv.2024.173215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
The Manila clam (Ruditapes philippinarum) is a commercially important marine bivalve, which inhabits the estuarine and mudflat areas. The osmoregulation is of great significance for molluscs adaptation to salinity fluctuations. In this study, we investigated the effects of low salinity (10 psu) and high salinity (40 psu) stress on survival and osmoregulation of the R. philippinarum. The results of physiological parameters showed that the ion (Na+, K+, Cl-) concentrations and Na+/K+-ATPase (NKA) activity of R. philippinarum decreased significantly under low salinity stress, but increased significantly under high salinity stress, indicating that there are differences in physiological adaptation of osmoregulation of R. philippinarum. In addition, we conducted the transcriptome analysis in the gills of R. philippinarum exposed to low (10 psu) and high (40 psu) salinity challenge for 48 h using RNA-seq technology. A total of 153 and 640 differentially expressed genes (DEGs) were identified in the low salinity (LS) group and high salinity (HS) group, respectively. The immune (IAP, TLR6, C1QL4, Ank3), ion transport (Slc34a2, SLC39A14), energy metabolism (PCK1, LDLRA, ACOX1) and DNA damage repair-related genes (Gadd45g, HSP70B2, GATA4) as well as FoxO, protein processing in endoplasmic reticulum and endocytosis pathways were involved in osmoregulation under low salinity stress of R. philippinarum. Conversely, the ion transport (SLC6A7, SLC6A9, SLC6A14, TRPM2), amino acid metabolism (GS, TauD, ABAT, ALDH4A1) and immune-related genes (MAP2K6, BIRC7A, CTSK, GVIN1), and amino acid metabolism pathways (beta-Alanine, Alanine, aspartate and glutamate, Glutathione) were involved in the process of osmoregulation under high salinity stress. The results obtained here revealed the difference of osmoregulation mechanism of R. philippinarum under low and high salinity stress through physiological and molecular levels. This study contributes to the assessment of salinity adaptation of bivalves in the context of climate change and provides useful information for marine resource conservation and aquaculture.
Collapse
Affiliation(s)
- Tao Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China.
| | - Jianfeng Ding
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China.
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
4
|
Zhou T, Meng Q, Sun R, Xu D, Zhu F, Jia C, Zhou S, Chen S, Yang Y. Structure and gene expression changes of the gill and liver in juvenile black porgy (Acanthopagrus schlegelii) under different salinities. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101228. [PMID: 38547756 DOI: 10.1016/j.cbd.2024.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 05/27/2024]
Abstract
Black porgy (Acanthopagrus schlegelii) is an important marine aquaculture species in China. It is an ideal object for the cultivation of low-salinity aquaculture strains in marine fish and the study of salinity tolerance mechanisms in fish because of its strong low-salinity tolerance ability. Gill is the main osmoregulatory organ in fish, and the liver plays an important role in the adaptation of the organism to stressful environments. In order to understand the coping mechanisms of the gills and livers of black porgy in different salinity environments, this study explored these organs after 30 days of culture in hypoosmotic (0.5 ppt), isosmotic (12 ppt), and normal seawater (28 ppt) at histologic, physiologic, and transcriptomic levels. The findings indicated that gill exhibited a higher number of differentially expressed genes than the liver, emphasizing the gill's heightened sensitivity to salinity changes. Protein interaction networks and enrichment analyses highlighted energy metabolism as a key regulatory focus at both 0.5 ppt and 12 ppt salinity in gills. Additionally, gills showed enrichment in ions, substance transport, and other metabolic pathways, suggesting a more direct regulatory response to salinity stress. The liver's regulatory patterns at different salinities exhibited significant distinctions, with pathways and genes related to metabolism, immunity, and antioxidants predominantly activated at 0.5 ppt, and molecular processes linked to cell proliferation taking precedence at 12 ppt salinity. Furthermore, the study revealed a reduction in the volume of the interlamellar cell mass (ILCM) of the gills, enhancing the contact area of the gill lamellae with water. At 0.5 ppt salinity, hepatic antioxidant enzyme activity increased, accompanied by oxidative stress damage. Conversely, at 12 ppt salinity, gill NKA activity significantly decreased without notable changes in liver structure. These results underscore the profound impact of salinity on gill structure and function, highlighting the crucial role of the liver in adapting to salinity environments.
Collapse
Affiliation(s)
- Tangjian Zhou
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Qian Meng
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Ruijian Sun
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Dafeng Xu
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Fei Zhu
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Chaofeng Jia
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Shimiao Zhou
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Shuyin Chen
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| | - Yunxia Yang
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
5
|
Hu W, Cao Y, Liu Q, Yuan C, Hu Z. Effect of salinity on the physiological response and transcriptome of spotted seabass (Lateolabrax maculatus). MARINE POLLUTION BULLETIN 2024; 203:116432. [PMID: 38728954 DOI: 10.1016/j.marpolbul.2024.116432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
Salinity fluctuations significantly impact the reproduction, growth, development, as well as physiological and metabolic activities of fish. To explore the osmoregulation mechanism of aquatic organisms acclimating to salinity stress, the physiological and transcriptomic characteristics of spotted seabass (Lateolabrax maculatus) in response to varying salinity gradients were investigated. In this study, different salinity stress exerted inhibitory effects on lipase activity, while the impact on amylase activity was not statistically significant. Notably, a moderate increase in salinity (24 psu) demonstrated the potential to enhance the efficient utilization of proteins by spotted seabass. Both Na+/K+-ATPase and malondialdehyde showed a fluctuating trend of increasing and then decreasing, peaking at 72 h. Transcriptomic analysis revealed that most differentially expressed genes were involved in energy metabolism, signal transduction, the immune response, and osmoregulation. These results will provide insights into the molecular mechanisms of salinity adaptation and contribute to sustainable development of the global aquaculture industry.
Collapse
Affiliation(s)
- Wenjing Hu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yi Cao
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Qigen Liu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Chen Yuan
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Zhongjun Hu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China..
| |
Collapse
|
6
|
Willems DJ, Kumar A, Nguyen TV, Beale DJ, Nugegoda D. Environmentally relevant concentrations of chemically complex shale gas wastewater led to reduced fitness of water fleas (Daphnia carinata): Multiple lines of evidence approach. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132839. [PMID: 37926015 DOI: 10.1016/j.jhazmat.2023.132839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Shale gas hydraulic fracturing generates flowback waters that pose a threat to aquatic organisms if released into the environment. In order to prevent adverse effects on aquatic ecosystems, multiple lines of evidence are needed to guide better decisions and management actions. This study employed a multi-disciplinary approach, combining direct toxicity assessment (DTA) on the water flea Daphnia carinata and LC-MS metabolomics analysis to determine the impact of a major ion salinity control (SC) and a cumulative flowback shale gas wastewater (SGW) from a well in the Beetaloo Sub-basin, Northern Territory, Australia. The exposures included a culture water control, simply further referred to as 'control', SC at 1% and 2% (v/v) and SGW at 0.125, 0.25, 0.5, 1% and 2% (v/v). The results showed that reproduction was significantly increased at SGW 0.5%, and significantly decreased when exposed to SC 2%. SGW 2% was found to be acutely toxic for the D. carinata (< 48-h). Second generation (F1) of D. carinata exposed to 0.125-1% SGW generally saw reduced activity in four oxidative biomarkers: glutathione S-transferase, lipid peroxidation, reactive oxygen species, and superoxide dismutase. At the metabolomics level, we observed significant changes in 103 metabolites in Daphnia exposed to both SGW and elevated salinity, in comparison to the control group. These changes indicate a range of metabolic disturbances induced by SGW and salinity, such as lipid metabolism, amino acid metabolism, nucleotide synthesis, energy production, and the biosynthesis of crucial molecules like hormones and pigments. These multiple lines of evidence approach not only highlights the complexities of SGW's impact on aquatic ecosystems but also underscores the importance of informed decision-making and management practices to safeguard the environment and its inhabitants.
Collapse
Affiliation(s)
- Daniel J Willems
- Ecotoxicology Research Group, School of Science, Bundoora West Campus, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia; Environment Business Unit, Commonwealth Scientific and Industrial Research Organisation, Urrbrae 5064, South Australia, Australia.
| | - Anupama Kumar
- Environment Business Unit, Commonwealth Scientific and Industrial Research Organisation, Urrbrae 5064, South Australia, Australia
| | - Thao V Nguyen
- Environment Business Unit, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia; NTT Institute of High Technology, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh 700000, VietNam
| | - David J Beale
- Environment Business Unit, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, School of Science, Bundoora West Campus, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| |
Collapse
|
7
|
Małachowicz M, Krasnov A, Wenne R. Diverse Transcriptome Responses to Salinity Change in Atlantic Cod Subpopulations. Cells 2023; 12:2760. [PMID: 38067188 PMCID: PMC10706248 DOI: 10.3390/cells12232760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Adaptation to environmental variation caused by global climate change is a significant aspect of fisheries management and ecology. A reduction in ocean salinity is visible in near-shore areas, especially in the Baltic Sea, where it is affecting the Atlantic cod population. Cod is one of the most significant teleost species, with high ecological and economical value worldwide. The population of cod in the Baltic Sea has been traditionally divided into two subpopulations (western and eastern) existing in higher- and lower-salinity waters, respectively. In recent decades, both Baltic cod subpopulations have declined massively. One of the reasons for the poor condition of cod in the Baltic Sea is environmental factors, including salinity. Thus, in this study, an oligonucleotide microarray was applied to explore differences between Baltic cod subpopulations in response to salinity fluctuations. For this purpose, an exposure experiment was conducted consisting of salinity elevation and reduction, and gene expression was measured in gill tissue. We found 400 differentially expressed genes (DEGs) involved in the immune response, metabolism, programmed cell death, cytoskeleton, and extracellular matrix that showed a subpopulation-dependent pattern. These findings indicate that osmoregulation in Baltic cod is a complex process, and that western and eastern Baltic cod subpopulations respond differently to salinity changes.
Collapse
Affiliation(s)
- Magdalena Małachowicz
- Institute of Oceanology Polish Academy of Sciences, Powstanców Warszawy 55, 81-712 Sopot, Poland;
| | - Aleksei Krasnov
- Department of Fish Health, Nofima—Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, NO-1431 Ås, Norway;
| | - Roman Wenne
- Institute of Oceanology Polish Academy of Sciences, Powstanców Warszawy 55, 81-712 Sopot, Poland;
| |
Collapse
|
8
|
Du J, Shao J, Li S, Zhu T, Song H, Lei C, Zhang M, Cen Y. Integrated transcriptomic and proteomic analyses reveal the mechanism of easy acceptance of artificial pelleted diets during food habit domestication in Largemouth bass (Micropterus salmoides). Sci Rep 2023; 13:18461. [PMID: 37891233 PMCID: PMC10611700 DOI: 10.1038/s41598-023-45645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
Acceptance of artificial pelleted diets contributes to increasing the cultured areas and output of carnivorous fish. However, the mechanism of acceptance of artificial pelleted diets remains largely unknown. In this study, the easy acceptance of artificial pelleted diets (EAD) group and the not easy acceptance of artificial pelleted diets (NAD) group of Largemouth bass (Micropterus salmoides) were divided based on the ratios of stomach weight/body weight (SB) after 0.5 h feeding, which was bigger than 18% in the EAD group and ranged from 8 to 12% in the NAD group. Through transcriptome and proteome sequencing, a total of 2463 differentially expressed genes (DEGs) and 230 differentially expressed proteins (DEPs) were identified, respectively. Integrated analyses of transcriptome and proteome data revealed that 152 DEPs were matched with the corresponding DEGs (named co-DEGs-DEPs), and 54 co-DEGs-DEPs were enriched in 16 KEGG pathways, including the metabolic pathways, steroid biosynthesis, fatty acid biosynthesis, etc. Furthermore, 3 terpenoid backbone biosynthesis-related genes (Hmgcr, Hmgcs, and Fdps) in metabolic pathways, 10 steroid biosynthesis-related genes (Fdft1, Sqle, Lss, Cyp51a1, Tm7sf2, Nsdhl, Hsd17b7, Dhcr24, Sc5d, and Dhcr7), and 3 fatty acid biosynthesis-related genes (Acaca, Fasn, and Ascl) were all up-regulated in the EAD group, suggesting that the lipid metabolism pathway and steroid biosynthesis pathway play important roles in early food habit domestication in Largemouth bass. In addition, the detection results of randomly selected 15 DEGs and 15 DEPs indicated that both transcriptome and proteome results in the study were reliable. Our study provides useful information for further research on the mechanisms of food habit domestication in fish.
Collapse
Affiliation(s)
- Jinxing Du
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, China Ministry of Agriculture, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
| | - Jiaqi Shao
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, China Ministry of Agriculture, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Shengjie Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, China Ministry of Agriculture, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China.
| | - Tao Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, China Ministry of Agriculture, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
| | - Hongmei Song
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, China Ministry of Agriculture, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
| | - Caixia Lei
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, China Ministry of Agriculture, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
| | - Meng Zhang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Yingkun Cen
- Jiyurunda Fishery Technology Co., Ltd, Foshan, 528203, China
| |
Collapse
|
9
|
Huang X, Li H, Shenkar N, Zhan A. Multidimensional plasticity jointly contributes to rapid acclimation to environmental challenges during biological invasions. RNA (NEW YORK, N.Y.) 2023; 29:675-690. [PMID: 36810233 PMCID: PMC10159005 DOI: 10.1261/rna.079319.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/01/2023] [Indexed: 05/06/2023]
Abstract
Rapid plastic response to environmental changes, which involves extremely complex underlying mechanisms, is crucial for organismal survival during many ecological and evolutionary processes such as those in global change and biological invasions. Gene expression is among the most studied molecular plasticity, while co- or posttranscriptional mechanisms are still largely unexplored. Using a model invasive ascidian Ciona savignyi, we studied multidimensional short-term plasticity in response to hyper- and hyposalinity stresses, covering the physiological adjustment, gene expression, alternative splicing (AS), and alternative polyadenylation (APA) regulations. Our results demonstrated that rapid plastic response varied with environmental context, timescales, and molecular regulatory levels. Gene expression, AS, and APA regulations independently acted on different gene sets and corresponding biological functions, highlighting their nonredundant roles in rapid environmental adaptation. Stress-induced gene expression changes illustrated the use of a strategy of accumulating free amino acids under high salinity and losing/reducing them during low salinity to maintain the osmotic homoeostasis. Genes with more exons were inclined to use AS regulations, and isoform switches in functional genes such as SLC2a5 and Cyb5r3 resulted in enhanced transporting activities by up-regulating the isoforms with more transmembrane regions. The extensive 3'-untranslated region (3'UTR) shortening through APA was induced by both salinity stresses, and APA regulation predominated transcriptomic changes at some stages of stress response. The findings here provide evidence for complex plastic mechanisms to environmental changes, and thereby highlight the importance of systemically integrating different levels of regulatory mechanisms in studying initial plasticity in evolutionary trajectories.
Collapse
Affiliation(s)
- Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing 100085, China
| | - Hanxi Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Noa Shenkar
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, 6997801 Tel-Aviv, Israel
- The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel-Aviv, Israel
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| |
Collapse
|
10
|
Chen J, Cai B, Tian C, Jiang D, Shi H, Huang Y, Zhu C, Li G, Deng S. RNA Sequencing (RNA-Seq) Analysis Reveals Liver Lipid Metabolism Divergent Adaptive Response to Low- and High-Salinity Stress in Spotted Scat ( Scatophagus argus). Animals (Basel) 2023; 13:ani13091503. [PMID: 37174540 PMCID: PMC10177406 DOI: 10.3390/ani13091503] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Spotted scat (Scatophagus argus) can tolerate a wide range of salinity fluctuations. It is a good model for studying environmental salinity adaptation. Lipid metabolism plays an important role in salinity adaptation in fish. To elucidate the mechanism of lipid metabolism in the osmoregulation, the liver transcriptome was analyzed after 22 d culture with a salinity of 5 ppt (Low-salinity group: LS), 25 ppt (Control group: Ctrl), and 35 ppt (High-salinity group: HS) water by using RNA sequencing (RNA-seq) in spotted scat. RNA-seq analysis showed that 1276 and 2768 differentially expressed genes (DEGs) were identified in the LS vs. Ctrl and HS vs. Ctrl, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the pathways of steroid hormone biosynthesis, steroid biosynthesis, glycerophospholipid metabolism, glycerolipid metabolism, and lipid metabolism were significantly enriched in the LS vs. Ctrl. The genes of steroid biosynthesis (sqle, dhcr7, and cyp51a1), steroid hormone biosynthesis (ugt2a1, ugt2a2, ugt2b20, and ugt2b31), and glycerophospholipid metabolism (cept1, pla2g4a, and ptdss2) were significantly down-regulated in the LS vs. Ctrl. The pathways related to lipid metabolisms, such as fatty acid metabolism, fatty acid biosynthesis, peroxisome proliferator-activated receptor (PPAR) signaling pathway, adipocytokine signaling pathway, fatty acid degradation, and unsaturated fatty acid biosynthesis, were significantly enriched in the HS vs. Ctrl. The genes of unsaturated fatty acid biosynthesis (scd1, hacd3, fads2, pecr, and elovl1) and adipocytokine signaling pathway (g6pc1, socs1, socs3, adipor2, pck1, and pparα) were significantly up-regulated in the HS vs. Ctrl. These results suggest that the difference in liver lipid metabolism is important to adapt to low- and high-salinity stress in spotted scat, which clarifies the molecular regulatory mechanisms of salinity adaptation in euryhaline fish.
Collapse
Affiliation(s)
- Jieqing Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Bosheng Cai
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Changxu Tian
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dongneng Jiang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Hongjuan Shi
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Yang Huang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Chunhua Zhu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Siping Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| |
Collapse
|
11
|
Liu C, Li J, Qi X, Wang L, Sun D, Zhang J, Zhang K, Li J, Li Y, Wen H. Cytochrome P450 superfamily in spotted sea bass: Genome-wide identification and expression profiles under trichlorfon and environmental stresses. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101078. [PMID: 37121223 DOI: 10.1016/j.cbd.2023.101078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023]
Abstract
Cytochrome P450s (CYPs), as one of the most diverse enzyme superfamilies in nature, play critical functions in antioxidant reactions against endogenous and exogenous compounds. In this study, we performed genome-wide characterization of CYP superfamily members and analyzed their expression patterns under several abiotic stresses in spotted sea bass, which is known as an economically important fish species in the Chinese aquaculture industry. A total of 55 CYP genes were identified and divided into 17 families within 10 clans. The analysis of phylogeny, gene structure, and syntenic relationships provided evidence for the evolution of CYP genes and confirmed their annotation and orthology. The expression of CYP genes was examined in the liver during trichlorfon stress using quantitative real-time PCR. The results showed that 20 tested CYP genes displayed significant mRNA expression changes, indicating that they may play crucial roles in the metabolism of trichlorfon and can be potential biomarkers for trichlorfon pollution. Moreover, by screening transcriptomic databases, 10, 3 and 19 CYP genes exhibited differential expression patterns in response to hypoxia, alkalinity and heat stress, respectively. Taken together, this study provided insights into the regulation of CYP genes by toxicological and environmental stresses, laid basis for extensive functional studies of the CYP superfamily in spotted sea bass and other teleost species.
Collapse
Affiliation(s)
- Cong Liu
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China
| | - Junjie Li
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China
| | - Xin Qi
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China
| | - Lingyu Wang
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China
| | - Donglei Sun
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China
| | - Jingru Zhang
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China
| | - Kaiqiang Zhang
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China
| | - Jianshuang Li
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China
| | - Yun Li
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China.
| | - Haishen Wen
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China.
| |
Collapse
|
12
|
Jiang T, Liang YS, Gu Y, Yao FC, Liu YF, Zhang KX, Song FB, Sun JL, Luo J. Different reoxygenation rates induce different metabolic, apoptotic and immune responses in Golden Pompano (Trachinotus blochii) after hypoxic stress. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108640. [PMID: 36871632 DOI: 10.1016/j.fsi.2023.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Dissolved oxygen (DO) is essential for teleosts, and fluctuating environmental factors can result in hypoxic stress in the golden pompano (Trachinotus blochii). However, it is unknown whether different recovery speeds of DO concentration after hypoxia induce stress in T. blochii. In this study, T. blochii was subjected to hypoxic conditions (1.9 ± 0.2 mg/L) for 12 h followed by 12 h of reoxygenation at two different speeds (30 mg/L per hour and 1.7 mg/L per hour increasing). The gradual reoxygenation group (GRG), experienced DO recovery (1.9 ± 0.2 to 6.8 ± 0.2 mg/L) within 3 h, and the rapid reoxygenation group (RRG), experienced DO recovery (1.9 ± 0.2 to 6.8 ± 0.2 mg/L) within 10 min. Physiological and biochemical parameters of metabolism (glucose, glycegon, lactic acid (LD), lactate dehydrogenase (LDH), pyruvic acid (PA), phosphofructokinase (PFKA), and hexokinase (HK), triglyceride (TG), lipoprotein lipase (LPL), carnitine palmitoyltransferase 1 (CPT-1)) and transcriptome sequencing (RNA-seq of liver) were monitored to identify the effects of the two reoxygenation speeds. Increased LD content and increased activity of LDH, PA, PFKA, and HK suggested enhanced anaerobic glycolysis under hypoxic stress. LD and LDH levels remained significantly elevated during reoxygenation, indicating that the effects of hypoxia were not immediately alleviated during reoxygenation. The expressions of PGM2, PFKA, GAPDH, and PK were increased in the RRG, which suggests that glycolysis was enhanced. The same pattern was not observed in the GRG. Additionally, In the RRG, reoxygenation may promote glycolysis to guarantee energy supply. However, the GRG may through the lipid metabolism such as steroid biosynthesis at the later stage of reoxygenation. In the aspect of apoptosis, differentially expressed genes (DEGs) in the RRG were enriched in the p53 signaling pathway, which promoted cell apoptosis, while DEGs in the GRG seem to activate cell apoptosis at early stage of reoxygenation but was restrained latterly. DEGs in both the RRG and the GRG were enriched in the NF-kappa B and JAK-STAT signaling pathways, the RRG may induce cell survival by regulating the expression of IL-12B, COX2, and Bcl-XL, while in the GRG it may induce by regulating the expression of IL-8. Moreover, DEGs in the RRG were also enriched in the Toll-like receptor signaling pathway. This research revealed that at different velocity of reoxygenation after hypoxic stress, T. blochii would represent different metabolic, apoptotic and immune strategies, and this conclusion would provide new insight into the response to hypoxia and reoxygenation in teleosts.
Collapse
Affiliation(s)
- Tian Jiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Ye Song Liang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Yue Gu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Fu Cheng Yao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Yi Fan Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Kai Xi Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Fei Biao Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Jun Long Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Jian Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
13
|
Wang J, Chen G, Yu X, Zhou X, Zhang Y, Wu Y, Tong J. Transcriptome analyses reveal differentially expressed genes associated with development of the palatal organ in bighead carp (Hypophthalmichthys nobilis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY PART D: GENOMICS AND PROTEOMICS 2023; 46:101072. [PMID: 36990038 DOI: 10.1016/j.cbd.2023.101072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/12/2023] [Accepted: 03/11/2023] [Indexed: 03/28/2023]
Abstract
The palatal organ is a filter-feeding related organ and occupies a considerable proportion of the head of bighead carp (Hypophthalmichthys nobilis), a large cyprinid fish intensive aquaculture in Asia. In this study, we performed RNA-seq of the palatal organ during growth periods of two (M2), six (M6) and 15 (M15) months of age after hatching. The numbers of differentially expressed genes (DEGs) were 1384, 481 and 1837 for M2 VS M6, M6 VS M15 and M2 VS M15 respectively. The following signaling pathways of energy metabolism and cytoskeleton function were enriched, including ECM-receptor interaction, Cardiac muscle contraction, Steroid biosynthesis and PPAR signaling pathway. Several members of collagen family (col1a1, col2a1, col6a2, col6a3, col9a2), Laminin gamma 1 (lamc1), integrin alpha 1 (itga1), Fatty acid binding protein 2 (fads2) and lipoprotein lipase (lpl), and Protein tyrosine kinase 7 (Ptk7) are candidate genes for growth and development of basic tissues of the palatal organ. Furthermore, taste-related genes such as fgfrl1, fgf8a, fsta and notch1a were also identified, which may be involved in the development of taste buds of the palatal organ. The transcriptome data obtained in this study provide insights into the understanding functions and development mechanisms of palatal organ, and potential candidate genes that may be related to the genetic modulation of head size of bighead carp.
Collapse
Affiliation(s)
- Junru Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Geng Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaoyu Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yanhong Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
14
|
Transcriptome analysis of gills reveals novel insights into the molecular response of stinging catfish (Heteropneustes fossilis) to environmental hypertonicity. Gene 2022; 851:147044. [DOI: 10.1016/j.gene.2022.147044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
|
15
|
Li L, Liu Z, Quan J, Sun J, Lu J, Zhao G. Comprehensive proteomic analysis to elucidate the anti-heat stress effects of nano-selenium in rainbow trout (Oncorhynchus mykiss). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113736. [PMID: 35689887 DOI: 10.1016/j.ecoenv.2022.113736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Because of the continuous intensification of global warming, extreme climate fluctuations, and high-density farming, cold-water rainbow trout (Oncorhynchus mykiss) are exposed to conditions of heat stress, which has severely impacted their survival and yield. Nano-selenium (nano-Se) shows higher biological activity and lower toxicity and has emerged as an ideal and ecological Se formulation. Herein rainbow trout were fed either a basal diet (control group) or basal diet plus 5 mg/kg nano-Se (treatment group). Samples were collected before (18 °C for 9 days; CG18, Se18) and after (24 °C for 8 h; CG24, Se24) heat stress. The DIA/SWATH approach was then applied to compare changes at the proteome level. We found 223 and 269 differentially abundant proteins in the CG18-CG24 and Se18-Se24 groups, respectively, which mainly included apoptosis-, heat stress-, and lipid-related proteins. In comparison with the CG18-CG24 group, the Se18-Se24 group showed higher abundance of molecular chaperone, such as Hsp70, Hsp90a.1, Hspa8, Hsp30, DNAJA4, Dnajb1, Bag2 and Ahsa1; on nano-Se supplementation, the heat stress-induced decline in the abundance of the selenoprotein MsrB2 was partially restored. Furthermore, nano-Se supplementation downregulated the abundance of lipid-related (CYP51, EBP, DHCR7, DHCR24, and APOB) and pro-apoptotic (caspase-8 and Bad) proteins. Protein-protein interaction analyses suggested that nano-Se inhibits apoptosis by upregulating the expression of Hsp70, Hsp90a.1, Hspa8, and Dnajb1; further, Hsp70/Hspa8 and MsrB2 appear to play a synergistic role in antioxidant defense under heat stress. Overall, our findings provide novel insights into nano-Se-mediated tolerance of heat stress, demonstrating that nano-Se exerts its anti-heat stress effects in rainbow trout by promoting protein repair, enhancing recovery of antioxidant enzyme activity, and alleviating lipid metabolism and apoptosis.
Collapse
Affiliation(s)
- Lanlan Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jun Sun
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Junhao Lu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| |
Collapse
|
16
|
Zhao H, Wang Q, Zhao H, Chen C. Transcriptome profiles revealed high- and low-salinity water altered gill homeostasis in half-smooth tongue sole (Cynoglossus semilaevis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100989. [PMID: 35421665 DOI: 10.1016/j.cbd.2022.100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Salinity is an important environmental factor that affects fish growth, development, and reproduction. As euryhaline fish, half-smooth tongue sole (Cynoglossus semilaevis) are a suitable species for deciphering the salinity adaptation mechanism of fish; however, the molecular mechanisms underlying low- and high-salinity responses remain unclear. In this study, RNA-seq was applied to characterize the genes and regulatory pathways involved in C. semilaevis gill responses to high- (32 ppt), low- (8 ppt), and control-salinity (24 ppt) water. Gills were rich in mitochondria-rich cells (MRCs) in high salinity. Compared with control, 2137 and 218 differentially expressed genes (DEGs) were identified in low and high salinity, respectively. The enriched functions of most DEGs were metabolism, ion transport, regulation of cell cycle, and immune response. The DEGs involved in oxidative phosphorylation, citrate cycle, and fatty acid metabolism were down-regulated in low salinity. For ion transport, high and low salinity significantly altered the expressions of prlr, ca12, and cftr. In cell cycle arrest and cellular repair, gadd45b, igfbp5, and igfbp2 were significantly upregulated in high and low salinity. For immune response, il10, il34, il12b, and crp increased in high and low salinity. Our findings suggested that alterations in material and energy metabolism, ions transport, cell cycle arrest, cellular repair, and immune response, are required to maintain C. semilaevis gill homeostasis under high and low salinity. This study provides insight into the divergence of C. semilaevis osmoregulation mechanisms acclimating to high and low salinity, which will serve as reference for the healthy culture of C. semilaevis.
Collapse
Affiliation(s)
- Huiyan Zhao
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Tianjin 300392, China; College of Fisheries, Tianjin Agricultural University, Tianjin 300392, China
| | - Qingkui Wang
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Tianjin 300392, China; College of Fisheries, Tianjin Agricultural University, Tianjin 300392, China.
| | - Honghao Zhao
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Tianjin 300392, China; College of Fisheries, Tianjin Agricultural University, Tianjin 300392, China
| | - Chengxun Chen
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Tianjin 300392, China; College of Fisheries, Tianjin Agricultural University, Tianjin 300392, China
| |
Collapse
|
17
|
Xing SY, Li ZH, Li P, You H. A Mini-review of the Toxicity of Pollutants to Fish Under Different Salinities. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:1001-1005. [PMID: 35486156 DOI: 10.1007/s00128-022-03528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
In recent years, with the development of the global economy, water pollution has increased. Pollutants migrate, accumulate, and diffuse in aquatic environments. Most of the pollutants eventually enter aquatic organisms. The accumulation of pollutants affects the development and reproduction of organisms, and many pollutants have teratogenic, carcinogenic, and/or mutagenic effects. Aquatic organisms in estuaries and coastal areas are under pressure due to both salinity and pollutants. Among them, salinity, as an environmental factor, may affect the behavior of pollutants in the aquatic environment, causing changes in their toxic effects on fishes. Salinity also directly affects the growth and development of fishes. Therefore, this paper focuses on metals and organic pollutants and discusses the toxic effects of pollutants on fish under different salinities. This research is of great significance to environmental protection and ecological risk assessment of aquatic environments.
Collapse
Affiliation(s)
- Shao-Ying Xing
- Marine College, Shandong University, 264209, Weihai, Shandong, P.R. China
| | - Zhi-Hua Li
- Marine College, Shandong University, 264209, Weihai, Shandong, P.R. China
| | - Ping Li
- Marine College, Shandong University, 264209, Weihai, Shandong, P.R. China
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, P. R. China.
| |
Collapse
|
18
|
Genome-Wide Analysis of Alternative Splicing (AS) Mechanism Provides Insights into Salinity Adaptation in the Livers of Three Euryhaline Teleosts, including Scophthalmus maximus, Cynoglossus semilaevis and Oncorhynchus mykiss. BIOLOGY 2022; 11:biology11020222. [PMID: 35205090 PMCID: PMC8869236 DOI: 10.3390/biology11020222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Alternative splicing (AS) is a key post-transcriptional regulatory mechanism that acts an important regulator in response to environmental stimuli in organisms. In the present study, 18 RNA-Seq datasets were utilized to investigate the potential roles of AS in response to different salinity environments in the livers of three euryhaline teleosts, including turbot (Scophthalmus maximus), tongue sole (Cynoglossus semilaevis) and steelhead trout (Oncorhynchus mykiss). The results indicated that different salinity environments changed the splicing patterns of numerous RNA splicing regulators, which might affect the splicing decisions of many downstream target genes in response to salinity changes. This study provides preliminary evidence for the important roles of AS events in salinity adaptation in teleosts. Abstract Salinity is an important environmental factor that directly affects the survival of aquatic organisms, including fish. However, the underlying molecular mechanism of salinity adaptation at post-transcriptional regulation levels is still poorly understood in fish. In the present study, 18 RNA-Seq datasets were utilized to investigate the potential roles of alternative splicing (AS) in response to different salinity environments in the livers of three euryhaline teleosts, including turbot (Scophthalmus maximus), tongue sole (Cynoglossus semilaevis) and steelhead trout (Oncorhynchus mykiss). A total of 10,826, 10,741 and 10,112 AS events were identified in the livers of the three species. The characteristics of these AS events were systematically investigated. Furthermore, a total of 940, 590 and 553 differentially alternative splicing (DAS) events were determined and characterized in the livers of turbot, tongue sole and steelhead trout, respectively, between low- and high-salinity environments. Functional enrichment analysis indicated that these DAS genes in the livers of three species were commonly enriched in some GO terms and KEGG pathways associated with RNA processing. The most common DAS genes work as RNA-binding proteins and play crucial roles in the regulation of RNA splicing. The study provides new insights into uncovering the molecular mechanisms of salinity adaptation in teleosts.
Collapse
|
19
|
Peng Y, Shi H, Liu Y, Huang Y, Zheng R, Jiang D, Jiang M, Zhu C, Li G. RNA Sequencing Analysis Reveals Divergent Adaptive Response to Hypo- and Hyper-Salinity in Greater Amberjack ( Seriola dumerili) Juveniles. Animals (Basel) 2022; 12:327. [PMID: 35158652 PMCID: PMC8833429 DOI: 10.3390/ani12030327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Salinity significantly affects physiological and metabolic activities, breeding, development, survival, and growth of marine fish. The greater amberjack (Seriola dumerili) is a fast-growing species that has immensely contributed to global aquaculture diversification. However, the tolerance, adaptation, and molecular responses of greater amberjack to salinity are unclear. This study reared greater amberjack juveniles under different salinity stresses (40, 30, 20, and 10 ppt) for 30 days to assess their tolerance, adaptation, and molecular responses to salinity. RNA sequencing analysis of gill tissue was used to identify genes and biological processes involved in greater amberjack response to salinity stress at 40, 30, and 20 ppt. Eighteen differentially expressed genes (DEGs) (nine upregulated and nine downregulated) were identified in the 40 vs. 30 ppt group. Moreover, 417 DEGs (205 up-regulated and 212 down-regulated) were identified in the 20 vs. 30 ppt group. qPCR and transcriptomic analysis indicated that salinity stress affected the expression of genes involved in steroid biosynthesis (ebp, sqle, lss, dhcr7, dhcr24, and cyp51a1), lipid metabolism (msmo1, nsdhl, ogdh, and edar), ion transporters (slc25a48, slc37a4, slc44a4, and apq4), and immune response (wnt4 and tlr5). Furthermore, KEGG pathway enrichment analysis showed that the DEGs were enriched in steroid biosynthesis, lipids metabolism, cytokine-cytokine receptor interaction, tryptophan metabolism, and insulin signaling pathway. Therefore, this study provides insights into the molecular mechanisms of marine fish adaptation to salinity.
Collapse
Affiliation(s)
- Yuhao Peng
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Hongjuan Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Yuqi Liu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Yang Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Renchi Zheng
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Dongneng Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Mouyan Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Chunhua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| |
Collapse
|
20
|
Sunde J, Yıldırım Y, Tibblin P, Bekkevold D, Skov C, Nordahl O, Larsson P, Forsman A. Drivers of neutral and adaptive differentiation in pike (Esox lucius) populations from contrasting environments. Mol Ecol 2021; 31:1093-1110. [PMID: 34874594 DOI: 10.1111/mec.16315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 01/28/2023]
Abstract
Understanding how eco-evolutionary processes and environmental factors drive population differentiation and adaptation are key challenges in evolutionary biology of relevance for biodiversity protection. Differentiation requires at least partial reproductive separation, which may result from different modes of isolation such as geographic isolation (allopatry) or isolation by distance (IBD), resistance (IBR), and environment (IBE). Despite that multiple modes might jointly influence differentiation, studies that compare the relative contributions are scarce. Using RADseq, we analyse neutral and adaptive genetic diversity and structure in 11 pike (Esox lucius) populations from contrasting environments along a latitudinal gradient (54.9-63.6°N), to investigate the relative effects of IBD, IBE and IBR, and to assess whether the effects differ between neutral and adaptive variation, or across structural levels. Patterns of neutral and adaptive variation differed, probably reflecting that they have been differently affected by stochastic and deterministic processes. The importance of the different modes of isolation differed between neutral and adaptive diversity, yet were consistent across structural levels. Neutral variation was influenced by interactions among all three modes of isolation, with IBR (seascape features) playing a central role, wheares adaptive variation was mainly influenced by IBE (environmental conditions). Taken together, this and previous studies suggest that it is common that multiple modes of isolation interactively shape patterns of genetic variation, and that their relative contributions differ among systems. To enable identification of general patterns and understand how various factors influence the relative contributions, it is important that several modes are simultaneously investigated in additional populations, species and environmental settings.
Collapse
Affiliation(s)
- Johanna Sunde
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Yeşerin Yıldırım
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Petter Tibblin
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Dorte Bekkevold
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Christian Skov
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Oscar Nordahl
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Per Larsson
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Anders Forsman
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
21
|
Lin G, Li S, Huang J, Gao D, Lu J. Hypoosmotic stress induced functional alternations of intestinal barrier integrity, inflammatory reactions, and neurotransmission along gut-brain axis in the yellowfin seabream (Acanthopagrus latus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1725-1738. [PMID: 34480680 DOI: 10.1007/s10695-021-01011-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The gut-brain axis plays a major role in multiple metabolic regulation processes, but studies regarding its responses to environmental stress in fish are still limited. In this study, we performed transcriptome sequencing analysis and enzyme-linked immunosorbent assay (ELISA) in yellowfin seabream (Acanthopagrus latus) exposed to environments with different water salinity (freshwater: 0 ppt; low-saline water: 3 ppt; brackish water: 6 ppt). According to transcriptome analysis, 707 and 1477 genes were identified as differentially expressed genes (DEGs) between freshwater and brackish water treatments in the brain and gut, respectively. Brain DEGs were significantly enriched into a set of Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with signal transduction, most of which were downregulated. Gut DEGs were enriched into a neurotransmission-relevant KEGG pathway tryptophan metabolism, and the downregulated DEGs were enriched into the KEGG pathway focal adhesion. ELISA demonstrated significant physiological responses of the brain and gut across treatments, as determined by the concentrations of tight junction protein ZO-2, interleukin 1β, and serotonin. Under hypoosmotic stress, the functions of the gut-brain axis are altered via impairment of intestinal barrier integrity, by disturbance of gut-brain neurotransmission, and through tissue-damaging inflammatory reactions. Our work identified candidate genes which showed significantly differential expression in the gut-brain axis when yellowfin seabream encountered hypoosmotic stress, which could shed lights on the understanding of the potential osmotic regulation mechanisms of the gut-brain axis in teleost.
Collapse
Affiliation(s)
- Genmei Lin
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Shizhu Li
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Junrou Huang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Dong Gao
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510275, Guangdong, China.
- Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519000, China.
| |
Collapse
|
22
|
Chen X, Gong H, Chi H, Xu B, Zheng Z, Bai Y. Gill Transcriptome Analysis Revealed the Difference in Gene Expression Between Freshwater and Seawater Acclimated Guppy (Poecilia reticulata). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:615-627. [PMID: 34426939 DOI: 10.1007/s10126-021-10053-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Guppy (Poecilia reticulata) can adapt to a wide range of salinity changes. To investigate the gene expression changes in the guppy exposed to seawater, we characterized its gill transcriptome using RNA sequencing. Experimental fish were exposed to salinity increase from 0 to 30‰ within 4 days, while control fish were cultured in freshwater (0‰ salinity). Seven days after salinity exposure, the gills were sampled and the mortality within 2 weeks was recorded. No significant difference in the cumulative mortality at the second week was found between the two groups. Transcriptomic analysis identified 3477 differentially expressed genes (DEGs), including 1067 upregulated and 2410 downregulated genes. These DEGs were enriched in several biological processes, including ion transport, ion homeostasis, ATP biosynthetic process, metabolic process, and immune system process. Oxidative phosphorylation was the most activated pathway. DEGs involved in the pathway "endoplasmic reticulum (ER)-mediated phagocytosis," "starch and sucrose metabolism," and "steroid biosynthesis" were mainly downregulated; chemokines and interleukins involved in "cytokine-cytokine receptor interaction" were differentially expressed. The present results suggested that oxidative phosphorylation had essential roles in osmoregulation in the gills of seawater acclimated guppy, during which the decline in the expression of genes encoding V-ATPases and calreticulin had a negative effect on the phagocytosis and immune response. Besides, several metabolic processes including "starch and sucrose metabolism" and "steroid biosynthesis" were affected. This study elucidates transcriptomic changes in osmotic regulation, metabolism, and immunity in seawater acclimated guppy.
Collapse
Affiliation(s)
- Xiuxia Chen
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Hui Gong
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China.
| | - Hongshu Chi
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Binfu Xu
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Zaiyu Zheng
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yulin Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
23
|
Si Y, He F, Wen H, Li S, He H. Effects of low salinity on epigenetic changes of growth hormone and growth hormone receptor in half smooth tongue sole (Cynoglossus semilaevis). REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
24
|
Wei L, Li Y, Ye H, Xiao J, Hogstrand C, Green I, Guo Z, Han D. Dietary Trivalent Chromium Exposure Up-Regulates Lipid Metabolism in Coral Trout: The Evidence From Transcriptome Analysis. Front Physiol 2021; 12:640898. [PMID: 33732169 PMCID: PMC7959734 DOI: 10.3389/fphys.2021.640898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/25/2021] [Indexed: 11/14/2022] Open
Abstract
Diet quality greatly affects an animal’s performance and metabolism. Despite the fact that trivalent chromium [Cr(III)] is considered an essential element and is widely used in nutritional supplements for animals and humans, the potential toxicity of Cr(III) is unclear. Here, liver transcriptome sequencing was performed on coral trout (Plectropomus leopardus) exposed to 200 mg kg–1 of dietary organic Cr(III) [as chromium picolinate (CrPic)] for 8 weeks. One-hundred-and thirteen differentially expressed genes (DEGs) were identified in response to Cr(III) stress, in comparison to the control, including 31 up-regulated and 82 down-regulated DEGs. Clusters of Orthologous Groups of proteins (COG) classifies DEGs into 15 functional categories, with the predominant category being related to lipid transport and metabolism (9.73%). The Kyoto Encyclopedia of Genes and Genomes (KEGG) assigned DEGs to six major categories with robust DEGs as part of the lipid metabolism pathway (18.58%). Moreover, KEGG functional enrichment analysis showed that these DEGs are primarily related to steroid biosynthesis, terpenoid backbone biosynthesis, and steroid hormone biosynthesis pathways, of which steroid biosynthesis was the most significant pathway, and 12 key up-regulated DEGs (dhcr7, dhcr24, ebp, lss, msmo1, sqle, cyp51, tm7sf2, sc5dl, fdft1, nsdhl, and hsd17b7) were found for steroid biosynthesis pathways. To validate the RNA sequencing data using quantitative real-time PCR (qRT-PCR), qRT-PCR results indicate that the expression of genes encoding HMGCR, TM7SF2, TRYP2, CTRL, EBP, LSS, and CYP51 were induced, while those encoding THRSP, LCE, and MCM5 were reduced, consistent with RNA-seq results. This findings provides the first evidence that a long-term high dose of Cr(III) intake causes lipid metabolism disorder and potential toxicity in fish. Cautious health risk assessment of dietary Cr(III) intake is therefore highly recommended for the commercial and/or natural diets of aquatic animals, which has previously largely been ignored.
Collapse
Affiliation(s)
- Lu Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Life and Pharmaceutical Sciences, College of Food Science and Engineering, Hainan University, Haikou, China
| | - Yu Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Life and Pharmaceutical Sciences, College of Food Science and Engineering, Hainan University, Haikou, China
| | - Hengzhen Ye
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Life and Pharmaceutical Sciences, College of Food Science and Engineering, Hainan University, Haikou, China
| | - Juan Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Life and Pharmaceutical Sciences, College of Food Science and Engineering, Hainan University, Haikou, China
| | - Christer Hogstrand
- Metals Metabolism Group, School of Life Course Sciences, King's College London, London, United Kingdom
| | - Iain Green
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, United Kingdom
| | - Zhiqiang Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Life and Pharmaceutical Sciences, College of Food Science and Engineering, Hainan University, Haikou, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| |
Collapse
|
25
|
Zhou K, Huang Y, Chen Z, Du X, Qin J, Wen L, Ma H, Pan X, Lin Y. Liver and spleen transcriptome reveals that Oreochromis aureus under long-term salinity stress may cause excessive energy consumption and immune response. FISH & SHELLFISH IMMUNOLOGY 2020; 107:469-479. [PMID: 33181338 DOI: 10.1016/j.fsi.2020.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/14/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
To investigate the physiological responses of Oreochromis aureus to salinity fluctuations at the molecular level. We used RNA-seq to explore the differentially expressed genes (DEGs) in the liver and spleen of O. aureus at 0, 3, 7 and 11 ppt (parts per thousand) salinity levels. Herein, De novo assembly generated 71,009 O. aureus unigenes, of which 34,607 were successfully mapped to the four major databases. A total of 120 shared DEGs were identified in liver and spleen transcripts, of which 83 were up-regulated and 37 were down-regulated. GO and KEGG analysis found a total of 26 significant pathways, mainly including energy metabolism, immune response, ion transporters and signal transduction. The trend module category of DEGs showed that the genes (e.g., FASN, ODC1, CD22, MRC, TRAV and SLC7 family) involved in the change-stable-change (1) and the constant-change categories (2) were highly sensitive to salinity fluctuations, which were of great value for further study. Based on these results, it would help provide basic data for fish salinity acclimation, and provide new insights into evolutionary response of fish to various aquatic environments in the long-term stress adaptation mechanism.
Collapse
Affiliation(s)
- Kangqi Zhou
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Yin Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Zhong Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Xuesong Du
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Junqi Qin
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Luting Wen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Huawei Ma
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Xianhui Pan
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| | - Yong Lin
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| |
Collapse
|
26
|
Cao D, Li J, Huang B, Zhang J, Pan C, Huang J, Zhou H, Ma Q, Chen G, Wang Z. RNA-seq analysis reveals divergent adaptive response to hyper- and hypo-salinity in cobia, Rachycentron canadum. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1713-1727. [PMID: 32514851 DOI: 10.1007/s10695-020-00823-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Salinity is an important abiotic stress that affects metabolic and physiological activities, breed, development, and growth of marine fish. Studies have shown that cobia (Rachycentron canadum), a euryhaline marine teleost fish, possesses the ability of rapid and effective hyper/hypo iono- and osmoregulation. However, genomic studies on this species are lacking and it has not been studied at the transcriptome level to identify the genes responsible for salinity regulation, which affects the understanding of the fundamental mechanism underlying adaptation to fluctuations in salinity. To describe the molecular response of cobia to different salinity levels, we used RNA-seq analysis to identify genes and biological processes involved in response to salinity changes. In the present study, 395,080,114 clean reads were generated and then assembled into 65,318 unigenes with an N50 size of 2758 bp. There were 20,671 significantly differentially expressed genes (DEGs) including 8805 genes adapted to hypo-salinity and 11,866 genes adapted to hyper-salinity. These DEGs were highly represented in steroid biosynthesis, unsaturated fatty acid metabolism, glutathione metabolism, energy metabolism, osmoregulation, and immune response. The candidate genes identified in cobia provide valuable information for studying the molecular mechanism of salinity adaptation in marine fish. Furthermore, the transcriptomic sequencing data acts not only as an important resource for the identification of novel genes but also for further investigations regarding cobia biology.
Collapse
Affiliation(s)
- Danyu Cao
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Jinfeng Li
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Baosong Huang
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Jiandong Zhang
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Chuanhao Pan
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Jiansheng Huang
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Hui Zhou
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Qian Ma
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Gang Chen
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Zhongliang Wang
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China.
| |
Collapse
|
27
|
Li J, Xue L, Cao M, Zhang Y, Wang Y, Xu S, Zheng B, Lou Z. Gill transcriptomes reveal expression changes of genes related with immune and ion transport under salinity stress in silvery pomfret (Pampus argenteus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1255-1277. [PMID: 32162151 DOI: 10.1007/s10695-020-00786-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Salinity is a major ecological factor in the marine environment, and extremely important for the survival, development, and growth of fish. In this study, gill transcriptomes were examined by high-throughput sequencing at three different salinities (12 ppt as low salinity, 22 ppt as control salinity, and 32 ppt as high salinity) in an importantly economical fish silvery pomfret. A total of 187 genes were differentially expressed, including 111 up-regulated and 76 down-regulated transcripts in low-salinity treatment group and 107 genes differentially expressed, including 74 up-regulated and 33 down-regulated transcripts in high-salinity treatment group compared with the control group, respectively. Some pathways including NOD-like receptor signaling pathway, cytokine-cytokine receptor interaction, Toll-like receptor pathway, cardiac muscle contraction, and vascular smooth muscle contraction were significantly enriched. qPCR analysis further confirmed that mRNA expression levels of immune (HSP90A, IL-1β, TNFα, TLR2, IP-10, MIG, CCL19, and IL-11) and ion transport-related genes (WNK2, NPY2R, CFTR, and SLC4A2) significantly changed under salinity stress. Low salinity stress caused more intensive expression changes of immune-related genes than high salinity. These results imply that salinity stress may affect immune function in addition to regulating osmotic pressure in silvery pomfret.
Collapse
Affiliation(s)
- Juan Li
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Liangyi Xue
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China.
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, People's Republic of China.
| | - Mingyue Cao
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Yu Zhang
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Yajun Wang
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Shanliang Xu
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Baoxiao Zheng
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Zhengjia Lou
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| |
Collapse
|
28
|
Hou ZS, Wen HS, Li JF, He F, Li Y, Qi X. Environmental hypoxia causes growth retardation, osteoclast differentiation and calcium dyshomeostasis in juvenile rainbow trout (Oncorhynchus mykiss). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135272. [PMID: 31841926 DOI: 10.1016/j.scitotenv.2019.135272] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/08/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Hypoxia generally refers to a dissolved oxygen (DO) level that is less than 2-3 mg/L. With ongoing global warming and environment pollution, environmental or geological studies showed hypoxia frequently occurs in global aquatic systems including ocean, river, estuaries and coasts. A preliminary study was performed to evaluate hypoxia tolerant of rainbow trout (Oncorhynchus mykiss) with parameters of mortality, behavior, endocrine and metabolite, identifying three DO levels including normoxia (Ctrl, 7.0 mg/L), non-lethal hypoxia (NH, 4.5 mg/L) and lethal hypoxia (LH, 3.0 mg/L). Furthermore, trout was treated by Ctrl, NH and LH for six hours to mimic the acute hypoxia in wild and/or farming conditions. A significantly higher mortality was observed in LH group. Trout of NH and LH showed stressful responses with unnormal swimming, increased serum cortisol and up-regulated gill hif1α transcription. Despite trout of NH and LH increased the oxygen delivery abilities by increasing the serum hemoglobin levels, the anerobic metabolism were inevitably observed with increased lactate. This study also showed a prolonged influence of NH and LH on growth after 30-days' recovery. Based on RNA-Seq data, different expression genes (DEGs) associated with stress, apoptosis, antioxidant, chaperone, growth, calcium and vitamin D metabolism were identified. Enrichment analysis showed DEGs were clustered in osteoclast differentiation, apoptosis and intracellular signaling transduction pathways. Results further showed NH and LH significantly decreased bone calcium content and disrupted the growth hormone-insulin-like growth factor (GH-IGF) axis. Our study might contribute to a better understanding of the effects of hypoxia on rainbow trout.
Collapse
Affiliation(s)
- Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China.
| | - Ji-Fang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Feng He
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| |
Collapse
|
29
|
Evans TG, Kültz D. The cellular stress response in fish exposed to salinity fluctuations. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:421-435. [DOI: 10.1002/jez.2350] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Tyler G. Evans
- Department of Biological Sciences California State University East Bay Hayward California
| | - Dietmar Kültz
- Department of Animal Sciences University of California Davis Meyer Hall Davis California
| |
Collapse
|
30
|
Hui WK, Zhao FY, Wang JY, Chen XY, Li JW, Zhong Y, Li HY, Zheng JX, Zhang LZ, Que QM, Wu AM, Gong W. De novo transcriptome assembly for the five major organs of Zanthoxylum armatum and the identification of genes involved in terpenoid compound and fatty acid metabolism. BMC Genomics 2020; 21:81. [PMID: 31992199 PMCID: PMC6986037 DOI: 10.1186/s12864-020-6521-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background Zanthoxylum armatum (Z. armatum) is a highly economically important tree that presents a special numbing taste. However, the underlying regulatory mechanism of the numbing taste remains poorly understood. Thus, the elucidation of the key genes associated with numbing taste biosynthesis pathways is critical for providing genetic information on Z. armatumand the breeding of high-quality germplasms of this species. Results Here, de novo transcriptome assembly was performed for the five major organs of Z. armatum, including the roots, stems, leaf buds, mature leaves and fruits. A total of 111,318 unigenes were generated with an average length of 1014 bp. Additionally, a large number of SSRs were obtained to improve our understanding of the phylogeny and genetics of Z. armatum. The organ-specific unigenes of the five major samples were screened and annotated via GO and KEGG enrichment analysis. A total of 53 and 34 unigenes that were exclusively upregulated in fruit samples were identified as candidate unigenes for terpenoid biosynthesis or fatty acid biosynthesis, elongation and degradation pathways, respectively. Moreover, 40 days after fertilization (Fr4 stage) could be an important period for the accumulation of terpenoid compounds during the fruit development and maturation of Z. armatum. The Fr4 stage could be a key point at which the first few steps of the fatty acid biosynthesis process are promoted, and the catalysis of subsequent reactions could be significantly induced at 62 days after fertilization (Fr6 stage). Conclusions The present study realized de novo transcriptome assembly for the five major organs of Z. armatum. To the best of our knowledge, this study provides the first comprehensive analysis revealing the genes underlying the special numbing taste of Z. armatum. The assembled transcriptome profiles expand the available genetic information on this species and will contribute to gene functional studies, which will aid in the engineering of high-quality cultivars of Z. armatum.
Collapse
Affiliation(s)
- Wen-Kai Hui
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fei-Yan Zhao
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing-Yan Wang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Yang Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Jue-Wei Li
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Zhong
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hong-Yun Li
- Agricultural Technology Extension Center in Yantan District, Zigong, 643030, China
| | - Jun-Xing Zheng
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liang-Zhen Zhang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qing-Min Que
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ai-Min Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Wei Gong
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
31
|
Kumar H, Iskender AU, Srikanth K, Kim H, Zhunushov AT, Chooq H, Jang GW, Lim Y, Song KD, Park JE. Transcriptome of Chicken Liver Tissues Reveals the Candidate Genes and Pathways Responsible for Adaptation into Two Different Climatic Conditions. Animals (Basel) 2019; 9:ani9121076. [PMID: 31816986 PMCID: PMC6940799 DOI: 10.3390/ani9121076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/29/2022] Open
Abstract
RNA sequencing was used to profile the liver transcriptome of a Korean commercial chicken (Hanhyup) at two different environments (Korea and Kyrgyzstan) to investigate their role during acclimatization into different climatic conditions. Ten samples from each location were analyzed to identify candidate genes that respond to environmental changes such as altitude, humidity, temperature, etc. Sequencing reads were preprocessed, aligned with the reference genome, assembled and expressions were estimated through bioinformatics approaches. At a false discovery rate (FDR) <0.05 and fold change (FC) ≥2, we found 315 genes were DE. Out of 315 DE genes, 174 and 141 were up- and down-regulated respectively in the Kyrgyz environment. Gene ontology (GO) enrichment analysis showed that the differentially expressed genes (DEGs) were associated with energy metabolism such as pyruvate and lactate metabolic processes, and glycerol catabolic process. Similarly, KEGG pathway analysis indicated pyruvate metabolism, glycolysis/gluconeogenesis, biosynthesis, citrate cycles were differentially enriched in the Kyrgyz environment. DEGs like TSKU, VTG1, SGK, CDK2, etc. in such pathways are highly involved in the adaptation of organisms into diverse climatic conditions. Our investigation may serve as a resource for the chicken industry, especially in exporting Hanhyup chicken from Korea to other countries.
Collapse
Affiliation(s)
- Himansu Kumar
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju 55365, Korea; (H.K.); (A.U.I.); (K.S.); (H.K.); (H.C.); (G.W.J.); (Y.L.)
| | - Asankadyr U. Iskender
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju 55365, Korea; (H.K.); (A.U.I.); (K.S.); (H.K.); (H.C.); (G.W.J.); (Y.L.)
- Institute of Biotechnology, National Academy of Science of Kyrgyzstan, Bishkek, 720071, Kyrgyzstan;
| | - Krishnamoorthy Srikanth
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju 55365, Korea; (H.K.); (A.U.I.); (K.S.); (H.K.); (H.C.); (G.W.J.); (Y.L.)
| | - Hana Kim
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju 55365, Korea; (H.K.); (A.U.I.); (K.S.); (H.K.); (H.C.); (G.W.J.); (Y.L.)
| | - Asankadyr T. Zhunushov
- Institute of Biotechnology, National Academy of Science of Kyrgyzstan, Bishkek, 720071, Kyrgyzstan;
| | - Hyojun Chooq
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju 55365, Korea; (H.K.); (A.U.I.); (K.S.); (H.K.); (H.C.); (G.W.J.); (Y.L.)
| | - Gul Won Jang
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju 55365, Korea; (H.K.); (A.U.I.); (K.S.); (H.K.); (H.C.); (G.W.J.); (Y.L.)
| | - Youngjo Lim
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju 55365, Korea; (H.K.); (A.U.I.); (K.S.); (H.K.); (H.C.); (G.W.J.); (Y.L.)
| | - Ki Duk Song
- The Animal Molecular Genetics and Breeding Center, Department of Animal Biotechnology, JeonBuk National University, Jeonju 54896, Korea;
| | - Jong Eun Park
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju 55365, Korea; (H.K.); (A.U.I.); (K.S.); (H.K.); (H.C.); (G.W.J.); (Y.L.)
- Correspondence:
| |
Collapse
|
32
|
Malachowicz M, Wenne R. Microarray analysis of gene expression of Atlantic cod from different Baltic Sea regions: Adaptation to salinity. Mar Genomics 2019. [DOI: 10.1016/j.margen.2019.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Jiang W, Tian X, Fang Z, Li L, Dong S, Li H, Zhao K. Metabolic responses in the gills of tongue sole (Cynoglossus semilaevis) exposed to salinity stress using NMR-based metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:465-474. [PMID: 30412891 DOI: 10.1016/j.scitotenv.2018.10.404] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 06/08/2023]
Abstract
Salinity is an important environmental factor affecting fish physiology. Tongue sole (Cynoglossus semilaevis) is a euryhaline species that can survive in a wide range of salinity, and might be used as a promising model animal for environmental science. In this study, by using the nuclear magnetic resonance (1H NMR)-based metabolomics, amino acids analysis and real-time quantitative PCR assay, we investigated the metabolic responses in the gills and plasma of tongue sole subjected to hypo- (0 ppt, S0) and hyper-osmotic stress (50 ppt, S50) from isosmotic environment (30 ppt, S30). The results showed that the metabolic profiles of S50 were significantly different from those of S0 and S30 groups, and a clear overlap was found between the latter two groups. Ten metabolites were significantly different between the salt stress groups and the isosmotic group. Taurine and creatine elevated in both S0 and S50 groups. Choline decreased in S50 group while increased in S0 group. Amino acids and energy compounds were higher in the gills of S50 group. The metabolic network showed that ten metabolic pathways were all found in S50 group, while seven pathways were observed in S0 group. Meanwhile, the transcript levels of the Tau-T and ATP synthase in the gills increased with increasing salinity. Aspartate and methionine exhibited significant differences in the plasma among the groups, but did not show differences in the gills. Comparatively, glutamate exhibited significant differences both in the plasma and the gills. Overall, these findings provide a preliminary profile of osmotic regulation in euryhaline fish.
Collapse
Affiliation(s)
- Wenwen Jiang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China
| | - Xiangli Tian
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266100, People's Republic of China.
| | - Ziheng Fang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China
| | - Li Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266100, People's Republic of China
| | - Shuanglin Dong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266100, People's Republic of China
| | - Haidong Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China
| | - Kun Zhao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China
| |
Collapse
|